St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2019

A Study of Blockchain Framework—Hyperledger Fabric and
Implementation as Educational Network

Venkata Ayyappa Devarasetty
ayyappa.venkat87@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation

Devarasetty, Venkata Ayyappa, "A Study of Blockchain Framework—Hyperledger Fabric and
Implementation as Educational Network" (2019). Culminating Projects in Information Assurance. 93.
https://repository.stcloudstate.edu/msia_etds/93

This Starred Paper is brought to you for free and open access by the Department of Information Systems at
theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information
Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact
rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/93?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

A Study of Blockchain Framework—Hyperledger Fabric and

Implementation as Educational Network

by

Venkata Ayyappa Devarasetty

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in Information Assurance

December, 2019

Starred Paper Committee:
Abdullah Abu Hussein, Chairperson
Lynn Collen
Sneh Kalia

Abstract

Blockchain, the foundation for Bitcoin, has gained lots of attention recently. Blockchain works
as a distributed ledger technology that allows information exchange to take place in a distributed
way, and ledger is immutable. Blockchain database removes the necessity of the centralized
system; therefore, applications based on Blockchain are getting high in number. This paper
covers an discuss in detail of blockchain technology, and its consensus algorithms along with
workflow, how trust has will be upon a system having no centralized system. This paper also
studies various frameworks being built upon the blockchain systems and how they are helpful in
solving many organizational issues and Developing of an application on an existing blockchain
framework which is an access based system, has information regarding academic records,
certifications and eligibility requirement examination records belong to a person, who can share
with any organization, eliminating the need of physical documents.

Keywords: Distributed Ledger, Bitcoin, Consensus, blockchain

Table of Contents

Page

LISt OF TADIES ..ottt 5

LISE OF FIGUIES ..ttt ettt se et e b e e s e sreetennee e 6
Chapter

L. INEFOAUCTION .o 8

Problem STAtEMENT ..o 8

Nature and Significance of the Problem ... 11

ODbjectiVe Of the STUAYovieiee e 11

Study QUESTIONS/HYPOLNESES ..o 11

Limitations Of the STUAY ..o 11

DefinNition OF TEIMS ..ot 12

SUMMEBIY .t bbb bt b e 12

[1. Background and Review Of LItErature ... 13

INEFOAUCTION .. 13

Backlground Related to the Problem ... 13

Literature Related to the Problem ... 29

Literature Related to the Methodology ..o 30

SUMMEBIY .ttt b et b et b e 31

I, METhOUOIOGY ...t 32

INEFOTUCTION ..o 32

Design Of the StUAYccveeiieie e 32

DAtA COBCIION ..ttt s enenenennennenne 33

Chapter Page

TOOIS aNd TECANIGUES ... s 34

SUMIMAIY .ttt ettt ettt bt e s ab e ekt e e st e e bt e e mb e e ke e anb e e nbeeanbeesbneanneens 48

IV. Data Presentation and ANAIYSISccccooiioiiiiiiieie e 49

Ty T [N ot A o] o SRS 49

Data PreSENTALIONcccveiiiiiiiieiesie sttt sttt ste e s reenre e 49

Data ANAIYSIS ...ttt 58

SUMMEBIY .t bbbt b 62

V. Results, Conclusion, and RecOmMmENdatioNSoccveeeiiiiiiiieiiiiiee e 63

T T 8ot A o] o RSP SSR 63

DiscusSion and RESUIEScoeiieiiiie e 63

LOF0] 0] 111 [o OSSR 64

FULUIE WWOTK ...ttt ettt e sneenteeneeeneenneenee s 65

R E =T =] 0TSSR 66
Appendices

N o [0 [T0] 0T LS00 ot RSOSSN 68

B. File crypto-config.yaml ... 71

Table

1.

2.

List of Tables

AQcademic transcript evaluation list

Cryptocourrencies and hashing algorithms ...

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

List of Figures

Page
Bitcoin as BIOCKChAIN 2.0ooiiii s 14
Overview of Blockchain technology ... 15
Merkle root hash generation from transactional hashesc.ccoceoiieiniiininnne 15
SErUCTUIE OF @ DIOCK ... 16
Key-based asymmetric algorithm ... 18
Hash algorithm COMPAriSONccoooiiiiiiiiiiee e 18
j™ step of the compression fUNCHON Cc.cvuvvieevceeeeeeeseee e 22
ShUffling the DIOCKScueiiiec e 22
Mining a block Of tranSACTIONccooiiiiiiiiicee e 23
Hyperledger fabric architeCtureccoiiiiiiiiiie e 26
Flowchart for implementing the certificate SyStemcccccevvvvieiiencveieciereee e 33
D010 1G] o]] - -] SRS 34
VMware WOorkstation NOMEPAGEcc.evveiiiriiiiiiiieiee s 36
Virtual Mmaching SELLINGScovoiiieee s 37
Virtual Maching SELUP ...oo.oieiieicee s 38
Ubuntu iNStallation SCIEENc..oiiiiiiii e 38
CURL INSEAHALIONeiiiceiccieee ettt sne e e e 39
DOCKEr INSTAITALIONcvveiiciieceee et enneenes 41
Docker community edition installation 0N VM ... 42
Cloning in all Hyperledger fabric docker imagesccccoccevvveiiiiiie e 43

CloNed COPIES IN VM ..ot 43

Figure
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
35.
36.
37.
38.

39.

Page
Docker images provided by Hyperledger fabric architectureccocovvveiinininnnee. 44
Generating Crypto MAtErialScooiiiiiiieiieie e 49
Folder structure of Crypto dOCUMENTScceiiiieiiiiieree e 50
TLS certificate generated by the dOCKer imagecccceveiiriniiieicieesc e 51
Channel artifacts generated by HLF docker imageccccovvvviienenieninnece e 52
Docker compose tool—containers and VOIUMEScccccveiviieeniiie e 53
DOCKET CONTAINETS ...ttt bbbttt nb et 53
Creating a channel in HLF network using CLLccccoiiiiininiieceeec e 55
GENESIS DIOCK ... 56
Peer proposal to join Channel ... 56
Installing ChaiNCOOe 0N 8 PEET ..o s 57
Instantiating chaincode 0N NETWOTKccoiiiiiiiiiie s 58
Structure of @ BIOCK NBAAETooviiiii e 59
Structure 0f @ BIOCK data -1cc.ooviiiiiiiiic e 59
Structure 0f @ BIOCK data -2ooiiiiiiiiee 60
Structure 0f @ BIOCK data -3coooiiiii e 60
Structure 0f @ BIOCK data -4ooiiiiiiii e 61

TeStiNg WITNOUL TLSeii et esne e 61

Chapter I: Introduction

This study investigates the current challenges, feasibility, benefits, and risks of working
with blockchain technology in the educational certification system. Certificates act as proof for a
student when reaching out to education and employment companies, which play a crucial role in
a person’s professional career. Therefore availability and immutability are important aspects
here.

Blockchain technology offers us these characteristics. It helps us to store information
where all the history will be maintained, and all the data stored in it is secure, transparent,
immutable in every way. Until today, whenever a person graduated from any university, did any
certification from a private institution has been receiving the certificates in a physical format,
and this certification process is not digitized. In this paper, the application of blockchain
technology on issuing, maintaining, monitoring, and verification of certificates by surveying
most popular blockchain concepts, such as Ethereum and Hyperledger Fabric.

Process automation is taken care of, by the concept of smart contracts, which runs on a
blockchain. This application will represent digital certificates for paper certificates, and their
digital fingerprints stored on the blockchain, and Since the architecture is self-maintaining and
open-source, It will be a great application added to the network.

Problem Statement

Every school/university around has its way of managing or maintaining its student
records and transcripts. Of course, many of them usually do not share student information, such
as transcripts for privacy reasons. Typically, in the case of international students, when one
student tries for an admission in a foreign country, the student must get his transcripts evaluated

by a third-party evaluator such as WES, an International evaluator.

For one reason, if somehow these transcripts are in a foreign language, there needs a
translator and, most of the time requires to approach a third-party evaluator. When a person had
started applying for a university in the United States, The university required him to first apply
all the transcripts from his school and then had them evaluate through an external evaluator to
match the grading system between the two countries, and it takes an average of 2-3 weeks to get
the evaluation report. Table 1 is the third-party evaluator's cost summary.

So, a cryptographic database solution for recording the academic certificates will help to
solve all these issues. By making all the official and unofficial transcripts of the student store in a
blockchain, which are accessible through all over the world and can share to any Employer or a
University And the transcripts stored on a blockchain system are immutable, therefore preserves

the integrity of data.

Table 1: Academic transcript evaluation list

Company Name Time Generalllg Course by Coursel Trans|ig
Validential 5 bus. days 75 139 2499
A27 Evaluations, LLC 3 weeks 195 335
Academic Credentials Evaluation Institute, 7 bus. days 259 349 §59+
Academic Evaluation Services, Inc. 2-3 weeks 180 450 50
American Education Research Corporation 3-4 weeks 175 275
Educational Credential Evaluators, Inc. 7 bus. days 165 275
Educational Perspectives, nfp 1 week 125 185
Educational Records Evaluation Service 3 months 340 490 $100+
Evaluation Service, Inc. 7-10 bus. days 145 230

Foreign Academic Credentials Service Unposted 310 460

Foreign Credits, Inc. 7 bus. days 175 260 50
Foreign Credential Evaluations, Inc. 5-7 bus. days 175 275
Foundation for International Services 2-4 weeks 140 350 $50+
Global Credential Evaluators, Inc. 3-4 weeks 200 270

Global Services Associates 4 weeks 165 235

Globe Language Services, Inc. 2 weeks 165 265 $50+
International Academic Credential Evaluat2 weeks+ 250 355
International Consultants of Delaware, Inc. 4-6 weeks 225 325 85
International Education Research Foundati3 weeks 170 250
International Evaluation Services 2-4 weeks 140 250

Josef Silny & Associates 2 weeks 130 230

Lisano International 2-4 weeks 250 450

10

11
Nature and Significance of the Problem

Axact from Pakistan and University Degree Program (UDP) run by an American in
Romania—have accounted for many hundreds of thousands of sales to Americans, and
that is just the tip of the iceberg. More than half of all new PhDs in the U.S. each year
are fake. (Gibson, 2017)

Academic transcripts are being generated falsely, and many agencies are producing false
documents. Due to the lack of proper verification systems, many physical documents are being
forged and are being distributed. On taking account of these issues, | would like to state that the
need to develop a global system which is a trusted, tamper-proof system.

Objective of the Study

To develop an application on a blockchain framework, which is a role-based access
system, takes inputs and stores all the changes performed on it, which supports an authentication
system and high scalability.

Study Questions/Hypotheses

1. s there a better framework other than HLF to develop this framework?

2. Cryptographic network, Is it secure enough?

3. How stable will be the network in handling upgrades and significant development

changes?
Limitations of the Study

Since the cryptocurrency networks are still under development, a new framework or
application based on blockchain technology is coming on to light/deployed every day. There is a
deficient number of successful applications, and in turn, very few peer-reviewed articles
available. Furthermore, a few of these frameworks require a new programming language to work

on them.

12
Definition of Terms

A Distributed Ledger is one of the different types of data storage methods, which is
shared and distributed between the participants of the decentralized network. This network can
store transactions such as currency, property information, and any data that can be converted to
bytes.

Blockchain is a distributed network of peer, where users can be participants and can work
on complex algorithms to confirm the transactions.

Ethereum is an open software platform based on blockchain technology that enables
developers to build and deploy decentralized applications (Higgins, 2017).

Hyperledger Fabric is a permissioned distributed blockchain infrastructure, initially
contributed by IBM and hosted by Linux Foundation, It brings elements of confidentiality,
privacy, and trust. It is an extensive scalable system that supports smart contracts.

Summary

This chapter discusses the basic introduction of the sudden hype of cryptocurrencies, how
it can help develop cost-effective solutions. It talks about what the research is about and what
are the limitations to it. The next chapter helps to understand more about blockchain

technology’s workflow and its frameworks in more detail.

13
Chapter I1: Background and Review of Literature
Introduction

In this chapter, we are interested in different mechanisms, taxonomy, and various
applications of blockchain technology. This chapter also deals with in detail explanation of
blockchain frameworks which are, Ethereum and Hyperledger Fabric. This chapter also talks
about the literature that we had previous literature related to the research area and provides an
opinion about those works.

Background Related to the Problem

A Distributed Ledger is a technical implementation of a kind of data storage system,
which has a distributed nature; all the peers in the network hold onto a copy of the ledger or in
some cases, a partial copy of the ledger. This network can handle transactions supported by
Proof of Work and consensus mechanisms.

