
58

specifies the orderer information, --cafile specifies the TLS certificate path in the container and

-v specifies the version of chaincode.

Command:

“peer chaincode instantiate -o orderer.etranscripts.com:7050 -n CourseProcessor -v 1.0 -C

minnstate -c '{"Args":[]}' --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/etranscripts.com/or

derers/orderer.etranscripts.com/msp/tlscacerts/tlsca.etranscripts.com-cert.pem”

Figure 33: Instantiating chaincode on network.

Figure 33 shows that the instantiated chaincode on this channel is CourseProfessor and is

of 1.0 version.

Data Analysis

 Instantiating the ledger on the current channel has generated a block. Using the CLI, we

fetched the newest block on the ledger.

 Figure 34 shows the basic structure of a block in a Blockchain. The extracted file has

three sections; Data, Header, and Metadata.

 The header section of the block has data_hash, which is a hash value calculated from all

the transactions in the current block.

59

Figure 34: Structure of a block header.

 Number refers to the current block number, and It is an integer, which starts at genesis

block with value zero, and the blocks on the channels add up; it gets incremented by the value

of 1. Previous_hash holds thee value of previous block hash value, and This is what brings in the

chain structure for all the blocks.

 The data section of the block shown in Figure 35 has details about the transactions

bundled in order. Each transaction section has three portions, Which are Transaction proposal,

Endorsements, and Proposal response.

Figure 35: Structure of a block data -1.

60

 We can observe all the three portions in this block, chaincode_proposal_payload portion

all the details about the proposal command submitted in the CLI; Such as name, path, version of

chaincode, and arguments specified during instantiation in hash format and language of

chaincode, In this case, it is two.

Figure 36: Structure of a block data -2.

 Proposal_response_payload portion of the transaction is shown in Figure 37 and has

details about the details of the response of the transaction. It has related chaincode details and the

response from the ledger and also the hash value calculated for the proposal submitted.

Figure 37: Structure of a block data -3.

61

Finally, the ‘Endorsement’ portion of the transaction; Which has details of endorser of

this transaction, endorser ID, and his signature. In the last section, the block is metadata, which

holds information related to the entire block, such as the time when the block is written onto

ledger, certificate, keys, and signature of the block.

Figure 38: Structure of a block data -4.

Tested the system- without TLS settings on the network with TLS handshake enabled,

and the CLI was not able to invoke the chaincode erroring out as Endorsement failure, as shown

in Figure 39.

Figure 39: Testing without TLS.

62

Summary

 In this chapter, we had discussed about results of developing the architecture. We also

looked at the results of running the application and in-depth documentation of implementing the

architecture. This chapter also talks about troubles faced and how to overcome them during

development.

63

Chapter V: Results, Conclusion, and Recommendations

Introduction

 This chapter discusses the overall summary of the results obtained from this

implementation. We looked at the results of the application used to connect educational

organizations to share sensitive information related to students. The project mainly focusses on

developing a network for safe and secure communication without any middleware organizations

to take care of data integrity and confidentiality. This chapter mainly focusses on concluding the

entire study. This section also discusses about the future work that can be applied to the current

system.

Discussion and Results

This research discusses in detail various cryptocurrency frameworks and architectures.

Discussions and comparisons of the frameworks, starting with Etherueum, Ethereum manages a

public blockchain, and It is just like a social network, any person who is willing to be part of the

network can join and start doing transactions using smart contracts. Moreover, the Ethereum

framework does not support multi-channel communication. This implementation can use

Ethereum architecture, but it not suitable for this project. Whereas, an Hyperledger Fabric

manages a permissioned blockchain.

Furthermore, unlike Ethereum, which runs on Mining based on Proof of Work, which is

managed by its participants, HLF architecture provides an Ordering service, which is an

automated system that helps in maintaining consensus among the peers. Hyperledger Fabric is

very scalable; it supports multiple programming languages and the ability to integrate

components such as consensus algorithms and membership services, which issues and validates

certificates.

64

Regarding the security provided by this architecture, Hyperledger Fabric bundles in TLS

encryption and Membership Service providers for proper certificate handling. The data on the

ledger is by default, encrypted by Hyperledger Fabric native encryption. Even communication

between the peer requires a TLS, secure connection between the two nodes. Channels in

Hyperledger Fabric adds up another layer of security, as even though a node is a member of the

network cannot access any data If the node is not part of the channel.

The network handled the upgrades as expected. It supports easy install of chaincode

smart contract codes on nodes, and the command upgrade instantiates the installed chaincode on

the network.

