58
specifies the orderer information, --cafile specifies the TLS certificate path in the container and
-v specifies the version of chaincode.

Command:

“peer chaincode instantiate -o orderer.etranscripts.com:7050 -n CourseProcessor -v 1.0 -C
minnstate -c '{"Args":[]}' --tls --cafile
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/etranscripts.com/or

derers/orderer.etranscripts.com/msp/tlscacerts/tIsca.etranscripts.com-cert.pem”

root@879381e8d81F: Jopt/gopath/src/github.com/hyperledger/fabric/peer

File Edit View Search Terminal Help
root@BTQSBleBdBlf /opt/gopath/src/glthub com/hyperledger/fabrlc/peer# peer chaincode list --instantiated -C minnstate
C ain] InitCmd - ARN 861 CORE_LOGGING_LEVEL is no longer supported, please use the FABRIC_
varlable
01 .849 UTC [main] SetOrdererEnv -> WARN 002 CORE_LOGGING_LEVEL is no longer supported, please use the F
ABRIC LOGGING SPEC env1ronment variable

Get instantiated chaincodes on channel minnstate:
Name: CourseProcessor, Version: 1.0, Path: github.com/chaincode, Escc: escc, Vscc: vscc
root@879381e8d81f: /opt/gopath/src/github.com/hyperledger/fabric/peer# ||

Figure 33: Instantiating chaincode on network.

Figure 33 shows that the instantiated chaincode on this channel is CourseProfessor and is
of 1.0 version.
Data Analysis

Instantiating the ledger on the current channel has generated a block. Using the CLI, we
fetched the newest block on the ledger.

Figure 34 shows the basic structure of a block in a Blockchain. The extracted file has
three sections; Data, Header, and Metadata.

The header section of the block has data_hash, which is a hash value calculated from all

the transactions in the current block.

59

v object {3}
» data {1}
v header {3}

data_hash : kR7gJQT60XpOLaHMgMIN]jIJHAVD8+nkwyUSUxstoR
fNOe=

number : 2

previous_hash : MB8NesUMz4RWALE2VE+vO792FtWdOw2TULIS
WK4XzuM=

» metadata {1}

Figure 34: Structure of a block header.

Number refers to the current block number, and It is an integer, which starts at genesis
block with value zero, and the blocks on the channels add up; it gets incremented by the value
of 1. Previous_hash holds thee value of previous block hash value, and This is what brings in the
chain structure for all the blocks.

The data section of the block shown in Figure 35 has details about the transactions
bundled in order. Each transaction section has three portions, Which are Transaction proposal,

Endorsements, and Proposal response.

v actions [1]
v o {2}
» header {2}
v payload {2}
v action {2}
v endorsements [1]
» 0 {2}
¥ proposal_response_payload {2}
» extension {3}

proposal_hash : 5tlbqtQpFy9YVUI8D2A0g71spK4SBnEahSsb91211p

v chaincode_proposal_payload {1}
» input {2}
» header {2}

signature : MEQCIC+53HPIUQuUTT/z13vIIWCEOLSP7k/rNI2Ful2Xxyn6QAiAkl4rpPlLll12aCmWfnk
Vp1J2CdYYYxC6ZbeDbB8abk4stA==

Figure 35: Structure of a block data -1.

60
We can observe all the three portions in this block, chaincode_proposal_payload portion
all the details about the proposal command submitted in the CLI; Such as name, path, version of
chaincode, and arguments specified during instantiation in hash format and language of

chaincode, In this case, it is two.

v chaincode_proposal_payload {1}
v input {2}
v chaincode_spec {4}
v chaincode_id {3}
name : CourseProcessor
path
version
v input {1}
v args [2]
: aWSpdEx1ZGdlcg==
1 : ewdKICAiT2JqZWNOVHIWZSIGICITdWItaXRHcmFkZXM
iLAGKICAiU2Nob29sIjogInNjc3UiLAGKICAiWWVhci
I6ICIyMDESIiwNCiAgI1N1bWVzdGVyIjogImZhbGwil
AGKICAiQ291cnN1IjogIklBMTAXIiwNCiAgTkV4YWOi
0iAiZmluYWwilAGKICAiZ3JhZGVzIjogWwOKICAgIHS
NCiAgICAgICITAHVKZWSOIjogImFSeWFwcGEiLAGKIC

AgICAgI1J1bWFyayI6ICI1eGN1bGx1bnQilAGKICAGI
CAgI1BvaW50cyI6ICIhIgBKICAgIHONCiAgXQeK fQ==

timeout : ©

type : GOLANG

Figure 36: Structure of a block data -2.
Proposal_response_payload portion of the transaction is shown in Figure 37 and has
details about the details of the response of the transaction. It has related chaincode details and the

response from the ledger and also the hash value calculated for the proposal submitted.