Decentralization is a crucial concept in blockchain implementation. With this technology,
many people can write records into this decentralized database, and a community of an honest
user will control the record of information into the Distributed ledger. All the records write on to
a ledger will be distributed among its nodes, and Every node is continuously updating the copy
of the ledger on their database.

Blockchain helps store information about transactions in a distributed implementation.
Some computers in the network are called nodes. They own a full copy of the blockchain. There
will not be a central authority to distribute the information to the nodes. Overall, A distributed
ledger is a database held and updated independently by each node in a network. The information
will get distributed uniquely. The information is maintained and distributed by every

participating node in the network.

14

e.g. Bitcoin Implementation

e.g. Blockchain

Implementation

Distributed ledger technology

Figure 1: Bitcoin as Blockchain 2.0 (Stevens, 2018)

Each node/stakeholder in the network function as per consensus, which will be specific to
each network, which they agree on without any third-party interference. Consensus in the
network is what brings in trust among the nodes. Every record in the distributed ledger consists
of a timestamp, hash value of corresponding transactions, and a unique signature, which makes
the transactions immutable in the ledger.

Blockchain is a decentralized network which connects multiple nodes, and the peers in
the network manage all the transaction on the ledger.

How Blockchain works on a distributed ledger. Blockchain stores information about
transactions in a distributed manner. Some computers in the network are called nodes, and they
own a full copy of the blockchain. There will not be a central authority to distribute the
information to the nodes. Figure 2 explains how a blockchain system and its potential
applications. A distributed ledger is a database hosted and updated by each node in a network.

The information distribution among the nodes is unique.

BLOCKCHAIN TECHNOLOGY

What is it? How does it work?
Q ——©Q Q

Request Completion

The blockchain is a
ledger of all transa
X

The transaction is
completed and stored
on a public ledger

¢

Transaction
oadcasted Attaching the block

uilt of com
es) The new block is attached
to the existing blockchain -

it is permanent and cannot
6 be altered

Validation ¢

Block
e O Once confirmed, a
rency, con transaction is combined
‘orm of in- with other transactions
to create a block

r with

Potential applications
Unknows Benefits Q

I e

K Cryptocurrency Voting Healthcare

ext

mplementation challenges

- Difficult to understand

Usin:

stitu ia

sm; hone, tablet or com
puter,

resulting in immediately verifi
able resuls.

Figure 2: Overview of Blockchain technology (Stevens, 2018).

15

Types of Blockchain. Blockchain is a chain of blocks, a chained ledger that holds the list

of transactional data. The specific term for the first block in the chain is Genesis Block. A

Genesis block will not have any parent blocks, as shown in Figure 3.

Block n-1 Block n Block n+1
Previous Hash Nonce «<——— Previous Hash Nonce <——— Previous Hash Nonce

Merkle Root Timestamp Merkle Root Timestamp Merkle Root Timestamp
/Me#kk
Hash Value AB Hash Value CD

/\/\

Hash Value A Hash Value B Hash Value C Hash Value D

1) 1)

Transaction A Transaction B Transaction C Transaction D

Figure 3: Merkle root hash generation from transactional hashes (Hong, Wang, Cai, & Leung,

2017)

16

Block, as shown in Figure 4, has Block Header and body. Block header is an 80-byte
long string and carries the essential information that helps in maintaining consistency and
immutability of the chain.

1. A 4-byte long Block version.

2. A 32-byte long Merkle root has the hash of all the transactions combined in a block

3. A 4-byte timestamp of the block which helps in avoiding double spending

4. 4-byte long difficulty target for the block, this POW difficulty index is calculated by

averaging transfer rate. If the blocks are processing with high velocity, the difficulty

should increase proportionally. The framework is set to handle the difficulty

intelligently.
Block Header
Merkle Parent
BID'_:k Tree Time nBits Nonce Block
Version Root stamp Has
ash
Hash
Transaction Counter
TX TX TX TX TX TX

Figure 4: Structure of a block (Hong et al., 2017).

https://www.investopedia.com/terms/d/difficulty-cryptocurrencies.asp

17

5. Nonce is a 4-Byte field, which is a random string that needs to be generated using

trial and error method, which should be appended to the hash of the current header so
that the hash meets the difficulty requirements.

6. Parent block hash is a 256-bit and is the hash value calculated for the previous block,

Thus forming a chain of transactional blocks.
The body of the block mainly consists of transaction counter and transactions. The size of
each constituting block will affect the total number of transactions that can be held on a block.

Cryptography in Blockchain. The concept of Cryptography is the backbone of the
blockchain. Blockchain uses public-key cryptography, It has a public key and private key to
perform tasks. Public keys, as the name suggests, are distributed, whereas the private key should
be personal to a user.

One can encrypt information using a person’s public key, which can only be reversed to
its original state, in technical terms, decrypted by using the corresponding private key. This
public-private key encryption method brings in the concept of Data integrity, which means
verifying that the data reached its destination unharmed and uncorrupted. So, using the private
key, a digital signature can be generated so that with the respective public key associated with

that, anyone can verify the integrity of the data over the network.

18

| .
Sender ' Receiver
I
Receiver's | Receiver's
Public Key I Private Key
I
I
|
Y
Tobe, or not ta - Encryption - HESeRESLT _FEnt:ryptiDn_ o Tobeornolio
me, Thal it the Algorithm L1] Algorithm b, 1hat ig the
queston, whether Lixs 1k |] queston, whether
Iia mabder in tha.. Eil;“-'.;.'?'“iﬂ__ lig: Pomddiar in Ches..
1
Unencrypted message Encrypted message Unencrypted message
|

|
Figure 5: Key-based asymmetric algorithm.

A Hashing algorithm has a significant place in the cryptography, A hashing algorithm
applied to an input of any size results in a fixed-length output, depending on the hashing function
used. Any hash function divides the input into blocks of a certain length and process them using
several mathematical functions and produces a hash result/ hash digest.

Since the input data is divided up and each block is processed one at a time, the output of
one block’s hash digest is carried forward into the next one and the algorithm process it, thus the
output will be the of the combined value of all the inputs, this way if somehow one bit of data
changes the hash digest will be an entirely different value, This phenomenon is known as the

Avalanche effect.

Hash output Cycles per Throughput at
size (bit[;) ybloclf 100 Kng ?Kbps) Arca GE
MD4 128 456 28 7350
MDS5 128 612 20.9 8400
SHA-1 160 1274 12.55 8120
SHA-256 256 1128 22.7 10868
NAME 256 96 266.67 8100

Figure 6: Hash algorithm comparison.

19

An encryption algorithm, when applied to the information, which was supposed to be
input for a proposal, and is signed using the private key, and Its respective key which is being
shared up over the network, can help in verifying the integrity of the data received. This secure
method ensures that every transaction can be easily verifiable and logged. As long as the private
key is secure, none of the transactions are tied to anyone. The digitally signed transactions are
distributed all over the network.

Every user who participates in the blockchain network with the generated address never
has to reveal his identity. Consensus algorithms in blockchain ensure the data consistency is the
P2P network.

Hashing function has two unique properties,

1. Itis aone-way function,

2. Produces a fixed-length output.

The mathematical functions applied for the hashing function make sure that the input
never be will be generated from the hash digest. That is the reason why Hash digest technical
term is digital fingerprint of the data processed through the hashing algorithm.

Moreover, the same input must always produce the same result. It should not produce a
different hash digest. Restoring input from the hash digest is a lost cause; there should be no way
to break the mathematical hashing process to see the original input.

Even a small change in the input should affect an entirely different hash digest, even
changing the case of a character in the string should alter the hash digest. Moreover, most
importantly, the hash digest should always be of a fixed size. And this entire process of

producing the hash digest should use minimal computational power.

20

Any hash function should be one way and collision-resistant, which makes them an
essential application for password protection and digital signatures.

The existing most popular hashing algorithms MD-4 and MD-5 produces hash values of
length 128 bits, and SHA-1 results in a 160-bit hash digest, which means in case of collision
attacks, these algorithms cannot provide security for more than 64 and 80 bits respectively. So, to
improve security, the goal is to use better algorithms to prevent these collision attacks, AES
offers in three crypto variable sizes of 256, 384, and 512. SHA- 265 is supposed to provide 128-
bits of security against the collision attacks.

Table 2: Cryptocurrencies and hashing algorithms.

Cryptocurrency g Abbreviation g Algorithm

Bitcoin BTC SHA-256 2009
|Ethereum JETH Dagger-Hashimoto 2015
Litecoin LTC Scrypt 2011
Ripple XRP ECDSA 2013|
Siacoin SC blake2b 2015
EthereumClassic ETC Dagger-Hashimoto 2015
Dash DASH X11 2014
BitShares BTS Transaction fee 2014
Monero XMR CPU mining, CryptoNight 2014
Augur REP Smart contract 2015
Stratis STRAT 2016
Zcash ZEC Equihash 2016
Factom FCT Transaction fee 2015
NEM XEM blockchain 2015
DigiByte DGB SHA256,Scrypt,Qubit,Skein,Groestl 2014
Dogecoin DOGE Scrypt 2013
Eclipse EC SHA-256 2016
EDRcoin EDRC SHA-256 2016
Fermat 0P SHA-256 2016
JiffyCoin JIF SHA-256 2016
PascalCoin PASC SHA-256 2016|
PosEx PEX SHA-256 2016

Prototanium PR SHA-256 2016,

21

The hashing algorithm we are using for this research will be SHA-256, which is the
algorithm used for bitcoin as listed in Table 2.

The steps involved in the SHA-256 hash algorithm are, the message in action here is first
padded within its length of 512, which is a message M with right padding and then parsed into
blocks M®; M@MM,

Each block gets prepared and used at one time, and the result of one stage gets passed

into the next stage,

HO = D 4 ¢ (HED),

Where C is the algorithms compression function. The final results will be the hash of the
given message.

SHA-256 compression function acts on 512-bit message blocks and 256-bit hash
intermediate values; it is a 256-bit cipher algorithm which will encrypt the intermediate hashes
by using the 512-bit message strings. The initial hash values are the square roots of the first eight

prime numbers

H" = 6a09e667

" = pb67ae8s5
HY” = 3c6ef372
HY" = a54ff53a
H" = 510e527f
H" = 9b05688c
1" = 1£83d9ab
HY" = Bbe0cd19

The hash function compression function shown in Figure 7.

22

—-4a|—a+b|—4c|——mrea~+e>—l—<f|—-19|—»m|—

@D Maj(a,b,c) Chie, [, g)
m m ul
[u=) L [== I-t-l
(W, B K;)

Figure 7: j" step of the compression function C.

The input blocks of message schedule W gets passed, one after the other, the function
represented below as a graph. The input blocks get shuffled as shown in Figure-8, and the shuffle
function takes inputs as Wi(t), and the message schedule input block w'(t) and outputs a hash

@i(t+1).

a T2 a
b b
H* wly H
c =
d d
a e
f f
a g
h T h
Wi SR

Figure 8: Shuffling the blocks (Madeira, 2019).

23

POW in blockchain is a consensus algorithm, which requires exceptionally high
processing power and is very time consuming to produce a piece of data. This theoretical concept
helps systems, ensure that security, integrity, and consensus throughout the blockchain network.
However, advantageous in helping quick verification of the solution. Hash cash is a POW
algorithm for Bitcoin. For a network to arrive at consensus, it performs proof-of-work on its
transactions block.

When peers mine a block, it should satisfy consensus. So, the miners in the network
needs to complete the POW to verify all the transactions in a given block. The difficulty set by
the consensus will not be the same all the time. It varies every time so that new blocks are in for

processing every 10 minutes, as shown in Figures 9.

f Proof of Work

| Nonce Ii

Hash of Previous C;{mgg‘;ﬁpsh'ﬁ: ::h Hash with
! - ...
Block Header SHA-256 Difficulty Target

Transactions Merkel
Root

3

| Hash | | Hash | | Hash |

Tx 1 |n2| |n3| |m4|

Figure 9: Mining a block of transaction (Kumar, 2018).
Expected is that many of the miners try to perform proof of work on a given set of
transactions and add the block to the network. Nevertheless, given the complexity, there is a very

low probability of being successful, so it is almost impossible to predict which miner will

24
complete the Proof of work algorithm on the block of transactions and add the computed block to
the ledgers.

To Calculate the hash value, a miner needs to start hashing out each of the transactions
using the SHA-256 algorithm. The order of fields for transaction hashing is version number, then
comes in input counter, list of inputs, output counter, list of outputs, lock time. The order of
fields for inputs is a previous transaction hash, output index, input script length, a sequence
number. When the miner was done calculating the hash of all these transactions, then hash
Merkle root should be calculated.

To calculate Merkle root hash, Start with each pair of adjacent transactions are grouped
and computed hash to create an upper-level hash value, every pair of transactions gets processed
like explained, and then secondly, two adjacent upper-level hashes are combined and are hash
out until It generates a unique Merkle root hash. In case someone tries to modify a single bit in a
transaction, due to this algorithm, the Hash Merkle root changes and changes help in identifying
the change.