This paper also dives into giving step by step details of developing an entire network of

organizations using the architecture on a Linux based Virtual machine. This paper also discusses

a structure of block with multiple transactions and how the structure helps in making the entire

blockchain immutable. This paper also discusses how to implement a consensus mechanism and

to bring in the ability to avoid middle man and how well the architecture is designed that it can

take care of the transactions and consensus mechanism. By providing a ledger that nobody

administers, these crypto blockchain systems with their strict consensus methods can handle any

transactional data with trust and accuracy.

Conclusion

 This implementation study of Hyperledger fabric is to develop a network between the

participating educational organizations; This is an open-source architecture that aims to develop

distributed ledger applications. Since the application manages the ledger without any

administering it, It needs to have a consensus algorithm, and to look at the blocks, the tool

65

generated and crypto algorithms it uses in the process makes the ledger immutable, and every

transaction needs to be signed, verified and valid.

Future Work

 Currently, there are only a few stable releases for this architecture, the version that was

used is the most up to dated and stable version of this opensource project hosted by the Linux

Foundation. This architecture supports various plug and play services. Currently, able to use the

project using the command-line interface. This project can be further improved by adding Nodejs

and a UI with authentication services, which makes it easier for the end-user to work on the tool.

66

References

Ark, T. V. (2018, August 20). 20 ways blockchain will transform (okay, may improve)

education. Retrieved January 15, 2019, from https://www.forbes.com/sites/tomvanderark/

2018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/

#450f3cf74ac9

Cachin, C. (2016). Architecture of the hyperledger blockchanin fabric. Retrieved from

https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf

Chen, G., Xu, B., Lu, M. (2019). Exploring blockchain technology and its potential applications

for education. Smart Learning Environment, 5(1). Retrieved February 02, 2019, from

https://slejournal.springeropen.com/articles/10.1186/s40561-017-0050-x

Gibson, K. (2017, May 9). Your MD may have a phony degree. Retrieved January 25, 2019,

from https://www.cbsnews.com/news/your-md-may-have-a-phony-degree/

Gräther, W., Kolvenbach, S., Ruland, R., Schütte, J., Torres, C., & Wendland, F. (2018, May 8).

Blockchain for education: Lifelong learning passport. Retrieved March 21, 2019, from

https://dspace.wineme.fb5.uni-siegen.de/handle/20.500.12015/3163

Hong, Z., Wang, Z., Cai, W., & Leung, V. (2017). Blockchain-empowered fair computational

resource sharing system in the D2D network. Future Internet. 9.85. 10.3390/fi9040085

Kumar, A. (2018, July 3). Bitcoin blockchain–what is proof of work? Retrieved February 25,

2019, from https://vitalflux.com/bitcoin-blockchain-proof-work/

Madeira, A. (2019, March 13). How does a hashing algorithm work? Retrieved March 25, 2019,

from https://www.cryptocompare.com/coins/guides/how-does-a-hashing-algorithm-work/

https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://slejournal.springeropen.com/articles/10.1186/s40561-017-0050-x
https://www.cbsnews.com/news/your-md-may-have-a-phony-degree/
https://vitalflux.com/bitcoin-blockchain-proof-work/

67

Mukhopadhyay, U., Skjellum, A., & Hambolu, O. (2017, April). A brief survey of

cryptocurrency systems. Retrieved from ieeexplore.ieee.org: https://ieeexplore.ieee.org/

document/7906988/

Orientation and setup. (2019, November 11). Retrieved November 11, 2019, from Docker

Documentation website: https://docs.docker.com/get-started/

Sean: Understanding Hyperledger in a bit more detail. (2017, December 21). Retrieved

March 20, 2019, from https://decentralize.today/understanding-hyperledger-in-a-bit-

more-detail-3d40a37c74f2

Stevens, A. (2018, April 23). Gaining clarity on key terminology: Bitcoin versus blockchain

versus distributed ledger technology. Retrieved February 21, 2019, from https://

hackernoon.com/gaining-clarity-on-key-terminology-bitcoin-versus-blockchain-versus-

distributed-ledger-technology-7b43978a64f2

Valenta, M., & Sandner, P. (2017, June). Comparison of Ethereum, Hyperledger fabric, and

Corda. Retrieved March 31, 2019, from https://pdfs.semanticscholar.org/00c7/

5699db7c5f2196ab0ae92be0430be4b291b4.pdf

https://ieeexplore.ieee.org/%20document/7906988/
https://ieeexplore.ieee.org/%20document/7906988/
https://docs.docker.com/get-started/
https://decentralize.today/understanding-hyperledger-in-a-bit-more-detail-3d40a37c74f2
https://decentralize.today/understanding-hyperledger-in-a-bit-more-detail-3d40a37c74f2
https://pdfs.semanticscholar.org/00c7/

68

Appendix A: Additioal Sources

A practical introduction to blockchain with Python // Adil Moujahid // Data Analytics and more.