¥ proposal_response_payload {2}
v extension {3}

¥ chaincode_id {3}
name : CourseProcessor
path :
version ! 1.@

¥ response {2}
message :
status : 200

results : Eh8KBGxzY2MSFwoVCg9Db3Vyc2VQecm9jZXNzb3ISAggB

proposal_hash : 5t1bqtQpFy9YVUI8D2A0g71spK4SBnEahSsb912I1p

Figure 37: Structure of a block data -3.

Finally, the ‘Endorsement’ portion of the transaction; Which has details of endorser of

61

this transaction, endorser ID, and his signature. In the last section, the block is metadata, which

holds information related to the entire block, such as the time when the block is written onto

ledger, certificate, keys, and signature of the block.

v endorsements [1]
v 0 {2}

endorser : CgdzY3N1TVNQErIGLS@tLS1CRUdITiBDRVIUSUZIQOF
URS@tLSOtCk1ISUNMekNDQWRXZOF3SUJIBZ@1SQUplbF
JzVelLeEFFWkpjM3JqcmdKZe13Q2dzZsutvikl6ajBFQ
XdJd2R6RUWKTUF rROExVUVCaE1DV1ZNeEVEQVICZO5W
QkFNVENrTmhiR2xtYjNKdWFXRXhGakFvQmdOVkIBY1R
EVkSon]CprjbQEleJselkyOHhHekFandDVkJEbl
RFbk5qYzNVdWIXbHVibk4wWVhSbExtVmtkVEV1TUI3R
BEXVUVBeE1WC1lkyRXViMk56ZFM1dGFXNXViM1JoZEdV
dVpXUjFNQJjRYRFRFNULUQX1PRE16TURNd@5Wb1hEVEK
1TVRBeUSUSXoKTURNd@5Wb3diREVMTUF rREEXVUVCaE
1DV1ZNeEV6QVICZO5SWQKFNVENrTmhiR2xtYjNKAWFXR
XhGakFvQmdOVgpCQWNURFZ0aGIpQkdjbUZ1WTIselky
OHhEVEFMQmdOVkIBCc1RCSEJIsWlhJeE1UQWZCZOSWQkF
NVEdIQmxaWE13CkxuTmpjM1V1Y1ldsdWIuTjBZWFIsTG
1Wa2RUQ1pNQk1HQN1xR1NNND1BZ@VHQeNxR1NNND1Bd
OVIQTBIQUIOYmoKaUpTaytRaXJabnplbEpVY21NOURS
WnVYTVRpOWZGT jFpMFdRcHVhRFFkeUFSNGVna2ttVFR
CdDJka@NIMIRKeApXROMBZHNyK2FVb1ldkbW1DUTg2al
RUQkxXNQTRHQTFVZER3RUIvVd1FFQXdISGAEQU1CZO5WS
FINQkFmOEVBakFBCk1DcedBMVVkSXdRa@1DS@F JUGAP
dV1pVEVXVXI4VnIKK@NheGIEZmZZSmUzL2RqSkhaSEM
PaUR6bjZFbE1BbOcKQONXRINNND1CQU1DQTBNQULFVU
NJUURSR3dBc@t50WtYaGo3WDF4S1pvikhLbGdmSkIhT
zJLTOcxclIsbmZXMwphZ@lnUk1aQTh4NjYrNlduajVh
My9xQTM5VVo3bTQyZFZpbjNURStxanFqZVVXdzeKLSe
tLS1FTkQgQOVSVELGSUNBVEUtLS@tLQo=

signature : MEUCIQCXprzufHKWHHLpgmgaer71CwRfBZ1EdhLK6X

Figure 38: Structure of a block data -4.