After obtaining the unique hash Merkle root for the transactions, the block header can be
hashed to get the final block hash. To calculate the block hash, the order of fields is version,
earlier computed block hash, hash Merkle root, time, target, nonce. These required fields need to
be put together and are hashed twice to get the final hash of the block of transactions.

A node/miner compiles all the proposals broadcast in the network and verifies all these
proposals by digital signatures associated with them. Then the miner puts all the transactional
records together and calculates the hash along with the unique hash Merkle root which makes
sure its total hash be less than the target hash,

H (N, P_Hash, Merkle_Root) < Difficulty

25

Where N refers to nonce variable,

P_Hash is the hash value of the block mined earlier to this,

This calculation can be achieved by altering nonce, starting with value 0, and
incrementing it every time and recalculate the hash until the total hash is less than that of the
target hash. And then, when achieved, the node/miner will broadcast this block onto the network.
When a node receives a first block in the network, it will verify all the transactions in the block
and will verify the hash value of the block.

Hyperledger Fabric is a permissioned distributed blockchain infrastructure, initially
contributed by IBM and hosted by Linux Foundation, It brings elements of confidentiality,
privacy, and trust. It is an extensive scalable system that supports smart contracts. To improve
cross-industry blockchain technologies, the Hyperledger project hosted by Linux Foundation has
developed an HLF framework. HLF possesses some unique characteristics which will help speed
up the blockchain adoption. Unlike Ethereum, Developing smart contracts can use programming
languages such as Node.js, Java, or Python.

Moreover, the consensus protocol can be swapped depending upon the organizational
requirements. Furthermore, It enables TLS communication between the participants of the
network.

A Hyperledger Fabric architecture also offers the security of channels, meaning that a
different ledger can for different channels, which can store different types of records. This
framework can be tuned to business requirements and does not need to establish a
cryptocurrency. The HLF ledger has the following core components, Certificate authority (MSP),
Chaincode Containers, nodes/peers, Ordering service, Channels, and Shared Ledger, as shown in

Figure 10.

26

Fabric v1.0 Architecture

— membership
No SPoF

S No SPoT L I

Q(,}\ | |

... peer |)

applslgztlon N — orderer —
roposal | Endorser 3 Rela* Order TXs in a
’ Committer batch according

Ledger .‘_ to consensus

4 Batch
Events
2 Subpmy Tram Chaincode
Sactiop,

. state
‘|’ HYPERLEDGER

[[ATH

iy

[l
|

Figure 10: Hyperledger fabric architecture (Sean, 2017).

When a user enrolls into The network through MSP (Membership service provider) and
submits a proposed transaction to the endorsing peer, the peer executes the chain code (smart
contract), endorses it, and returns the transaction to the user/client. The user then submits the
proposal to the orderer. Orderer is the automated service that bundles in all transactions. The
orderer service verifies the received transaction and adds this transaction along with other
transactions, sorts the transactions, and creates a block of transactions. Then the peers validate
the transaction in the returned block and commit the ordered block to the ledger.

Membership service provider (MSP) is a Certificate authority, which provides
authentication, registration, and certificate generation services to its users. A Membership service
provider also generates a public key/Private key pair for its members. Each member of the
network should present a digital certificate to join the HLF network. MSP will create these

certificates for all its members in the network.

27

Chaincode is a smart contract that can be installed on a peer and is used to handle the data
on the ledger, This programming language can be written in python, Java or node.js, to handle
the consensus agreed upon by users, when a user requested a transaction, a chain code is written
to make sure the proposal meets all its constraints, A chain code can invoke to query the ledger
in the database or to invoke other chain codes, with appropriate permissions.

The HLF network supports multiple channels/ledgers to avoid data exchange. A channel
acts as a messenger as in, all the users belonging to that channel will be able to see the messages
in that channel. HLF allows users to be part of multiple channels, but cross-communication
between the channels is not possible. Thus Channels add up an extra layer of security to the HLF
architecture. Ledger/Blockchain is a place to maintain all the transactions local to a channel. It
should be tamper-proof (The records in the ledger are immutable). It should be storing all the
transactions as well as the successful and unsuccessful transactional logs. HLF also has a
database system that stores the current state of the system, and termed as the World State
database; this will store the current or most recent state of all the channels in the network. The
World State database will store the most recent state of all the channels, whereas Transactional
log stores all the transactions that happened till date. World State database's primary purpose is
for query performance optimization, instead of working through all the transactional log, we can
get the most recent state of all the channels through the World State database.

Nodes host both the ledgers and chaincode; MSP authenticates any user or peer in the
network and can be of either of these endorsing, ordering, or committing peers.

As explained earlier in the transaction flow, each peer has bear responsibility in each phase.

Initially, when a user sends a transactional proposal to the endorser. An endorsing peer

will validate the proposal. A transaction that is valid/legitimate should achieve enough

28
endorsements from the network. Each endorsing peer runs the chain code on the proposal and
generate a response and endorse it by digitally signing the response.

Therefore, the response from the endorsing peer is a digitally signed response from the
chain code, which makes it tamper-proof. Then the endorsing peer sends the response back to the
client. The client then will create a transaction message by putting together all the responses
from the endorsing peers. The constraint for the transaction message is that the proposal needs
endorsements from more than fifty percent of the peers.

An ordering peer is the which collects all the transaction messages from the client. A
transaction message is the one which is a bundle of all the digitally signed responses from the
endorsing peers. The ordering peers collect these transaction messages from all the channels,
chronologically sorts them, and bundles them all together into blocks. Each block is a list of
transactions ordered in chronological order grouped by channel. The ordering service then sends
the block to the leader peer of each channel.

The committing peer only hosts a leger; it does not host chain code like the endorsing
peer, This means the committing peer cannot be an endorsing peer, but an endorsing peer can
always be a committing peer. When the committing peer receives the block of transactions from
the ordering peer, each peer independently validates all the transactions and check if all the
transactions satisfy the endorsement policy. Then they will update all the valid and invalid
transactions into the ledger, which is a distributed database among the network. The invalid
transaction will help in identifying troubling peers.

A protocol called Gossip protocol used in HLF to share the workload between the

participating nodes. An online peer always broadcast alive signal to all other peers making them

29
know that it is available. If a peer stops sending in the alive signal, it will be considered dead and
will get its membership revoked from the channel.

Moreover, peers in the network can either elect their Anchor peer to communicate with
the ordering service to get the block of a transaction of the channel. An Anchor peer can also
communicate with an anchor peer of another organization. This node takes the responsibility of
propagating the received blocks to the nodes in the channel.

The ordering service forwards the block of transactions only to the leader of the peer to
save the bandwidth. A leader can either be selected by the administrator or by a dynamic voting
among the nodes, where voting happens at regular intervals of time.

Literature Related to the Problem

In Mukhopadhyay, Skjellum, and Hambolu’s (2017) paper “A Brief Survey of
Cryptocurrency Systems”, the authors have discussed the underlying blockchain architecture and
how the initial models faced the privacy and security issues and also explained how the recent
developments on this technology are supporting the business models. The paper talks about the
basic structure of the bitcoin block, the Genesis block, and how the links between the blocks will
happen at a very high level. The paper also discusses different consensus mechanisms and
hashing algorithms in various cryptocurrencies.

In Chen, Xu, and Lu’s (2018) paper “Exploring blockchain technology and its potential
applications for education”, the authors researched a lot of cryptocurrencies and their potential.
This paper also lists out many advantages of adopting the blockchain technologies over
traditional methods. This article also introduced the features and advantages of blockchain
technology following by exploring some of the current blockchain applications for education.

This paper also talks about how blockchain technology can help reduce the degree fraud, and

30
how the blockchain can validate a person’s certificates. This paper also talks about various future
innovative ideas that blockchain can help revolutionize the field of education.

In Ark’s (2018) paper “20 Ways Blockchain Will Transform (Okay, May Improve)
Education” article, the author had discussed various industrial applications of blockchain and
explained about various frameworks under development for industrial applications. This article
also listed out various industries which are trying to develop innovative solutions based on
blockchain frameworks.

In Cachin’s (2016) paper on “Architecture of the Hyperledger Blockchain Fabric”, the
author has discussed about the underlying architecture of Hyperledger Fabric framework.
Furthermore, it discusses how a permissioned based model of blockchain can control who
participates invalidation, and the protocol helps in building industrial models. This paper also
discusses different consensus protocols that can be employed depending on the industrial
structure.

Literature Related to the Methodology

In Grather et al.’s (2018) paper “Blockchain for Education: Lifelong Learning Passport”,
the author had discussed the importance of certificates in a person’s personal and professional
career. The author also describes the conceptual system overview and then presents in detail the
platform implementation, including management of certification authorities and certificates,
smart contracts as well as services for certifiers, learners, and third parties such as employer. In
this implementation study, the author had proposed to build an application on the Ethereum
framework (Grather et al., 2018), which generates digital certificates and stores the document’s

hash in the blockchain database, and any certificate can easily get verified against the hash value

31
in the database. This paper also documented with many user test cases to help testing the
application.

In Valenta and Sandner’s (2017) paper about “Comparison of Ethereum, Hyperledger
Fabric, and Corda”, the author has discussed about various frameworks built upon the blockchain
database and mentioned advantages of one framework over the other. Also, in this paper, the
author had discussed implementation projects being carried out on each framework.
Summary

This chapter gives a detailed overview of a Distributed ledger Blockchain technology,
and about cryptocurrencies which are actively in constant development on them and technology
involved, such as Consensus, proof of work algorithms, encryption, taxonomy of blockchain
systems and most importantly data mining methods in basic blockchain system, bitcoin and in
Hyperledger Fabric framework. The next chapter covers the design of the approach to building

up the solution.

32
Chapter I11: Methodology

Introduction

In this chapter, we will discuss in-depth about process to implement a HyperLedger
fabric framework using a Linux machine and what are the steps to be taken to develop the
application. Apart from we will be discussing hardware and software components needed to
implement this.
Design of the Study

Designing of this implementation project requires the study of various frameworks and
pre-designed models, which includes learning the new frameworks, development plan, and
writing user test cases to deal with any issues that come up during the implementation. For this, a
development environment with at least four nodes or participants.
Designing the development network involves the following steps

1. Learn and understand all the execution examples of the Hyperledger Fabric

Framework.

2. Try to analyze each algorithm and consensus mechanism in this framework.

3. Understand the different components of the framework and their roles.

4. Create and set up virtual machines where the nodes will live.

5. Install and configure the HLF system on a Linux machine with virtualization.

6. Make a test run inserting a few records to make sure that the implementation works.
The design flow chart developed shown in the figure below; The HLF framework should be set
up with a minimum of 4 nodes. As shown in Figure 11 use case, Workflow should be as follows,

1. Aninstructor and student will be peers in the HLF network.

2. The instructor will then send in a request to insert in a student marks/grade request.

33
3. Endorsing peers will then write a smart contract (Chaincode) on this record and moves

this transaction to Ordering peer.

Professor

Submits a grade

Orderer

Orders all
transactions and

creates a block

Block added to »
Ledger 1
‘|
'
A chaincode

Figure 11: Flowchart for implementing the certificate system.

4. The ordering peer than validates all the proposals and sorts them out alphabetically,
and then the block gets generated and forwarded to the committing peer.
5. Committing peer then validates the received block from Orderer, commits the block
onto ledger, which is immutable and tamper-free.
Data Collection
The data required for this implementation is available and is accessible through various
scientific journals and repositories. Since the tool used for this implementation is HyperLedger

fabric, which is an open-source software developed by IBM. The data collection for this project

34

IS going through project documentation and looking through various designed project templates

in academic and scientific repositories. The research included going through various white
papers, conference papers, various technical blog sites, and repositories to get the up to date
information.

Tools and Techniques

To implement the project, we need to get the Hyperledger fabric framework, which runs

on the docker platform. Since we are developing a multi peer network using the architecture,

docker helps us create containers for the peer and the corresponding services. Docker containers

are lightweight alternatives for virtual machines.

Docker containers need a Linux or Unix based host machines. Docker containers do not

need a preallocated RAM or disc space. The containers dynamically use up RAM and disk space

as required. Docker containers created by docker use the Host operating system as shown in

Figure 12,

CONTAINER

App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Docker

Host OS

Infrastructure

Figure 12: Docker container (Orientation and setup, 2019).

35

The docker containers have applications running on them, and these containers hold the
required information regarding these corresponding applications such as Binaries and libraries.
So on top of a Host machine, there will be a docker engine, and there will be multiple containers
running on the Docker engine. So the libraries and binary files local to each application will be
stored locally in each container.