(n.d.). Retrieved November 11, 2019, from http://adilmoujahid.com/posts/2018/03/intro-

blockchain-bitcoin-python/

Audhikesavan, L. (2018, June 30). Hyperledger fabric: How to setup application from scratch

using Nodejs series—part 3. Retrieved November 11, 2019, from Medium website:

https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-

scratch-using-nodejs-series-part-3-9d795f2d4a8

Audhikesavan, L. (2019, September 24). Blockchain Hyperledger fabric—errors & solutions.

Retrieved November 11, 2019, from Medium website: https://medium.com/coinmonks/

hyperledger-fabric-composer-errors-solutions-827112a3fce6

Blockcerts. (2016). Blockchain credentials. Retrieved from https://www.blockcerts.org/guide/

Health, C. (2019, August 7). Start your own Hyperledger blockchain, the easy way! Retrieved

November 11, 2019, from Medium website: https://medium.com/@mycoralhealth/start-

your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1

How the blockchain works. (n.d.). Retrieved January 20, 2019, from .https://rubygarage.org/blog/

how-blockchain-works

Hyperledger Fabric—The 20 most important terms made simple. (n.d.). Retrieved November 11,

2019, from https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-

made-simple-2753f925db4

Install Hyperledger fabric on Ubuntu 18.04.1–Step by Step « Data Science Evangelist. (n.d.).

Retrieved November 11, 2019, from http://www.ziaahmedshaikh.com/install-

hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/

http://adilmoujahid.com/posts/2018/03/intro-blockchain-bitcoin-python/
http://adilmoujahid.com/posts/2018/03/intro-blockchain-bitcoin-python/
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-scratch-using-nodejs-series-part-3-9d795f2d4a8
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-scratch-using-nodejs-series-part-3-9d795f2d4a8
https://medium.com/coinmonks/%20hyperledger-fabric-composer-errors-solutions-827112a3fce6
https://medium.com/coinmonks/%20hyperledger-fabric-composer-errors-solutions-827112a3fce6
https://www.blockcerts.org/guide/
https://medium.com/@mycoralhealth/start-your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1
https://medium.com/@mycoralhealth/start-your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1
https://rubygarage.org/blog/%20how-blockchain-works
https://rubygarage.org/blog/%20how-blockchain-works
https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-made-simple-2753f925db4
https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-made-simple-2753f925db4
http://www.ziaahmedshaikh.com/install-hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/
http://www.ziaahmedshaikh.com/install-hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/

69

Nakamoto, S. (2008, October 31). Bitcoin: A peer-to-peer electronic cash system. Retrieved

January 20, 2019, from https://nakamotoinstitute.org/bitcoin/

Peer channel—Hyperledger-fabricdocs master documentation. (n.d.). Retrieved November 11,

2019, from https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/

peerchannel.html

Private data—Hyperledger-fabricdocs master documentation. (n.d.). Retrieved November 11,

2019, from https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-

arch.html

Sharples, M., & Domingue, J. (2016, September 13). The Blockchain and kudos: A distributed

system for educational record, reputation, and reward. retrieved February 15, 2019, from

https://link.springer.com/chapter/10.1007/978-3-319-45153-4_48

Tam, K. C. (2019, July 22). Transactions in Hyperledger fabric. Retrieved November 11, 2019,

from Medium website: https://medium.com/@kctheservant/transactions-in-hyperledger-

fabric-50e068dda8a9

Technologies, B. (2018, July 10). Hyperledger fabric: Time to make the leap—an enterprise

note. Retrieved November 11, 2019, from Medium website: https://medium.com/@

BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-

78b062d1c6bf

Wearetheledger/awesome-hyperledger-fabric. (2019). Retrieved from https://github.com/

wearetheledger/awesome-hyperledger-fabric (Original work published 2018).