Tested the system- without TLS settings on the network with TLS handshake enabled,

and the CLI was not able to invoke the chaincode erroring out as Endorsement failure, as shown

in Figure 39.

root@879381e8d81F: fopt/gopath/src/github.com/hyperledger/fabric/peer
File Edit View Search Terminal Help

root@879381e8d81f: fopt/gopath/src/github. con/hyperledger/fabric/peer# peer chaincode invoke -o orderer.etranscri
pts com:7050 -n CourseProcessor -C mlnnstate -C '{”Args” ["kld","@"]1}'
11-11 02: 6.306 UTC [main] d WARN 001 CORE_ LOGGINC LEVEL is no longer supported, please use the

FABRIC LOGG

. 11-11 0: 26.311 UTC [main] SetO -> WARN 002 CORE_LOGGING_LEVEL is no longer supported, please u
se the FABRIC_ LOGGING SPEC enVLronment varlable

Error: endorsement failure during invoke. response: status:500 message:"Invalid Smart Contract function name."
root@879381e8d81f: /opt/gopath/src/github.con/hyperledger/fabric/peeri# [

Figure 39: Testing without TLS.

62
Summary
In this chapter, we had discussed about results of developing the architecture. We also
looked at the results of running the application and in-depth documentation of implementing the
architecture. This chapter also talks about troubles faced and how to overcome them during

development.

63
Chapter V: Results, Conclusion, and Recommendations
Introduction

This chapter discusses the overall summary of the results obtained from this
implementation. We looked at the results of the application used to connect educational
organizations to share sensitive information related to students. The project mainly focusses on
developing a network for safe and secure communication without any middleware organizations
to take care of data integrity and confidentiality. This chapter mainly focusses on concluding the
entire study. This section also discusses about the future work that can be applied to the current
system.

Discussion and Results

This research discusses in detail various cryptocurrency frameworks and architectures.
Discussions and comparisons of the frameworks, starting with Etherueum, Ethereum manages a
public blockchain, and It is just like a social network, any person who is willing to be part of the
network can join and start doing transactions using smart contracts. Moreover, the Ethereum
framework does not support multi-channel communication. This implementation can use
Ethereum architecture, but it not suitable for this project. Whereas, an Hyperledger Fabric
manages a permissioned blockchain.

Furthermore, unlike Ethereum, which runs on Mining based on Proof of Work, which is
managed by its participants, HLF architecture provides an Ordering service, which is an
automated system that helps in maintaining consensus among the peers. Hyperledger Fabric is
very scalable; it supports multiple programming languages and the ability to integrate
components such as consensus algorithms and membership services, which issues and validates

certificates.

64

Regarding the security provided by this architecture, Hyperledger Fabric bundles in TLS
encryption and Membership Service providers for proper certificate handling. The data on the
ledger is by default, encrypted by Hyperledger Fabric native encryption. Even communication
between the peer requires a TLS, secure connection between the two nodes. Channels in
Hyperledger Fabric adds up another layer of security, as even though a node is a member of the
network cannot access any data If the node is not part of the channel.

The network handled the upgrades as expected. It supports easy install of chaincode
smart contract codes on nodes, and the command upgrade instantiates the installed chaincode on
the network.

This paper also dives into giving step by step details of developing an entire network of
organizations using the architecture on a Linux based Virtual machine. This paper also discusses
a structure of block with multiple transactions and how the structure helps in making the entire
blockchain immutable. This paper also discusses how to implement a consensus mechanism and
to bring in the ability to avoid middle man and how well the architecture is designed that it can
take care of the transactions and consensus mechanism. By providing a ledger that nobody
administers, these crypto blockchain systems with their strict consensus methods can handle any
transactional data with trust and accuracy.

Conclusion

This implementation study of Hyperledger fabric is to develop a network between the
participating educational organizations; This is an open-source architecture that aims to develop
distributed ledger applications. Since the application manages the ledger without any

administering it, It needs to have a consensus algorithm, and to look at the blocks, the tool

65
generated and crypto algorithms it uses in the process makes the ledger immutable, and every
transaction needs to be signed, verified and valid.

Future Work

Currently, there are only a few stable releases for this architecture, the version that was
used is the most up to dated and stable version of this opensource project hosted by the Linux
Foundation. This architecture supports various plug and play services. Currently, able to use the
project using the command-line interface. This project can be further improved by adding Nodejs

and a Ul with authentication services, which makes it easier for the end-user to work on the tool.