To work with the Hyperledger fabric architecture provided docker images and containers,
the project implementation will be carried out on a Linux machine. In order to install a Ubuntu
operating service, It needs a Virtual machine installer.

A Virtual machine Installer such as VMware Workstation Player helps in running
multiple operating systems on a single host machine. It enables the host user to set up multiple
virtual machines with a guest operating system on a single host physical machine and run them
simultaneously utilizing the host physical machine resources. VMware provides a complete
virtual environment, i.e., a completely independent virtual hardware to the guest operating
system.

A user can work on work on the guest machine, pause and make a copy of the virtual
machine and use a copy of the machine on any other host machine, which makes it highly

portable. This feature will be useful in development projects such as this.

VMware Woarkstation 15 Player (Non-commercial use only) - o X

=1

[m]

(L]

BN weicome to VMware

[T ubent sa-bi Workstation 15 Player

Player ~

IDcloudera-quickstan-vm-s.13.0-0-vmware Create a New Virtual Machine

Create a new virtual machine, which will then be added to
the top of your library.

Open a Virtual Machine

D—[I_'D Open an existing virtual machine, which will then be added

to the top of your library.

Upgrade to VMware Workstation Pro

Get advanced features such as snapshots, virtual network
management, and more.

Help

View online help.

This product is not licensed and is authorized for non-
commercial use only. For commercial use, purchase a
< > license. Buy now.

Figure 13: VMware workstation homepage.

For this project implementation, an Ubuntu 64 bit Operating system will support the
cause, and VMware helps us in mounting up the Operating system.

VMware allows users to set up system resources such as RAM and disk space for guest
Operating systems since the project setup is a multi-peer network and requires much
computational power, a three GB RAM, and 20 GB disk space, leaving the rest as defaults as

shown in Figure 14.

36

Hardware Qptions

Device Summary

E=IMemory 3.0GB

iijéProcessors 1

[\Hard Disk (SCSI) 20 GB

CD/DVD (SATA) Auto detect

S Network Adapter NAT

USB Controller Present

) Sound Card Auto detect

(= Printer Present

[CIpisplay 1 monitor
Add...

Figure 14: Virtual machine settings.

Remove

37

Memory

Specify the amount of memory allocated to this virtual machine.
The memory size must be a multiple of 4 MB.

Memory for this virtual machine: 3104 * mB

64 GB
32GB
16 GB
8GB < B Maximum recommended memory
4GB (Memory swapping may
&= occur beyond this size.)
2GB <
6.2 GB
1GB
S1ZhE M Recommended memory
256 MB 2GB
128 MB
64 MB Guest OS recommended minimum
32 MB 1GB
16 MB
8 MB
4 MB

[[i] The virtual machine will use up to 768 MB of this memory for
graphics memory. You can change this amount in the Display
settings page.

OK Cancel Help

The next step is installing the operating system on the machine, which involves setting up

the user and login details for Ubuntu OS, as explained below in Figure 15. Then the VMware

software initializes the user details on the machine and boots up the operating system on the host

physical device.

New Virtual Machine Wizard

Easy Install Information
This is used to install Ubuntu 64-bit.

| Personalize Linux

Full name: Venkata Ayyappa D

User name: | Venkata

Password:

Confirm:

Figure 15: Virtual machine setup.

Then the VMware software initializes the user details on the machine and boots up the
operating system on the host physical device. VMware Player will boot up the machine,
configure all the hardware components required, and Initialises the operating system with
defaults, as shown below in Figure 16; this may take a while and mostly depends upon the

version.

Install

Access for everyone

At the heart of the Ubuntu philosophy is
the belief that computing is for
everyone. With advanced accessibility
tools and options to change language,
colour scheme and text size, Ubuntu
makes computing easy - whoever and
wherever you are.

Customization options

n Appearance
ﬁ Assistive technologies

Language support

Copyingfiles...

Figure 16: Ubuntu installation screen.

38

39

Once the Virtual machine’s Operating system is up and running, log-in with the user
credentials and Start to set up the Linux virtual machine ready to use HyperLedger fabric
architecture. Open the terminal on the VM and Install CURL as a superuser using the following
command.

sudo apt-get install curl

CURL is a handy command-line browser/tool or client URL library, and It is used to
interact with servers using the command line. It helps in sending in data or extract data from
servers. CURL allows users to upload/extract multiple files with a single command. Multiple
URLSs can be specified in a single command and are downloaded/uploaded into the server in the
given order of the URL using the supported protocols. cURL tool will help in downloading

Hyperledger fabric prebuild docker images that help in building up specific containers.

venkata@ubuntu: ~

File Edit View Search Terminal Help

venkata@ubuntu:~$ sudo apt-get install curl
[sudo] password for venkata:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libcurl4
The following NEW packages will be installed:
curl libcurl4
0 upgraded, 2 newly installed, 0 to remove and 199 not upgraded.
Need to get 373 kB of archives.
After this operation, 1,038 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libcurl4 amd64 7.58.0-
2ubuntu3.8 [214 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 curl amd64 7.58.0-2ubu
ntu3.8 [159 kB]
Fetched 373 kB in 1s (416 kB/s)
Selecting previously unselected package libcurl4:amd64.
(Reading database ... 126439 files and directories currently installed.)
Preparing to unpack .../libcurl4_7.58.0-2ubuntu3.8_amd64.deb ...
Unpacking libcurl4:amd64 (7.58.0-2ubuntu3.8) ...
Selecting previously unselected package curl.
Preparing to unpack .../curl_7.58.0-2ubuntu3.8_amd64.deb ...
Unpacking curl (7.58.0-2ubuntu3.8) ...
Setting up libcurl4:amd64 (7.58.0-2ubuntu3.8) ...
Processing triggers for libc-bin (2.27-3ubuntul) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Setting up curl (7.58.0-2ubuntu3.8) ...
venkata@ubuntu:~$ I

Figure 17: cURL installation.

40

Once the cURL tool installation finishes, as shown in Figure 17, we need to set up the Go
Programming language in our Linux machine. Go programming language is one of the
programming languages that Hyperledger fabric architecture supports. Go Programming
language, also called Golang, is also an open-source language launched by Google.

sudo apt-get install golang-go

Chaincode, which are smart contracts in this architecture, are written using the Go
Programming language. Chaincode in Hyperledger fabric runs in a separate container, which
makes it isolated and secure. Chaincode manages and updates ledger through requests submitted
by peers in the network.

The next step in the process is installing docker in our guest machine. We can run the
command below in terminal and pass the password when invoked, to install it as shown in
Figure 18.

sudo apt-get install docker

Command sudo command will run the command following it as a superuser and apt is a
potent tool in ubuntu, which refers to the Application Packaging Tool, which means it handles all
installations in Ubuntu machine such as new software package installation, upgrading of existing

installed software and delete any software packages.

41

venkata@ubuntu: ~

File Edit View Search Terminal Help

venkata@ubuntu:~$ sudo apt-get install docker
[sudo] password for venkata:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
docker
0 upgraded, 1 newly installed, © to remove and 198 not upgraded.
Need to get 12.9 kB of archives.
After this operation, 45.1 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu bionic/universe amd64 docker amdé64 1.5-1buildl [
12.9 kB]
Fetched 12.9 kB in O0s (103 kB/s)
Selecting previously unselected package docker.
(Reading database ... 139851 files and directories currently installed.)
Preparing to unpack .../docker_1.5-1buildl_amd64.deb ...
Unpacking docker (1.5-1build1) ...
Processing triggers for man-db (2.8.3-2ubuntu@.1) ...
Setting up docker ﬁl.S-lbuildl) cee
venkata@ubuntu:-~$

Figure 18: Docker installation.

Running this command in the terminal will install Community Edition of docker. After
the successful installation of the Docker community edition. We need to install another package
of docker, which is docker-compose.

sudo apt-get install -y docker-ce

Docker-compose is a potent tool in docker, which allows users to create containers using
existing docker images or software packages installed in the machine. Figure 19 shown that the
community edition of Docker has installed completely.

sudo apt-get install docker-compose

Docker-compose uses configuration files to generate docker containers for applications

and can generate multiple containers. We use a YAML file to compose all the configurations of a

container.

42

venkata@ubuntu: ~

File Edit View Search Terminal Help

venkata@ubuntu:~$ sudo apt-get install -y docker-ce
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
aufs-tools cgroupfs-mount containerd.io docker-ce-cli git git-man liberror-perl pigz
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gui gitk gitweb git-cvs git-me
diawiki git-svn
The following NEW packages will be installed:
aufs-tools cgroupfs-mount containerd.io docker-ce docker-ce-cli git git-man liberror-perl pigz
0 upgraded, 9 newly installed, @ to remove and 198 not upgraded.
Need to get 90.3 MB of archives.

After this operation, 418 MB of additional disk space will be used.
Get:1 https://download.docker.com/linux/ubuntu bionic/stable amd64 containerd.io amd64 1.2.10-3 [2

.com/ubuntu bionic/universe amd64 pigz amd64 2.4-1 [57.4 kB]

.archive. .com/ubuntu bionic/universe amd64 aufs-tools amd64 1:4.9+20170918-1u
buntul [104 kB]
Get:4 http://us.archive. .com/ubuntu bionic/universe amd64 cgroupfs-mount all 1.4 [6,320 B]
Get:5 http://us.archive. .com/ubuntu bionic/main amd64 liberror-perl all 0.17025-1 [22.8 kB]
Get:6 http://us.archive. .com/ubuntu bionic-updates/main amd64 git-man all 1:2.17.1-1ubuntu®.
4 [803 kB]
Get:7 http://us.archive.ubuntu.com/ubuntu bionic-updates/main amd64 git amd64 1:2.17.1-1ubuntu6.4
[3,907 kB]
Get:8 https://download.docker.com/linux/ubuntu bionic/stable amd64 docker-ce-cli amd64 5:19.03.4~3
-0~ubuntu-bionic [42.5 MB]
70% [8 docker-ce-cli 36.2 MB/42.5 MB 85%] Get:9 ht
tps://download.docker.com/1linux/ubuntu bionic/stable amd64 docker-ce amd64 5:19.03.4~3-0~ubuntu-bi
onic [22.9 MB]

Figure 19: Docker community edition installation on VM.

Once all the docker related packages are downloaded and installed in the Linux machine.
The following command upgrades all the existing software packages and gets the system updated
for Hyperledger fabric docker images.

sudo apt-get upgrade

When the system upgrade with the latest software patches finishes, let us use cURL to get
the Hyperledger fabric binaries and Docker images. To do this, the user creates a directory and
open terminal in that folder and execute the following command.

curl -sSL http://bit.ly/2ysbOFE | bash -s

venkata@ubuntu: ~/Documents/Project

File Edit View Search Terminal Help
venkata@ubuntu:~/Documents/Project$ curl -sSL http://bit.ly/2ysbOFE | bash -s

Installing hyperledger/fabric-samples repo

===> Cloning hyperledger/fabric-samples repo and checkout v1.4.3
Cloning into 'fabric-samples'...

remote: Enumerating objects: 4234, done.

remote: Total 4234 (delta 0), reused 0 (delta 0), pack-reused 4234
Receiving objects: 100% (4234/4234), 1.53 MiB | 795.00 KiB/s, done.
Resolving deltas: 100% (2066/2066), done.

Note: checking out 'v1.4.3',

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at f86ec95 [FAB-16390] Added filter for invalid transactions

Installing Hyperledger Fabric binaries
Figure 20: Cloning in all Hyperledger fabric docker images.
Figure 20 shows that, when the command executes, the cURL tool copies all the files
available on the website and clones a copy in our local folder. The cloned copy also contains

come templates, which will be useful for reference.

< ¢ 1 Home Documents Project Fabric-samples config * Qe = o
© Recent
o Biome \-‘ h‘ -J J h‘ h‘ \-J

balance- basic- bin chaincode chaincode- commercial config
[m Desktop transfer network docker- -paper

devmode
@ Documents
¥ | Downloads d d d J d d J
dd Music docs fabcar first- high- interest_ off_chain_ scripts
network throughput rate_swaps data
@ Pictures
' Videos
— ci. CODE_OF_ CONTRIBUT Jenkinsfile LICENSE MAINTAINE README.
@ Trash properties CONDUCT. ING.md RS.md md
md

a

Floppy Disk

Other Locations

+

Figure 21: Cloned copies in VM.

44

Figure 21 shows how the cURL tool managed to clone in all the files and directories from
the URL on to the directory specified above.

Moreover, in this folder chain code, there are sample chain code templates written in
golang and java. Different prebuilt hyper ledger projects such as byfn, basic network, and fabcar
are provided as templates for reference. The binaries that the tool downloaded are in the bin folder.

Cryptogen tool is one of the docker image command-line interface tools provided. It is
used to pre-configuration of the network in development environments. Cryptogen tool works on

a YAML file and generates a list of certificates for the entities listed in the YAML file.