What is hashing? Under the hood of blockchain. (n.d.). Retrieved February 21, 2019, from

https://blockgeeks.com/guides/what-is-hashing/

https://nakamotoinstitute.org/bitcoin/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/%20peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/%20peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-arch.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-arch.html
https://link.springer.com/chapter/10.1007/978-3-319-45153-4_48
https://medium.com/@kctheservant/transactions-in-hyperledger-fabric-50e068dda8a9
https://medium.com/@kctheservant/transactions-in-hyperledger-fabric-50e068dda8a9
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://github.com/%20wearetheledger/awesome-hyperledger-fabric
https://github.com/%20wearetheledger/awesome-hyperledger-fabric
https://blockgeeks.com/guides/what-is-hashing/

70

What is Ethereum? The Most comprehensive beginners guide. (n.d.). Retrieved January 21, 2019,

from https://blockgeeks.com/guides/ethereum/

Your first Hyperledger fabric network. (n.d.). Retrieved November 11, 2019, from The DEV

Community website: https://dev.to/damcosset/your-first-hyperledger-fabric-network-

2n67

Yousef, H. (n.d.). Install HyperLedger fabric at Win 10 | Codementor. Retrieved November 11,

2019, from https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-

tb85r9dqg

https://blockgeeks.com/guides/ethereum/
https://dev.to/damcosset/your-first-hyperledger-fabric-network-2n67
https://dev.to/damcosset/your-first-hyperledger-fabric-network-2n67
https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-tb85r9dqg
https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-tb85r9dqg

71

Appendix B: File crypto-config.yaml

File crypto-config.yaml is created for the tool Cryptogen. It holds the data related to all

participants of the network. Cryptogen tool uses the following YAML code and generates

encryption keys and certificates.

OrdererOrgs:

 - Name: orderer

 Domain: etranscripts.com

 EnableNodeOUs: true

 Specs:

 - Hostname: orderer

PeerOrgs:

 # ---

 # Scsu

 # ---

 - Name: scsu

 Domain: scsu.minnstate.edu

 EnableNodeOUs: true

 # ---

 Template:

 Count: 1

 Users:

 Count: 1

 - Name: umn

72

 Domain: umn.minnstate.edu

 EnableNodeOUs: true

 Template:

 Count: 1

 Users:

 Count: 1

 # Minnesota State University, Mankato:

 - Name: msu

 Domain: msu.minnstate.edu

 EnableNodeOUs: true

 Template:

 Count: 1

 Users:

 Count: 1

 # Bemidji State University:

 - Name: bsu

 Domain: bsu.minnstate.edu

 EnableNodeOUs: true

 Template:

 Count: 1

 Users:

 Count: 1

73

Configtxgen tool uses file configtx.YAML, This file contain all the network related

configurations such as Anchor peer configurations for Organizational peers, Channel information,

ledger details and Orderer configurations.

Section: Organizations

Organizations:

 - &OrdererOrg

 Name: ordererOrg

 ID: ordererMSP

 MSPDir: crypto-config/ordererOrganizations/etranscripts.com/msp

 - &scsu

 Name: scsuMSP

 ID: scsuMSP

 MSPDir: crypto-config/peerOrganizations/scsu.minnstate.edu/msp

 AnchorPeers:

 - Host: peer0.scsu.minnstate.edu

 Port: 7051

 - &umn

 Name: umnMSP

 ID: umnMSP

 MSPDir: crypto-config/peerOrganizations/umn.minnstate.edu/msp

74

 AnchorPeers:

 - Host: peer0.umn.minnstate.edu

 Port: 8051

 - &msu

 Name: msuMSP

 ID: msuMSP

 MSPDir: crypto-config/peerOrganizations/msu.minnstate.edu/msp

 AnchorPeers:

 - Host: peer0.msu.minnstate.edu

 Port: 9051

 - &bsu

 Name: bsuMSP

 ID: bsuMSP

 MSPDir: crypto-config/peerOrganizations/bsu.minnstate.edu/msp

 AnchorPeers:

 - Host: peer0.bsu.minnstate.edu

 Port: 10051

Orderer: &OrdererDefaults

 OrdererType: solo

 Addresses:

 - orderer.etranscripts.com:7050

 BatchTimeout: 122s

 BatchSize:

75

 MaxMessageCount: 9

 AbsoluteMaxBytes: 9 MB

 PreferredMaxBytes: 256 KB

Profiles:

 eTranscriptsGenesis:

 Orderer:

 <<: *OrdererDefaults

 Organizations:

 - *OrdererOrg

 Capabilities:

 <<: *OrdererCapabilities

 Consortiums:

 MinnStateUniv:

 Organizations:

 - *scsu

 - *umn

 - *msu

 - *bsu

 eTranscriptsChannel:

 Consortium: MinnStateUniv

 Application:

 <<: *ApplicationDefaults

 Organizations:

76

 - *scsu

 - *umn

 - *msu

 - *bsu

 Capabilities:

 <<: *ApplicationCapabilities

//chaincode for project

 This chaincode file is to work with a ledger. This chaincode, after installed on a peer

container, acts as a separate container. So when a request to submit a transaction on the ledger.