66
References

Ark, T. V. (2018, August 20). 20 ways blockchain will transform (okay, may improve)
education. Retrieved January 15, 2019, from https://www.forbes.com/sites/tomvanderark/
2018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/
#450f3cf74ac9

Cachin, C. (2016). Architecture of the hyperledger blockchanin fabric. Retrieved from
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf

Chen, G., Xu, B., Lu, M. (2019). Exploring blockchain technology and its potential applications
for education. Smart Learning Environment, 5(1). Retrieved February 02, 2019, from
https://slejournal.springeropen.com/articles/10.1186/s40561-017-0050-x

Gibson, K. (2017, May 9). Your MD may have a phony degree. Retrieved January 25, 2019,
from https://www.cbsnews.com/news/your-md-may-have-a-phony-degree/

Gréther, W., Kolvenbach, S., Ruland, R., Schiitte, J., Torres, C., & Wendland, F. (2018, May 8).
Blockchain for education: Lifelong learning passport. Retrieved March 21, 2019, from
https://dspace.wineme.fb5.uni-siegen.de/handle/20.500.12015/3163

Hong, Z., Wang, Z., Cai, W., & Leung, V. (2017). Blockchain-empowered fair computational
resource sharing system in the D2D network. Future Internet. 9.85. 10.3390/fi9040085

Kumar, A. (2018, July 3). Bitcoin blockchain—what is proof of work? Retrieved February 25,
2019, from https://vitalflux.com/bitcoin-blockchain-proof-work/

Madeira, A. (2019, March 13). How does a hashing algorithm work? Retrieved March 25, 2019,

from https://www.cryptocompare.com/coins/guides/how-does-a-hashing-algorithm-work/

https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.forbes.com/sites/tomvanderark/%202018/08/20/26-ways-blockchain-will-transform-ok-may-improve-education/#450f3cf74ac9
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://slejournal.springeropen.com/articles/10.1186/s40561-017-0050-x
https://www.cbsnews.com/news/your-md-may-have-a-phony-degree/
https://vitalflux.com/bitcoin-blockchain-proof-work/

67

Mukhopadhyay, U., Skjellum, A., & Hambolu, O. (2017, April). A brief survey of
cryptocurrency systems. Retrieved from ieeexplore.ieee.org: https://ieeexplore.ieee.org/
document/7906988/

Orientation and setup. (2019, November 11). Retrieved November 11, 2019, from Docker
Documentation website: https://docs.docker.com/get-started/

Sean: Understanding Hyperledger in a bit more detail. (2017, December 21). Retrieved
March 20, 2019, from https://decentralize.today/understanding-hyperledger-in-a-bit-
more-detail-3d40a37c74f2

Stevens, A. (2018, April 23). Gaining clarity on key terminology: Bitcoin versus blockchain
versus distributed ledger technology. Retrieved February 21, 2019, from https://
hackernoon.com/gaining-clarity-on-key-terminology-bitcoin-versus-blockchain-versus-
distributed-ledger-technology-7b43978a64f2

Valenta, M., & Sandner, P. (2017, June). Comparison of Ethereum, Hyperledger fabric, and
Corda. Retrieved March 31, 2019, from https://pdfs.semanticscholar.org/00c7/

5699db7c5f2196ab0ae92be0430be4b291b4.pdf

https://ieeexplore.ieee.org/%20document/7906988/
https://ieeexplore.ieee.org/%20document/7906988/
https://docs.docker.com/get-started/
https://decentralize.today/understanding-hyperledger-in-a-bit-more-detail-3d40a37c74f2
https://decentralize.today/understanding-hyperledger-in-a-bit-more-detail-3d40a37c74f2
https://pdfs.semanticscholar.org/00c7/

68
Appendix A: Additioal Sources

A practical introduction to blockchain with Python // Adil Moujahid // Data Analytics and more.
(n.d.). Retrieved November 11, 2019, from http://adilmoujahid.com/posts/2018/03/intro-
blockchain-bitcoin-python/