A

@ Home fabricsamples bin Q = =

Recent 3 ‘N i)
Home ‘ & .
configtxgen configtxlat cryptogen fabric-ca- get-docker-

Desktop client images.sh

or
Documents j < j

Downloads
orderer peer

OB O

Music
Pictures

Videos

&
o}
|
&

Trash

+

Other Locations

Figure 22: Docker images provided by Hyperledger fabric architecture.

Figure 22 shows the prebuilt docker images provided by Hyperledger fabric, which will
be tools helpful for this project. The YAML file with network and peer configurations are
available in crypto-config.yaml. The cryptogen tool use this YAML file and generate

membership certificates. The command to generate certificates is

45
./cryptogen generate --config=./crypto-config.yaml
Furthermore, here is a YAML file configuration; it has the following important things listed in
the YAML file, Orderer and its domain; peer organizations, and their domains. Below is the

YAML configurations for this network.

OrdererOrgs:

- Name: orderer

Domain: etranscripts.com
EnableNodeOUs: true
Specs:

- Hostname: orderer
PeerOrgs:

- Name: scsu

Domain: scsu.minnstate.edu
EnableNodeOUs: true
Template:

Count:

Users:

Count:

- Name: umn

Domain: umn.minnstate.edu
EnableNodeOUs: true
Template:

Count:

Users:

Count:

- Name: msu

Domain: msu.minnstate.edu
EnableNodeOUs: true
Template:

Count:

Users:

Count:

- Name: bsu

Domain: bsu.minnstate.edu
EnableNodeOUs: true
Template:

Count:

Users:

Count:

Configtxgen tool is the next docker image provided by Hyperledger fabric; it also takes a
YAML file and generates different channel level configuration files, as in genesis block
configuration, channel configurations, and anchor peer configurations. Below here is a small

snippet of code from YAML file

46

eTranscriptsGenesis:

Consortiums:
MinnStateUniv:
Organizations:
- *scsu
- *umn
- *msu
- *bsu
eTranscriptsChannel:
Consortium: MinnStateUniv

Application:
<<: *ApplicationDefaults
Organizations:
- *scsu
- *umn
- *msu
- *bsu
Capabilities:

<<: *ApplicationCapabilities
And the command used to generate configuration files using the tool are,

//genesis block configuration
./configtxgen -profile eTranscriptsGenesis -outputBlock ./channel-

artifacts/genesis.block

//channel configuration
./configtxgen -profile eTranscriptsChannel -outputCreateChannelTx ./channel-

artifacts/channel.tx -channelID minnstate

//Anchor peer configuration
./configtxgen -profile eTranscriptsChannel -outputAnchorPeersUpdate

./channel-artifacts/bsuMSPanchors.tx -channelID minnstate -asOrg scsuMSP

Now we need to use up other docker images from bin folders such as Orderer, peer, and
Fabric-ca client from the bin folder with other docker specific configurations such as port
addresses, MSPid, genesis file path, volumes for specifying the critical paths from local machine

and others to bring up containers.

47
For this implementation project, a YAML file with configurations for Orderer, peers,
CLI, CouchDB, and Certificate authorities (CA) is passed on to docker-compose command as,
docker-compose -f docker-compose-org.yaml -f docker-compose-cli.yaml -f
docker-compose-couch.yaml -f docker-compose-ca.yaml up

The up command will create all requested containers listed in the YAML files. The

sample configuration written for the Orderer is,

orderer-base:
image: hyperledger/fabric-orderer:latest
environment:
- ORDERER GENERAL GENESISMETHOD=file
- FABRIC LOGGING_SPEC=INFO
- ORDERER_GENERAL LISTENADDRESS=0.0.0.0
- ORDERER_ GENERAL LOCALMSPID=ordererMSP

-ORDERER_GENERAL GENESISFILE=/orderer/orderer.genesis.block //genesis
block path

- CORE_VM DOCKER HOSTCONFIG NETWORKMODE=transcriptshlf TranscriptsHLF

- ORDERER GENERAL TLS ENABLED=true //TLS information

- ORDERER _GENERAL TLS PRIVATEKEYorderer/tls/server.key //TLS key for
authentication

- ORDERER GENERAL LOCALMSPDIR=/var/hyperledger/orderer/msp

working dir:/opt/gopath/src/hyperledger/fabric//Orderer working directory

volumes:

- ../channel-
artifacts/genesis.block:/var/hyperledger/orderer/orderer.genesis.block

- ../crypto-
config/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.co
m/msp:/var/hyperledger/orderer/msp

- ../crypto-
config/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.co
m/tls:/var/hyperledger/orderer/tls

- orderer.etranscripts.com:/var/hyperledger/production/orderer

ports:

- 7050:

command: orderer

Below is a snippet of code written in Golang as Chaincode program in order to maintain
data on ledger,

func (c *CourseProcessor) Init(stub shim.ChaincodeStublnterface) pb.Response{
return shim.Success(nil)

}

48

func (c *CourseProcessor) Invoke(stub shim.ChaincodeStublnterface) pb.Response{
function, args := stub.GetFunctionAndParameters()

if function == "submit-Scheme" {
return c.submitGradeScheme(stub, args)
} else if function == "initLedger" {
return c.initLedger(stub)
} else if function == "submit-grade" {
return c.submitGrades(stub, args)
} else if function == "query-grade-student" {
return c.getGrades(stub, args)

}

return shim.Error("Invalid Smart Contract function name.")

}

func (c *CourseProcessor) initLedger(stub shim.ChaincodeStubinterface) pb.Response{
return shim.Success(nil)

}
Summary

This chapter deals with an in-depth discussion about how to implement a Hyperledger
fabric application on a Linux machine and also gives detail about different software components
and tools used for this implementation. It also gives a brief explanation about different

configurations and programming code used to give a high-level view of the implementation.

49
Chapter 1V: Data Presentation and Analysis

Introduction

This chapter deals with the analyzation of the results of implementation. In the previous
chapter, we discussed various algorithms, tools, and various techniques used in the
implementation. This section will discuss an in-depth analysis of data obtained from tools and
screenshots related to the implementation and provides detailed information about the
implementation and results obtained at various stages.
Data Presentation

The Hyperledger fabric architecture was installed on a Linux machine (Ubuntu VM). The
last chapter provided a walkthrough of the software setup, installations, and upgrades for

architecture. Implementation of the blockchain architecture needs at least one orderer and peer.

root@ubuntu: ~/fabric-samples/TranscriptsHLF

File Edit View Search Terminal Help

root@ubuntu:~/fabric-samples/TranscriptsHLF# ./cryptogen generate --config=./cry
pto-config.yaml

scsu.minnstate.edu

umn.minnstate.edu

msu.minnstate.edu

bsu.minnstate.edu

root@ubuntu:~/fabric-samples/TranscriptsHLF# I

Figure 23: Generating Crypto materials.

For this project, let us continue with a selection of one orderer and four peers. Figure 23
shows that the cryptogen tool generated certificates to entities listed in the YAML file. This step
is to get the certificates for TLS communication. TLS is Transport layer security, which provides
an end to end communication security over a network using cryptographic protocols. TLS also

supports Pre-shared keys and secure remote passwords. When cryptogen works on the YAML

50
file, which holds organizational information. It produces certificates, keys, and MSP information.
The above screenshot command is to use the cryptogen tool and generate required certificates
using the configuration file. As explained earlier, the configuration file has details about Orderer

and four participating organizations.

root@ubuntu: ~/fabric-samples/TranscriptsHLF/crypto-config
File Edit View Search Terminal Help

ordererOrganizations
etranscripts.com
ca
46933ce30a40f2904cc93f3eeed4562cedcb6431b58bb05734007910cb4a3e7dc_sk
c9a5ac776dc28c36c71f2eb68bead12edd69b50d7480c8bac3dfdcObel1f7blal_sk
ca.etranscripts.com-cert.pem
dec1099252e2b69c7c4ce81143b5d98bd24fdfed4b1c1a4758b49cf43521dcd40_sk

admincerts
Admin@etranscripts.com-cert.pem
ca.etranscripts.com-cert.pem
cacerts
— ca.etranscripts.com-cert.pem
tlscacerts
L— tlsca.etranscripts.com-cert.pem
orderers
L— orderer.etranscripts.com
msp
admincerts
L— Admin@etranscripts.com-cert.pem
cacerts
— ca.etranscripts.com-cert.pem
keystore
L— 20772f42e2228623af062b3b9958989770bf8e5fF2a989701e2b2ac

signcerts
— orderer.etranscripts.com-cert.pem

tlscacerts

L— tlsca.etranscripts.com-cert.pem
tls

ca.crt

server.crt

server.key

tlsca
08e1755b9322ce1f5696126485830f1749b6837703c093fbb7e34491af379e36_sk
4eff5bc888e6b24d7ef5286b99f968162e6ddfOf1c8f78564461a7275035a523_sk
e5d871761e96ca487f83170c7aa9¢c7a596972e919470f54c7e5ac4466a98c36f_sk
tlsca.etranscripts.com-cert.pem
users
— Admin@etranscripts.com
msp
admincerts
L— Admin@etranscripts.com-cert.pem
cacerts
L_ ca etranscrints.com-cert.pem

Figure 24: Folder structure of Crypto documents.
As shown in Figure 24, Cryptogen works on this configuration and generates the folder
tree structure. The Cryptogen tool was able to create keys related to a certificate authority and

MSP certificates at an organizational level and also at the user level.

o1

Admin@etranscripts.com-cert.pem -

Admin@etranscripts.com —_

Identity: Admin@etranscripts.com
Verified by: ca.etranscripts.com
Expires: 10/19/2029

¥ Details

Subject Name

C (Country): us
ST (State): California
L (Locality): San Francisco

CN (Common Name): Admin@etranscripts.com

Issuer Name

C (Country): us

ST (State): California

L (Locality): San Francisco

O (Organization): etranscripts.com

CN (Common Name): ca.etranscripts.com

Issued Certificate

Version: 3

Serial Number: 00 82 9D A8 DA C8 CO 9B 1C 57 46 89 07 55 D6 75 40

Not Valid Before: 2019-10-22

Not Valid After: 2029-10-19

Certificate Fingerprints

SHA1: 40 55 81 41 38 67 F1 E8 0D 47 60 7B 5B 2D A5 64 47 26 ED 41
MDS5: 6A 83 DO CC C5 F6 BD 19 2A 06 Bl 24 FE FD 4F 08

Public Key Info

Key Algorithm: Elliptic Curve

Key Parameters: 06 08 2A 86 48 CE 3D 03 01 07

Key Size: 256

Key SHA1 Fingerprint: 4F 5A AE 6A 5A BD 2B C6 2F 3B 68 02 EA 35 04 42 EF F2 9B 7A
Public Key: 04 95 BE A3 4A DB EB EF 9F 00 OF B9 7C 03 C8 BA B5 3D FA AD EA

20 CO 8D F6 44 73 8D FF 69 2E 9F 20 @7 CF 8C 10 04 DF 1E 10 78
BA E3 2D 75 FE 24 1D 4D F9 04 A8 06 49 35 02 FF E7 BB 37 Bl 87

5E 96
Key Usage
Usages: Digital signature
Critical: Yes

Close Import

Figure 25: TLS certificate generated by the docker image.

Cryptogen can produce certificates for a user, Admin, and also for the organizational
level. The above figure tells that certificate authority related to the orderer generates the
certificate, and it has an expiry date and has digital fingerprints and also a version number. This
certificate shown in Figure 25 acts as Digital Signature during TLS communication. It was
generated for the Administrator for the organization specified. Similarly, the cryptogen tool

generates TLS, MSP, and stored keys for initial implementation or development projects.

52
Next, using the configtxgen tool will generate configuration material for the channel; the
tool works on the corresponding YAML file and can generate channel configuration, which is
useful in creating the channel using channel ID, and also starting up a genesis block which is the
first block in the channel. It is a configuration block that initializes the orderer. Configtxgen will
also be able to produce a configuration file for anchor peers, and Anchor peers are necessary in
Hyperledger fabric, only these peers will be able to communicate with an anchor peer of another

organization.

A

< TranscriptsHLF channel-artifacts (o} = =

Recent

1
10 1 1 10
101 101 101 101 101
1014) * 10191 ° 10148 | 10108 | 1014) °
Home i J &) j 'A | =l & d
bsuMSPanc channel.tx genesis. msuMSPan scsuMSPan

Desktop hors.tx block chors.tx chors.tx

Documents .
1014

OO B O

Downloads umnMSPan

Music chors.tx

Pictures

Videos

&3
[0}
|
&

Trash

+

Other Locations

Figure 26: Channel artifacts generated by HLF docker image.