The chaincode needs to be invoked, and the chaincode will query the ledger. The chaincode should

have init, initiate methods, and other custom query methods.

package main

import (

 "encoding/json"

 "fmt"

 "github.com/hyperledger/fabric/core/chaincode/shim"

 pb "github.com/hyperledger/fabric/protos/peer"

 "strings"

)

77

type OrgGrades struct {

}

type submitgrade struct {

 ObjectType string `json:"docType"`

 School string `json:"school"`

 Semester string `json:"semester"`

 Year string `json:"year"`

 Course string `json:"course"`

 Grade string `json:"grade"`

 Name string `json:"name"`

}

//

===

==============

// Main

//

===

==============

func main() {

 err := shim.Start(new(OrgGrades))

 if err != nil {

 fmt.Printf("Error starting Simple chaincode: %s", err)

78

 }

}

// Init initializes chaincode

// ===========================

func (t *OrgGrades) Init(stub shim.ChaincodeStubInterface) pb.Response {

 return shim.Success(nil)

}

// Invoke -

// ==

func (t *OrgGrades) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

 function, args := stub.GetFunctionAndParameters()

 fmt.Println("invoke is running " + function)

 if function == "initGrade" {

 return t.initGrade(stub, args)

 }else if function == "readGrade" {

 return t.readGrade(stub, args)

 }

 fmt.Println("Function not found for Invoke method: " + function)

 return shim.Error("Received wrong function")

}

func (t *OrgGrades) initGrade(stub shim.ChaincodeStubInterface, args []string) pb.Response {

79

 var err error

 if len(args) != 6 {

 return shim.Error("Incorrect number of arguments. Expecting 6")

 }

 fmt.Println("- start init grade")

 if len(args[0]) <= 0 {

 return shim.Error("1st argument not supplied")

 }

 if len(args[1]) <= 0 {

 return shim.Error("2nd argument not supplied ")

 }

 if len(args[2]) <= 0 {

 return shim.Error("3rd argument not supplied ")

 }

 if len(args[3]) <= 0 {

 return shim.Error("4th argument not supplied ")

 }

 if len(args[4]) <= 0 {

 return shim.Error("5th argument not supplied ")

 }

 if len(args[5]) <= 0 {

 return shim.Error("6th argument not supplied ")

80

 }

 school := args[0]

 semester := strings.ToLower(args[1])

 year := strings.ToLower(args[2])

 course := strings.ToLower(args[3])

 grade := strings.ToLower(args[4])

 name := strings.ToLower(args[5])

 nameAsBytes, err := stub.GetState(name)

 if err != nil {

 return shim.Error("Failed to get name: " + err.Error())

 } else if nameAsBytes != nil {

 fmt.Println("This name already exists: " + name)

 return shim.Error("This name already exists: " + name)

 }

 objectType := "submitgrade"

 submitgrade := &submitgrade{objectType, school, semester, year, course,grade,name}

 gradeJSONasBytes, err := json.Marshal(submitgrade)

 if err != nil {

 return shim.Error(err.Error())

 }

 err = stub.PutState(name, gradeJSONasBytes)

 if err != nil {

81

 return shim.Error(err.Error())

 }

 indexName := "school~semester~year~course"

 ssycIndexKey, err := stub.CreateCompositeKey(indexName,

[]string{submitgrade.School, submitgrade.Semester,submitgrade.Year,submitgrade.Course})

 if err != nil {

 return shim.Error(err.Error())

 }

 value := []byte{0x00}

 stub.PutState(ssycIndexKey, value)

 fmt.Println("- end init name")

 return shim.Success(nil)

}

func (t *OrgGrades) readGrade(stub shim.ChaincodeStubInterface, args []string) pb.Response {

 var name, jsonResp string

 var err error

 if len(args) != 1 {

 return shim.Error("Please check arguments. Expecting name of the student to

query")

82

 }

 name = args[0]

 valAsbytes, err := stub.GetState(name)

 if err != nil {

 jsonResp = "{\"Error\":\"not able to check " + name + "\"}"

 return shim.Error(jsonResp)

 } else if valAsbytes == nil {

 jsonResp = "{\"Error\":\"name does not exist: " + name + "\"}"

 return shim.Error(jsonResp)

 }

 return shim.Success(valAsbytes)

}