Audhikesavan, L. (2018, June 30). Hyperledger fabric: How to setup application from scratch
using Nodejs series—part 3. Retrieved November 11, 2019, from Medium website:
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-
scratch-using-nodejs-series-part-3-9d795f2d4a8

Audhikesavan, L. (2019, September 24). Blockchain Hyperledger fabric—errors & solutions.
Retrieved November 11, 2019, from Medium website: https://medium.com/coinmonks/
hyperledger-fabric-composer-errors-solutions-827112a3fce6

Blockcerts. (2016). Blockchain credentials. Retrieved from https://www.blockcerts.org/guide/

Health, C. (2019, August 7). Start your own Hyperledger blockchain, the easy way! Retrieved
November 11, 2019, from Medium website: https://medium.com/@mycoralhealth/start-
your-own-hyperledger-blockchain-the-easy-way-5758ch4ed2d1

How the blockchain works. (n.d.). Retrieved January 20, 2019, from .https://rubygarage.org/blog/
how-blockchain-works

Hyperledger Fabric—The 20 most important terms made simple. (n.d.). Retrieved November 11,
2019, from https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-
made-simple-2753f925db4

Install Hyperledger fabric on Ubuntu 18.04.1-Step by Step « Data Science Evangelist. (n.d.).
Retrieved November 11, 2019, from http://www.ziaahmedshaikh.com/install-

hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/

http://adilmoujahid.com/posts/2018/03/intro-blockchain-bitcoin-python/
http://adilmoujahid.com/posts/2018/03/intro-blockchain-bitcoin-python/
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-scratch-using-nodejs-series-part-3-9d795f2d4a8
https://medium.com/coinmonks/hyperledger-fabric-how-to-setup-application-from-scratch-using-nodejs-series-part-3-9d795f2d4a8
https://medium.com/coinmonks/%20hyperledger-fabric-composer-errors-solutions-827112a3fce6
https://medium.com/coinmonks/%20hyperledger-fabric-composer-errors-solutions-827112a3fce6
https://www.blockcerts.org/guide/
https://medium.com/@mycoralhealth/start-your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1
https://medium.com/@mycoralhealth/start-your-own-hyperledger-blockchain-the-easy-way-5758cb4ed2d1
https://rubygarage.org/blog/%20how-blockchain-works
https://rubygarage.org/blog/%20how-blockchain-works
https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-made-simple-2753f925db4
https://hackernoon.com/hyperledger-fabric-the-20-most-important-terms-made-simple-2753f925db4
http://www.ziaahmedshaikh.com/install-hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/
http://www.ziaahmedshaikh.com/install-hyperledger-fabric-on-ubuntu-18-04-1-step-by-step/

69

Nakamoto, S. (2008, October 31). Bitcoin: A peer-to-peer electronic cash system. Retrieved
January 20, 2019, from https://nakamotoinstitute.org/bitcoin/

Peer channel—Hyperledger-fabricdocs master documentation. (n.d.). Retrieved November 11,
2019, from https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/
peerchannel.html

Private data—Hyperledger-fabricdocs master documentation. (n.d.). Retrieved November 11,
2019, from https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-
arch.html

Sharples, M., & Domingue, J. (2016, September 13). The Blockchain and kudos: A distributed
system for educational record, reputation, and reward. retrieved February 15, 2019, from
https://link.springer.com/chapter/10.1007/978-3-319-45153-4 48

Tam, K. C. (2019, July 22). Transactions in Hyperledger fabric. Retrieved November 11, 2019,
from Medium website: https://medium.com/@Kkctheservant/transactions-in-hyperledger-
fabric-50e068dda8a9

Technologies, B. (2018, July 10). Hyperledger fabric: Time to make the leap—an enterprise
note. Retrieved November 11, 2019, from Medium website: https://medium.com/@
BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-
78b062d1c6bf

Wearetheledger/awesome-hyperledger-fabric. (2019). Retrieved from https://github.com/
wearetheledger/awesome-hyperledger-fabric (Original work published 2018).