From Figure 26, the Configtxgen tool generated a folder with a genesis block
configuration file, Channel Configuration file, and Anchor peer configurations. These files are
used to update an existing channel configuration.

Moreover, we now need to create containers using docker-compose, Container for
orderer, four organizational peers, four CLI containers for each organization, four CouchDB
database containers, and four certificate authority containers, each representing one organization.
We had already installed docker-compose in the previous chapter. The configuration files do

have specified ports to each container and when the command executes,

53

root@ubuntu: ~/Documents/TranscriptsHLF
File Edit View Search Terminal Help

g T
root@ubuntu:~/Documents/TranscriptsHLF# docker-compose -f docker-compose-org.yaml -f docker-compose-
-f docker-compose-couch.yaml -f docker-compose-ca.yaml up
network "transcriptshlf_TranscriptsHLF" with the default driver
volume "transcriptshlf_orderer.etranscripts.com" with default driver
volume "transcriptshlf_peer®.bsu.minnstate.edu” with default driver
volume "transcriptshlf_peer®.umn.minnstate.edu" with default driver
volume "transcriptshlf_peer®.scsu.minnstate.edu" with default driver
volume "transcriptshlf_peer®.msu.minnstate.edu” with default driver
ca_bsu ...
ca_umn ...
couchdbscsu
couchdbumn ...
orderer.etranscripts.com ...
ca_scsu
couchdbscsu
couchdbbsu
ca_msu ...
ca_bsu
ca_umn
couchdbmsu ...
couchdbumn
orderer.etranscripts.com
ca_scsu
ca_msu
couchdbmsu

nrdarar atranccrinte com

Figure 27: Docker compose tool—containers and volumes.

Docker-compose works on the YAML files and create containers, volumes specified, and
initiates the network as shown in Figure 27. The next thing is to check on the status of these
containers; to do this, let us open a new terminal and run the command “docker ps -a” which

gives all the docker containers running on top of docker.

ayyyappa87@ubuntu: ~

COMMAND CREATED
4 minut minutes
min

minutes

5 minutes ago > 4 minutes

minut u minut

minutes

minut

Figure 28: Docker containers.

54

Figure 28 shows all the details regarding containers, Container ID is a unique ID created
for the container, Image—is the docker prebuilt images used to create the specific container,
Command-is the command used to get the container created, which is specified in the YAML
files. Created and Status gives information about whether the container is running or stopped
due to some issues and finally most important information is the port ID’s, both internal and
external port numbers are shown here, which are used to communicate with the container; for
example, Orderer address from the above window is orderer.etranscripts.com:7050.

Once the peers are up, and the status of its containers are active. We should start working
on creating a channel. A CLI container will work as an Interface for a peer to work on the
network. To create a channel in the network, the user must be within the container. To do this,
the user should open the terminal and enter command “docker exec -it scsucli bash ”, This
command will get the user into the container environment. Once the user is in the container, the
following command will create a channel - ‘minnstate. * In the command -f tag specifies the path
to file, where the channel configuration is stored, --tls specifies the communication method, -0
specifies the orderer information, --cafile specifies the TLS certificate path in the container and
Figure 29 shows that upon executing the command, we are able to generate genesis block for the
ledger.

Command: “peer channel create -c minnstate -f channel-artifacts/channel.tx --tls -o
orderer.etranscripts.com:7050 —cafile
.Jcrypto/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.com/msp/tlscacerts/tlsca.

etranscripts.com-cert.pem”

55

root@879381e8d81F: fopt/gopath/src/github.com/hyperledger/fabric/peer

File Edit View Search Terminal Help

root@879381e8d81f: /opt/gopath/src/github.com/hyperledger/fabric/peer# peer chann
el create -c minnstate -f channel-artifacts/channel.tx --tls -o orderer.etranscr
ipts.com:7050 --cafile fopt/gopath/src/github.com/hyperledger/fabric/peer/crypto
J/ordererOrganizations/etranscripts.com/orderers/orderer.etranscripts.com/msp/tls
cacerts/tlsca.etranscripts.com-cert.pem

2019-11-10 21:48:46.199 UTC [main] InitCmd -> WARN 001 CORE_LOGGING_LEVEL is no
longer supported, please use the FABRIC_LOGGING_SPEC environment variable

2019-11-10 21:48:46.252 UTC [main] SetOrdererEnv -> WARN 002 CORE_LOGGING_LEVEL
is no longer supported, please use the FABRIC_LOGGING_SPEC environment variable
Endorser and

orderer connections initialized
Received block: 0
root@879381e8d81f: fopt/gopath/src/github.com/hyperledger/fabric/peer# |}

Figure 29: Creating a channel in HLF network using CLI.

The command Create channel requires TLS connection between peer and orderer, In
order to do that, we pass the TLS certificate address in order to establish the connection between
the peer and orderer, If the certificate looks valid, the connection between the endorser and the
orderer will establish and channel creation will be successful and a ledger named minnstate.block
will appear in the folder when user tries to fetch the latest block from the ledger, This can be
performed using the following command. In the command -f tag specifies the path to file, where
the channel configuration is stored, --tls specifies the communication method, -o specifies the
orderer information, --cafile specifies the TLS certificate path in the container.

Command: “peer channel fetch newest minnstate.block -c minnstate -o orderer.etranscripts.com:7050 --
tls --cafile
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/etranscripts.com/or

derers/orderer.etranscripts.com/msp/tlscacerts/tIsca.etranscripts.com-cert.pem”

56

root@879381e8d81Ff: /opt/gopath/src/github.com/hyperledger/fabric/peer

File Edit View Search Terminal Help

root@879381e8d81f:/opt/gopath/src/github.com/hyperledger/fabric/peer# peer chann
el fetch newest minnstate.block -c minnstate -o orderer.etranscripts.com:7050 --
tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOr
ganizations/etranscripts.com/orderers/orderer.etranscripts.com/msp/tlscacerts/tl
sca.etranscripts.com-cert.pem
2019-11-10 21:58:40.654 UTC [main] InitCmd -> WARN 001 CORE_LOGGING_LEVEL is no
longer supported, please use the FABRIC_LOGGING_SPEC environment variable
2019-11-10 21:58:40.662 UTC [main] SetOrdererEnv -> WARN 002 CORE_LOGGING_LEVEL
is no longer supported, please use the FABRIC_LOGGING_SPEC environment variable
Endorser and

orderer connections initialized

Received block: 0
root@879381e8d81f: /opt/gopath/src/github.com/hyperledger/fabric/peer# 1s
channel-artifacts crypto min e.block scripts
root@879381e8d81f: fopt/gopath/src/github.com/hyperledger/fabric/peert |

Figure 30: Genesis block.

From Figure 30, it is to be observed that a block file has is obtained in the container; this
action requires a TLS connection between the peer and the orderer; TLS connection is performed
using —tls command and is initialized using the orderer admin certificate link. Moreover, the
orderer address is supplied alongside the name of the channel.

Once the peer fetches the newest block, then the peer can use the block file to join the
ledger and channel; This can be performed using a simple join command from the container
using the block fetched from ledger, as shown in Figure 31.

root@879381e8d81F: Jopt/gopath/src/github.com/hyperledger/fabric/peer

File Edit View Search Terminal Help
root@879381e8d81f /opt/gopath/src/github.com/hyperledger/fabric/peer# peer chann
el]oln -b /mtnnstate block
A¢ 0 22 5.954 UTC [main] InitCmd -> W 01 CORE_LOGGING_LEVEL is no
use the FABRI LOGGING SPEC en ent variable
9 UTC [main] S v (CORE_LOGGING_LEVEL

is no longer supported please use the FABRIC LOGGING SPEC environment variable
Endorser and

orderer connections initialized

Successfully su
bmitted proposal to join channel
root@879381e8d81f: /opt/gopath/src/github.com/hyperledger/fabric/peer# |}

Figure 31: Peer proposal to join channel.

57

This action of fetching the newest block from the channel and joining the channel is
performed on all participating peers. Once all the peers join the channel, chain-code smart
contracts are to be installed on to individual peers and instantiated on to the network.

The chain code for this project is written in Go Programming language. It should contain
methods Init, to initialize the smart contract on to network. Then other methods are to be
included in invoke, which should manage the data on the ledger. Installing the chain-code on a
peer requires the path of the code, name of the smart-contract, and version number, -v tag
specifies the version the chaincode, -p tag specifies the path to the chaincode and -n specifies the
name of the chaincode.

Command: “peer chaincode install -n CourseProcessor -p github.com/chaincode -v 1.0”

root@879381e8d81f: fopt/gopath/src/github.com/hyperledger/fabric/peer
File Edit View Search Terminal Help

root@879381e8d81f: /opt/gopath/src/github.com/hyperledger/fabric/peer# peer chaincode install -n CourseProcessor -p githu
]
EE 001 CORE_LOGGING_LEVEL is no longer supported, please use the FABRIC_
11-10 22: JTC [main] SetOrdere - WARN ©02 CORE_LOGGING_LEVEL is no longer supported, please use the F
riable

ABRIC_LOGGING_SPEC environment va

Using default escc
Using default vscc
Installed remotely response:<status:200 payload:"OK" >
root@879381e8d81f: Jopt/gopath/src/github.con/hyperledger/fabric/peer# |

Figure 32: Installing chaincode on a peer.

Figure 32 shows that the Peer has installed the chaincode on its ledger. All the
participating peers can install the chaincode on top of their ledgers. Once the installation finishes,
The chaincode needs to be initiated on the network; Initiating a chaincode can be done only
once. Since initiating a chaincode is at the network level, communicating with orderer peers

using TLS communication requires -0 tag. , --tls specifies the communication method, -0

58
specifies the orderer information, --cafile specifies the TLS certificate path in the container and
-v specifies the version of chaincode.

Command:

“peer chaincode instantiate -o orderer.etranscripts.com:7050 -n CourseProcessor -v 1.0 -C
minnstate -c '{"Args":[]}' --tls --cafile
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/etranscripts.com/or

derers/orderer.etranscripts.com/msp/tlscacerts/tIsca.etranscripts.com-cert.pem”

root@879381e8d81F: Jopt/gopath/src/github.com/hyperledger/fabric/peer

File Edit View Search Terminal Help
root@BTQSBleBdBlf /opt/gopath/src/glthub com/hyperledger/fabrlc/peer# peer chaincode list --instantiated -C minnstate
C ain] InitCmd - ARN 861 CORE_LOGGING_LEVEL is no longer supported, please use the FABRIC_
varlable
01 .849 UTC [main] SetOrdererEnv -> WARN 002 CORE_LOGGING_LEVEL is no longer supported, please use the F
ABRIC LOGGING SPEC env1ronment variable

Get instantiated chaincodes on channel minnstate:
Name: CourseProcessor, Version: 1.0, Path: github.com/chaincode, Escc: escc, Vscc: vscc
root@879381e8d81f: /opt/gopath/src/github.com/hyperledger/fabric/peer# ||

Figure 33: Instantiating chaincode on network.

Figure 33 shows that the instantiated chaincode on this channel is CourseProfessor and is
of 1.0 version.
Data Analysis

Instantiating the ledger on the current channel has generated a block. Using the CLI, we
fetched the newest block on the ledger.

Figure 34 shows the basic structure of a block in a Blockchain. The extracted file has
three sections; Data, Header, and Metadata.

The header section of the block has data_hash, which is a hash value calculated from all

the transactions in the current block.

59

v object {3}
» data {1}
v header {3}

data_hash : kR7gJQT60XpOLaHMgMIN]jIJHAVD8+nkwyUSUxstoR
fNOe=

number : 2

previous_hash : MB8NesUMz4RWALE2VE+vO792FtWdOw2TULIS
WK4XzuM=

» metadata {1}

Figure 34: Structure of a block header.

Number refers to the current block number, and It is an integer, which starts at genesis
block with value zero, and the blocks on the channels add up; it gets incremented by the value
of 1. Previous_hash holds thee value of previous block hash value, and This is what brings in the
chain structure for all the blocks.

The data section of the block shown in Figure 35 has details about the transactions
bundled in order. Each transaction section has three portions, Which are Transaction proposal,

Endorsements, and Proposal response.

v actions [1]
v o {2}
» header {2}
v payload {2}
v action {2}
v endorsements [1]
» 0 {2}
¥ proposal_response_payload {2}
» extension {3}

proposal_hash : 5tlbqtQpFy9YVUI8D2A0g71spK4SBnEahSsb91211p

v chaincode_proposal_payload {1}
» input {2}
» header {2}

signature : MEQCIC+53HPIUQuUTT/z13vIIWCEOLSP7k/rNI2Ful2Xxyn6QAiAkl4rpPlLll12aCmWfnk
Vp1J2CdYYYxC6ZbeDbB8abk4stA==

Figure 35: Structure of a block data -1.

60
We can observe all the three portions in this block, chaincode_proposal_payload portion
all the details about the proposal command submitted in the CLI; Such as name, path, version of
chaincode, and arguments specified during instantiation in hash format and language of

chaincode, In this case, it is two.

v chaincode_proposal_payload {1}
v input {2}
v chaincode_spec {4}
v chaincode_id {3}
name : CourseProcessor
path
version
v input {1}
v args [2]
: aWSpdEx1ZGdlcg==
1 : ewdKICAiT2JqZWNOVHIWZSIGICITdWItaXRHcmFkZXM
iLAGKICAiU2Nob29sIjogInNjc3UiLAGKICAiWWVhci
I6ICIyMDESIiwNCiAgI1N1bWVzdGVyIjogImZhbGwil
AGKICAiQ291cnN1IjogIklBMTAXIiwNCiAgTkV4YWOi
0iAiZmluYWwilAGKICAiZ3JhZGVzIjogWwOKICAgIHS
NCiAgICAgICITAHVKZWSOIjogImFSeWFwcGEiLAGKIC

AgICAgI1J1bWFyayI6ICI1eGN1bGx1bnQilAGKICAGI
CAgI1BvaW50cyI6ICIhIgBKICAgIHONCiAgXQeK fQ==

timeout : ©

type : GOLANG

Figure 36: Structure of a block data -2.
Proposal_response_payload portion of the transaction is shown in Figure 37 and has
details about the details of the response of the transaction. It has related chaincode details and the

response from the ledger and also the hash value calculated for the proposal submitted.

¥ proposal_response_payload {2}
v extension {3}

¥ chaincode_id {3}
name : CourseProcessor
path :
version ! 1.@

¥ response {2}
message :
status : 200

results : Eh8KBGxzY2MSFwoVCg9Db3Vyc2VQecm9jZXNzb3ISAggB

proposal_hash : 5t1bqtQpFy9YVUI8D2A0g71spK4SBnEahSsb912I1p

Figure 37: Structure of a block data -3.

Finally, the ‘Endorsement’ portion of the transaction; Which has details of endorser of

61

this transaction, endorser ID, and his signature. In the last section, the block is metadata, which

holds information related to the entire block, such as the time when the block is written onto

ledger, certificate, keys, and signature of the block.

v endorsements [1]
v 0 {2}

endorser : CgdzY3N1TVNQErIGLS@tLS1CRUdITiBDRVIUSUZIQOF
URS@tLSOtCk1ISUNMekNDQWRXZOF3SUJIBZ@1SQUplbF
JzVelLeEFFWkpjM3JqcmdKZe13Q2dzZsutvikl6ajBFQ
XdJd2R6RUWKTUF rROExVUVCaE1DV1ZNeEVEQVICZO5W
QkFNVENrTmhiR2xtYjNKdWFXRXhGakFvQmdOVkIBY1R
EVkSon]CprjbQEleJselkyOHhHekFandDVkJEbl
RFbk5qYzNVdWIXbHVibk4wWVhSbExtVmtkVEV1TUI3R
BEXVUVBeE1WC1lkyRXViMk56ZFM1dGFXNXViM1JoZEdV
dVpXUjFNQJjRYRFRFNULUQX1PRE16TURNd@5Wb1hEVEK
1TVRBeUSUSXoKTURNd@5Wb3diREVMTUF rREEXVUVCaE
1DV1ZNeEV6QVICZO5SWQKFNVENrTmhiR2xtYjNKAWFXR
XhGakFvQmdOVgpCQWNURFZ0aGIpQkdjbUZ1WTIselky
OHhEVEFMQmdOVkIBCc1RCSEJIsWlhJeE1UQWZCZOSWQkF
NVEdIQmxaWE13CkxuTmpjM1V1Y1ldsdWIuTjBZWFIsTG
1Wa2RUQ1pNQk1HQN1xR1NNND1BZ@VHQeNxR1NNND1Bd
OVIQTBIQUIOYmoKaUpTaytRaXJabnplbEpVY21NOURS
WnVYTVRpOWZGT jFpMFdRcHVhRFFkeUFSNGVna2ttVFR
CdDJka@NIMIRKeApXROMBZHNyK2FVb1ldkbW1DUTg2al
RUQkxXNQTRHQTFVZER3RUIvVd1FFQXdISGAEQU1CZO5WS
FINQkFmOEVBakFBCk1DcedBMVVkSXdRa@1DS@F JUGAP
dV1pVEVXVXI4VnIKK@NheGIEZmZZSmUzL2RqSkhaSEM
PaUR6bjZFbE1BbOcKQONXRINNND1CQU1DQTBNQULFVU
NJUURSR3dBc@t50WtYaGo3WDF4S1pvikhLbGdmSkIhT
zJLTOcxclIsbmZXMwphZ@lnUk1aQTh4NjYrNlduajVh
My9xQTM5VVo3bTQyZFZpbjNURStxanFqZVVXdzeKLSe
tLS1FTkQgQOVSVELGSUNBVEUtLS@tLQo=

signature : MEUCIQCXprzufHKWHHLpgmgaer71CwRfBZ1EdhLK6X

Figure 38: Structure of a block data -4.

Tested the system- without TLS settings on the network with TLS handshake enabled,

and the CLI was not able to invoke the chaincode erroring out as Endorsement failure, as shown

in Figure 39.

root@879381e8d81F: fopt/gopath/src/github.com/hyperledger/fabric/peer
File Edit View Search Terminal Help

root@879381e8d81f: fopt/gopath/src/github. con/hyperledger/fabric/peer# peer chaincode invoke -o orderer.etranscri
pts com:7050 -n CourseProcessor -C mlnnstate -C '{”Args” ["kld","@"]1}'
11-11 02: 6.306 UTC [main] d WARN 001 CORE_ LOGGINC LEVEL is no longer supported, please use the

FABRIC LOGG

. 11-11 0: 26.311 UTC [main] SetO -> WARN 002 CORE_LOGGING_LEVEL is no longer supported, please u
se the FABRIC_ LOGGING SPEC enVLronment varlable

Error: endorsement failure during invoke. response: status:500 message:"Invalid Smart Contract function name."
root@879381e8d81f: /opt/gopath/src/github.con/hyperledger/fabric/peeri# [

Figure 39: Testing without TLS.

62
Summary
In this chapter, we had discussed about results of developing the architecture. We also
looked at the results of running the application and in-depth documentation of implementing the
architecture. This chapter also talks about troubles faced and how to overcome them during

development.

63
Chapter V: Results, Conclusion, and Recommendations
Introduction

This chapter discusses the overall summary of the results obtained from this
implementation. We looked at the results of the application used to connect educational
organizations to share sensitive information related to students. The project mainly focusses on
developing a network for safe and secure communication without any middleware organizations
to take care of data integrity and confidentiality. This chapter mainly focusses on concluding the
entire study. This section also discusses about the future work that can be applied to the current
system.

Discussion and Results

This research discusses in detail various cryptocurrency frameworks and architectures.
Discussions and comparisons of the frameworks, starting with Etherueum, Ethereum manages a
public blockchain, and It is just like a social network, any person who is willing to be part of the
network can join and start doing transactions using smart contracts. Moreover, the Ethereum
framework does not support multi-channel communication. This implementation can use
Ethereum architecture, but it not suitable for this project. Whereas, an Hyperledger Fabric
manages a permissioned blockchain.

Furthermore, unlike Ethereum, which runs on Mining based on Proof of Work, which is
managed by its participants, HLF architecture provides an Ordering service, which is an
automated system that helps in maintaining consensus among the peers. Hyperledger Fabric is
very scalable; it supports multiple programming languages and the ability to integrate
components such as consensus algorithms and membership services, which issues and validates

certificates.

64

Regarding the security provided by this architecture, Hyperledger Fabric bundles in TLS
encryption and Membership Service providers for proper certificate handling. The data on the
ledger is by default, encrypted by Hyperledger Fabric native encryption. Even communication
between the peer requires a TLS, secure connection between the two nodes. Channels in
Hyperledger Fabric adds up another layer of security, as even though a node is a member of the
network cannot access any data If the node is not part of the channel.

The network handled the upgrades as expected. It supports easy install of chaincode
smart contract codes on nodes, and the command upgrade instantiates the installed chaincode on
the network.

This paper also dives into giving step by step details of developing an entire network of
organizations using the architecture on a Linux based Virtual machine. This paper also discusses
a structure of block with multiple transactions and how the structure helps in making the entire
blockchain immutable. This paper also discusses how to implement a consensus mechanism and
to bring in the ability to avoid middle man and how well the architecture is designed that it can
take care of the transactions and consensus mechanism. By providing a ledger that nobody
administers, these crypto blockchain systems with their strict consensus methods can handle any
transactional data with trust and accuracy.

Conclusion

This implementation study of Hyperledger fabric is to develop a network between the
participating educational organizations; This is an open-source architecture that aims to develop
distributed ledger applications. Since the application manages the ledger without any

administering it, It needs to have a consensus algorithm, and to look at the blocks, the tool

65
generated and crypto algorithms it uses in the process makes the ledger immutable, and every
transaction needs to be signed, verified and valid.

Future Work

Currently, there are only a few stable releases for this architecture, the version that was
used is the most up to dated and stable version of this opensource project hosted by the Linux
Foundation. This architecture supports various plug and play services. Currently, able to use the
project using the command-line interface. This project can be further improved by adding Nodejs

and a Ul with authentication services, which makes it easier for the end-user to work on the tool.

66
References

Ark, T. V. (2018, August 20). 20 ways blockchain will transform (okay, may improve)
education. Retrieved January 15, 2019, from https://www.forbes.com/sites/tomvanderark/
2018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/
#450f3cf74ac9

Cachin, C. (2016). Architecture of the hyperledger blockchanin fabric. Retrieved from
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf

Chen, G., Xu, B., Lu, M. (2019). Exploring blockchain technology and its potential applications
for education. Smart Learning Environment, 5(1). Retrieved February 02, 2019, from
https://slejournal.springeropen.com/articles/10.1186/s40561-017-0050-x

Gibson, K. (2017, May 9). Your MD may have a phony degree. Retrieved January 25, 2019,
from https://www.cbsnews.com/news/your-md-may-have-a-phony-degree/

Gréther, W., Kolvenbach, S., Ruland, R., Schiitte, J., Torres, C., & Wendland, F. (2018, May 8).
Blockchain for education: Lifelong learning passport. Retrieved March 21, 2019, from
https://dspace.wineme.fb5.uni-siegen.de/handle/20.500.12015/3163

Hong, Z., Wang, Z., Cai, W., & Leung, V. (2017). Blockchain-empowered fair computational
resource sharing system in the D2D network. Future Internet. 9.85. 10.3390/fi9040085

Kumar, A. (2018, July 3). Bitcoin blockchain—what is proof of work? Retrieved February 25,
2019, from https://vitalflux.com/bitcoin-blockchain-proof-work/

Madeira, A. (2019, March 13). How does a hashing algorithm work? Retrieved March 25, 2019,

from https://www.cryptocompare.com/coins/guides/how-does-a-hashing-algorithm-work/

https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://slejournal.springeropen.com/articles/10.1186/s40561-017-0050-x
https://www.cbsnews.com/news/your-md-may-have-a-phony-degree/
https://vitalflux.com/bitcoin-blockchain-proof-work/

67

Mukhopadhyay, U., Skjellum, A., & Hambolu, O. (2017, April). A brief survey of
cryptocurrency systems. Retrieved from ieeexplore.ieee.org: https://ieeexplore.ieee.org/
document/7906988/

Orientation and setup. (2019, November 11). Retrieved November 11, 2019, from Docker
Documentation website: https://docs.docker.com/get-started/

Sean: Understanding Hyperledger in a bit more detail. (2017, December 21). Retrieved
March 20, 2019, from https://decentralize.today/understanding-hyperledger-in-a-bit-
more-detail-3d40a37c74f2

Stevens, A. (2018, April 23). Gaining clarity on key terminology: Bitcoin versus blockchain
versus distributed ledger technology. Retrieved February 21, 2019, from https://
hackernoon.com/gaining-clarity-on-key-terminology-bitcoin-versus-blockchain-versus-
distributed-ledger-technology-7b43978a64f2

Valenta, M., & Sandner, P. (2017, June). Comparison of Ethereum, Hyperledger fabric, and
Corda. Retrieved March 31, 2019, from https://pdfs.semanticscholar.org/00c7/

5699db7c5f2196ab0ae92be0430be4b291b4.pdf

https://ieeexplore.ieee.org/%20document/7906988/
https://ieeexplore.ieee.org/%20document/7906988/
https://docs.docker.com/get-started/
https://decentralize.today/understanding-hyperledger-in-a-bit-more-detail-3d40a37c74f2
https://decentralize.today/understanding-hyperledger-in-a-bit-more-detail-3d40a37c74f2
https://pdfs.semanticscholar.org/00c7/