What is hashing? Under the hood of blockchain. (n.d.). Retrieved February 21, 2019, from

https://blockgeeks.com/guides/what-is-hashing/

https://nakamotoinstitute.org/bitcoin/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/%20peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/commands/%20peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-arch.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data-arch.html
https://link.springer.com/chapter/10.1007/978-3-319-45153-4_48
https://medium.com/@kctheservant/transactions-in-hyperledger-fabric-50e068dda8a9
https://medium.com/@kctheservant/transactions-in-hyperledger-fabric-50e068dda8a9
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://medium.com/@%20BangBitTech/hyperledger-fabric-time-to-make-the-leap-an-enterprise-note-78b062d1c6bf
https://github.com/%20wearetheledger/awesome-hyperledger-fabric
https://github.com/%20wearetheledger/awesome-hyperledger-fabric
https://blockgeeks.com/guides/what-is-hashing/

70

What is Ethereum? The Most comprehensive beginners guide. (n.d.). Retrieved January 21, 2019,
from https://blockgeeks.com/guides/ethereum/

Your first Hyperledger fabric network. (n.d.). Retrieved November 11, 2019, from The DEV
Community website: https://dev.to/damcosset/your-first-hyperledger-fabric-network-
2n67

Yousef, H. (n.d.). Install HyperLedger fabric at Win 10 | Codementor. Retrieved November 11,
2019, from https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-

tb85r9dqg

https://blockgeeks.com/guides/ethereum/
https://dev.to/damcosset/your-first-hyperledger-fabric-network-2n67
https://dev.to/damcosset/your-first-hyperledger-fabric-network-2n67
https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-tb85r9dqg
https://www.codementor.io/hajsf/install-hyperledger-fabric-at-win-10-tb85r9dqg

Appendix B: File crypto-config.yami
File crypto-config.yaml is created for the tool Cryptogen. It holds the data related to all
participants of the network. Cryptogen tool uses the following YAML code and generates
encryption keys and certificates.
OrdererOrgs:
- Name: orderer

Domain: etranscripts.com

EnableNodeOUs: true

Specs:

- Hostname: orderer

PeerOrgs:

- Name: scsu
Domain: scsu.minnstate.edu

EnableNodeOUs: true

Template:
Count:

Users:
Count:

- Name: umn

Domain: umn.minnstate.edu
EnableNodeOUs: true
Template:

Count:
Users:

Count:

Minnesota State University, Mankato:
- Name: msu
Domain: msu.minnstate.edu
EnableNodeOUs: true
Template:
Count:
Users:
Count:
Bemidji State University:
- Name: bsu
Domain: bsu.minnstate.edu
EnableNodeOUs: true
Template:
Count:
Users:

Count:

73

Configtxgen tool uses file configtx.YAML, This file contain all the network related
configurations such as Anchor peer configurations for Organizational peers, Channel information,
ledger details and Orderer configurations.

HHH A
Section: Organizations
HHH
Organizations:
- &OrdererOrg
Name: ordererOrg
ID: ordererMSP
MSPDir: crypto-config/ordererOrganizations/etranscripts.com/msp
- &scsu
Name: scsuMSP
ID: scsuMSP
MSPDir: crypto-config/peerOrganizations/scsu.minnstate.edu/msp
AnchorPeers:
- Host: peer0.scsu.minnstate.edu
Port:
- &umn
Name: umnMSP
ID: umnMSP

MSPDir: crypto-config/peerOrganizations/umn.minnstate.edu/msp

AnchorPeers:
- Host: peer0.umn.minnstate.edu
Port:
- &msu
Name: msuMSP
ID: msuMSP
MSPDir: crypto-config/peerOrganizations/msu.minnstate.edu/msp
AnchorPeers:
- Host: peer0.msu.minnstate.edu
Port:
- &bsu
Name: bsuMSP
ID: bsuMSP
MSPDir: crypto-config/peerOrganizations/bsu.minnstate.edu/msp
AnchorPeers:
- Host: peer0.bsu.minnstate.edu
Port:
Orderer: &OrdererDefaults
OrdererType: solo
Addresses:
- orderer.etranscripts.com:
BatchTimeout: 122s

BatchSize:

74

MaxMessageCount:
AbsoluteMaxBytes: 9 MB
PreferredMaxBytes: 256 KB
Profiles:
eTranscriptsGenesis:
Orderer:
<<: *QrdererDefaults
Organizations:
- *OrdererOrg
Capabilities:
<<: *QrdererCapabilities
Consortiums:
MinnStateUniv:
Organizations:
- *scsu
- *umn
- *msu
- *bsu
eTranscriptsChannel:
Consortium: MinnStateUniv
Application:
<<: *ApplicationDefaults