68
Appendix A: Additioal Sources

A practical introduction to blockchain with Python // Adil Moujahid // Data Analytics and more.
(n.d.). Retrieved November 11, 2019, from http://adilmoujahid.com/posts/2018/03/intro-
blockchain-bitcoin-python/

Audhikesavan, L. (2018, June 30). Hyperledger fabric: How to setup application from scratch
using Nodejs series—part 3. Retrieved November 11, 2019, from Medium website:
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-
scratch-using-nodejs-series-part-3-9d795f2d4a8

Audhikesavan, L. (2019, September 24). Blockchain Hyperledger fabric—errors & solutions.
Retrieved November 11, 2019, from Medium website: https://medium.com/coinmonks/
hyperledger-fabric-composer-errors-solutions-827112a3fce6

Blockcerts. (2016). Blockchain credentials. Retrieved from https://www.blockcerts.org/guide/

Health, C. (2019, August 7). Start your own Hyperledger blockchain, the easy way! Retrieved
November 11, 2019, from Medium website: https://medium.com/@mycoralhealth/start-
your-own-hyperledger-blockchain-the-easy-way-5758ch4ed2d1

How the blockchain works. (n.d.). Retrieved January 20, 2019, from .https://rubygarage.org/blog/
how-blockchain-works

Hyperledger Fabric—The 20 most important terms made simple. (n.d.). Retrieved November 11,
2019, from https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-
made-simple-2753f925db4

Install Hyperledger fabric on Ubuntu 18.04.1-Step by Step « Data Science Evangelist. (n.d.).
Retrieved November 11, 2019, from http://www.ziaahmedshaikh.com/install-

hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/

http://adilmoujahid.com/posts/2018/03/intro-blockchain-bitcoin-python/
http://adilmoujahid.com/posts/2018/03/intro-blockchain-bitcoin-python/
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-scratch-using-nodejs-series-part-3-9d795f2d4a8
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-scratch-using-nodejs-series-part-3-9d795f2d4a8
https://medium.com/coinmonks/%20hyperledger-fabric-composer-errors-solutions-827112a3fce6
https://medium.com/coinmonks/%20hyperledger-fabric-composer-errors-solutions-827112a3fce6
https://www.blockcerts.org/guide/
https://medium.com/@mycoralhealth/start-your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1
https://medium.com/@mycoralhealth/start-your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1
https://rubygarage.org/blog/%20how-blockchain-works
https://rubygarage.org/blog/%20how-blockchain-works
https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-made-simple-2753f925db4
https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-made-simple-2753f925db4
http://www.ziaahmedshaikh.com/install-hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/
http://www.ziaahmedshaikh.com/install-hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/

69

Nakamoto, S. (2008, October 31). Bitcoin: A peer-to-peer electronic cash system. Retrieved
January 20, 2019, from https://nakamotoinstitute.org/bitcoin/

Peer channel—Hyperledger-fabricdocs master documentation. (n.d.). Retrieved November 11,
2019, from https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/
peerchannel.html

Private data—Hyperledger-fabricdocs master documentation. (n.d.). Retrieved November 11,
2019, from https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-
arch.html

Sharples, M., & Domingue, J. (2016, September 13). The Blockchain and kudos: A distributed
system for educational record, reputation, and reward. retrieved February 15, 2019, from
https://link.springer.com/chapter/10.1007/978-3-319-45153-4 48

Tam, K. C. (2019, July 22). Transactions in Hyperledger fabric. Retrieved November 11, 2019,
from Medium website: https://medium.com/@Kkctheservant/transactions-in-hyperledger-
fabric-50e068dda8a9

Technologies, B. (2018, July 10). Hyperledger fabric: Time to make the leap—an enterprise
note. Retrieved November 11, 2019, from Medium website: https://medium.com/@
BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-
78b062d1c6bf

Wearetheledger/awesome-hyperledger-fabric. (2019). Retrieved from https://github.com/
wearetheledger/awesome-hyperledger-fabric (Original work published 2018).

What is hashing? Under the hood of blockchain. (n.d.). Retrieved February 21, 2019, from

https://blockgeeks.com/guides/what-is-hashing/

https://nakamotoinstitute.org/bitcoin/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/%20peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/%20peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-arch.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-arch.html
https://link.springer.com/chapter/10.1007/978-3-319-45153-4_48
https://medium.com/@kctheservant/transactions-in-hyperledger-fabric-50e068dda8a9
https://medium.com/@kctheservant/transactions-in-hyperledger-fabric-50e068dda8a9
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://github.com/%20wearetheledger/awesome-hyperledger-fabric
https://github.com/%20wearetheledger/awesome-hyperledger-fabric
https://blockgeeks.com/guides/what-is-hashing/

70

What is Ethereum? The Most comprehensive beginners guide. (n.d.). Retrieved January 21, 2019,
from https://blockgeeks.com/guides/ethereum/

Your first Hyperledger fabric network. (n.d.). Retrieved November 11, 2019, from The DEV
Community website: https://dev.to/damcosset/your-first-hyperledger-fabric-network-
2n67

Yousef, H. (n.d.). Install HyperLedger fabric at Win 10 | Codementor. Retrieved November 11,
2019, from https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-

tb85r9dqg

https://blockgeeks.com/guides/ethereum/
https://dev.to/damcosset/your-first-hyperledger-fabric-network-2n67
https://dev.to/damcosset/your-first-hyperledger-fabric-network-2n67
https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-tb85r9dqg
https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-tb85r9dqg

Appendix B: File crypto-config.yami
File crypto-config.yaml is created for the tool Cryptogen. It holds the data related to all
participants of the network. Cryptogen tool uses the following YAML code and generates
encryption keys and certificates.
OrdererOrgs:
- Name: orderer

Domain: etranscripts.com

EnableNodeOUs: true

Specs:

- Hostname: orderer

PeerOrgs:

- Name: scsu
Domain: scsu.minnstate.edu

EnableNodeOUs: true

Template:
Count:

Users:
Count:

- Name: umn

Domain: umn.minnstate.edu
EnableNodeOUs: true
Template:

Count:
Users:

Count:

Minnesota State University, Mankato:
- Name: msu
Domain: msu.minnstate.edu
EnableNodeOUs: true
Template:
Count:
Users:
Count:
Bemidji State University:
- Name: bsu
Domain: bsu.minnstate.edu
EnableNodeOUs: true
Template:
Count:
Users:

Count:

73

Configtxgen tool uses file configtx.YAML, This file contain all the network related
configurations such as Anchor peer configurations for Organizational peers, Channel information,
ledger details and Orderer configurations.

HHH A
Section: Organizations
HHH
Organizations:
- &OrdererOrg
Name: ordererOrg
ID: ordererMSP
MSPDir: crypto-config/ordererOrganizations/etranscripts.com/msp
- &scsu
Name: scsuMSP
ID: scsuMSP
MSPDir: crypto-config/peerOrganizations/scsu.minnstate.edu/msp
AnchorPeers:
- Host: peer0.scsu.minnstate.edu
Port:
- &umn
Name: umnMSP
ID: umnMSP

MSPDir: crypto-config/peerOrganizations/umn.minnstate.edu/msp

AnchorPeers:
- Host: peer0.umn.minnstate.edu
Port:
- &msu
Name: msuMSP
ID: msuMSP
MSPDir: crypto-config/peerOrganizations/msu.minnstate.edu/msp
AnchorPeers:
- Host: peer0.msu.minnstate.edu
Port:
- &bsu
Name: bsuMSP
ID: bsuMSP
MSPDir: crypto-config/peerOrganizations/bsu.minnstate.edu/msp
AnchorPeers:
- Host: peer0.bsu.minnstate.edu
Port:
Orderer: &OrdererDefaults
OrdererType: solo
Addresses:
- orderer.etranscripts.com:
BatchTimeout: 122s

BatchSize:

74

MaxMessageCount:
AbsoluteMaxBytes: 9 MB
PreferredMaxBytes: 256 KB
Profiles:
eTranscriptsGenesis:
Orderer:
<<: *QrdererDefaults
Organizations:
- *OrdererOrg
Capabilities:
<<: *QrdererCapabilities
Consortiums:
MinnStateUniv:
Organizations:
- *scsu
- *umn
- *msu
- *bsu
eTranscriptsChannel:
Consortium: MinnStateUniv
Application:
<<: *ApplicationDefaults

Organizations:

75

76
- *scsu
- *umn
- *msu
- *bsu
Capabilities:

<<: *ApplicationCapabilities

/[chaincode for project

This chaincode file is to work with a ledger. This chaincode, after installed on a peer
container, acts as a separate container. So when a request to submit a transaction on the ledger.
The chaincode needs to be invoked, and the chaincode will query the ledger. The chaincode should

have init, initiate methods, and other custom query methods.

package main

import (
"encoding/json™
"fmt"
"github.com/hyperledger/fabric/core/chaincode/shim"
pb "github.com/hyperledger/fabric/protos/peer"

"strings"

type OrgGrades struct {
}

type submitgrade struct {
ObjectType string “json:"docType™
School string “json:"school™
Semester string “json:"semester
Year string “json:"year"
Course string “json:"course™
Grade string “json:"grade"™

Name string “json:"name™

I

func main() {
err := shim.Start(new(OrgGrades))

if err I=nil {

fmt.Printf("Error starting Simple chaincode: %s", err)

77

78

/I Init initializes chaincode

func (t *OrgGrades) Init(stub shim.ChaincodeStublinterface) pb.Response {

return shim.Success(nil)

/I Invoke -

func (t *OrgGrades) Invoke(stub shim.ChaincodeStublinterface) pb.Response {
function, args := stub.GetFunctionAndParameters()
fmt.PrintIn(“invoke is running " + function)
if function == "initGrade" {
return t.initGrade(stub, args)
}else if function == "readGrade" {
return t.readGrade(stub, args)
}
fmt.PrintIn("Function not found for Invoke method: " + function)
return shim.Error(*'Received wrong function™)

¥

func (t *OrgGrades) initGrade(stub shim.ChaincodeStublnterface, args []string) pb.Response {

var err error

if len(args) =6 {

return shim.Error("Incorrect number of arguments. Expecting 6")

ks

fmt.PrintIn(*'- start init grade")
if len(args[0]) <=0 {

return shim.Error("1st argument not supplied")
}
if len(args[1]) <=0 {

return shim.Error(""2nd argument not supplied ")
}
if len(args[2]) <=0 {

return shim.Error("3rd argument not supplied ")
}
if len(args[3]) <=0 {

return shim.Error("4th argument not supplied ™)
}
if len(args[4]) <=0{

return shim.Error(""5th argument not supplied ™)
}
if len(args[5]) <=0{

return shim.Error(*'6th argument not supplied ")

79

}
school := args[0]
semester := strings. ToLower(args[1])
year := strings.ToLower(args[2])
course := strings. ToLower(args[3])
grade := strings. ToLower(args[4])
name := strings. ToLower(args[5])
nameAsBytes, err := stub.GetState(name)
if err I=nil {
return shim.Error("Failed to get name: " + err.Error())
} else if nameAsBytes != nil {
fmt.PrintIn(""This name already exists: " + name)
return shim.Error("This name already exists: " + name)
}
objectType := "submitgrade"
submitgrade := &submitgrade{objectType, school, semester, year, course,grade,name}
gradeJSONasBytes, err := json.Marshal(submitgrade)
if err I=nil {

return shim.Error(err.Error())

err = stub.PutState(name, gradeJSONasBytes)

if err 1= nil {

80

81

return shim.Error(err.Error())

indexName := "school~semester~year~course"

ssyclndexKey, err := stub.CreateCompositeKey(indexName,
[Istring{submitgrade.School, submitgrade.Semester,submitgrade.Y ear,submitgrade.Course})

if err I=nil {

return shim.Error(err.Error())

}

value := []byte{Ox00}

stub.PutState(ssycindexKey, value)

fmt.PrintIn(*'- end init name")

return shim.Success(nil)

func (t *OrgGrades) readGrade(stub shim.ChaincodeStublnterface, args []string) pb.Response {
var name, jsonResp string

var err error

if len(args) 1= 1 {
return shim.Error(*'Please check arguments. Expecting name of the student to

query™)

name = args[0]

valAsbytes, err := stub.GetState(hame)

if err I=nil {
jsonResp = "{\"Error\":\"not able to check " + name + "\"}"
return shim.Error(jsonResp)

} else if valAsbytes == nil {
jsonResp = "{\"Error\":\"name does not exist: " + name + "\"}"

return shim.Error(jsonResp)

return shim.Success(valAsbytes)

82

	A Study of Blockchain Framework–Hyperledger Fabric and Implementation as Educational Network
	Recommended Citation

	tmp.1575393849.pdf.FHg3w