Organizations:

75

76
- *scsu
- *umn
- *msu
- *bsu
Capabilities:

<<: *ApplicationCapabilities

/[chaincode for project

This chaincode file is to work with a ledger. This chaincode, after installed on a peer
container, acts as a separate container. So when a request to submit a transaction on the ledger.
The chaincode needs to be invoked, and the chaincode will query the ledger. The chaincode should

have init, initiate methods, and other custom query methods.

package main

import (
"encoding/json™
"fmt"
"github.com/hyperledger/fabric/core/chaincode/shim"
pb "github.com/hyperledger/fabric/protos/peer"

"strings"

type OrgGrades struct {
}

type submitgrade struct {
ObjectType string “json:"docType™
School string “json:"school™
Semester string “json:"semester
Year string “json:"year"
Course string “json:"course™
Grade string “json:"grade"™

Name string “json:"name™

I

func main() {
err := shim.Start(new(OrgGrades))

if err I=nil {

fmt.Printf("Error starting Simple chaincode: %s", err)

77

78

/I Init initializes chaincode

func (t *OrgGrades) Init(stub shim.ChaincodeStublinterface) pb.Response {

return shim.Success(nil)

/I Invoke -

func (t *OrgGrades) Invoke(stub shim.ChaincodeStublinterface) pb.Response {
function, args := stub.GetFunctionAndParameters()
fmt.PrintIn(“invoke is running " + function)
if function == "initGrade" {
return t.initGrade(stub, args)
}else if function == "readGrade" {
return t.readGrade(stub, args)
}
fmt.PrintIn("Function not found for Invoke method: " + function)
return shim.Error(*'Received wrong function™)

¥

func (t *OrgGrades) initGrade(stub shim.ChaincodeStublnterface, args []string) pb.Response {

var err error

if len(args) =6 {

return shim.Error("Incorrect number of arguments. Expecting 6")

ks

fmt.PrintIn(*'- start init grade")
if len(args[0]) <=0 {

return shim.Error("1st argument not supplied")
}
if len(args[1]) <=0 {

return shim.Error(""2nd argument not supplied ")
}
if len(args[2]) <=0 {

return shim.Error("3rd argument not supplied ")
}
if len(args[3]) <=0 {

return shim.Error("4th argument not supplied ™)
}
if len(args[4]) <=0{

return shim.Error(""5th argument not supplied ™)
}
if len(args[5]) <=0{

return shim.Error(*'6th argument not supplied ")

79

}
school := args[0]
semester := strings. ToLower(args[1])
year := strings.ToLower(args[2])
course := strings. ToLower(args[3])
grade := strings. ToLower(args[4])
name := strings. ToLower(args[5])
nameAsBytes, err := stub.GetState(name)
if err I=nil {
return shim.Error("Failed to get name: " + err.Error())
} else if nameAsBytes != nil {
fmt.PrintIn(""This name already exists: " + name)
return shim.Error("This name already exists: " + name)
}
objectType := "submitgrade"
submitgrade := &submitgrade{objectType, school, semester, year, course,grade,name}
gradeJSONasBytes, err := json.Marshal(submitgrade)
if err I=nil {

return shim.Error(err.Error())

err = stub.PutState(name, gradeJSONasBytes)

if err 1= nil {

80

81

return shim.Error(err.Error())

indexName := "school~semester~year~course"

ssyclndexKey, err := stub.CreateCompositeKey(indexName,
[Istring{submitgrade.School, submitgrade.Semester,submitgrade.Y ear,submitgrade.Course})

if err I=nil {

return shim.Error(err.Error())

}

value := []byte{Ox00}

stub.PutState(ssycindexKey, value)

fmt.PrintIn(*'- end init name")

return shim.Success(nil)

func (t *OrgGrades) readGrade(stub shim.ChaincodeStublnterface, args []string) pb.Response {
var name, jsonResp string

var err error

if len(args) 1= 1 {
return shim.Error(*'Please check arguments. Expecting name of the student to

query™)

name = args[0]

valAsbytes, err := stub.GetState(hame)

if err I=nil {
jsonResp = "{\"Error\":\"not able to check " + name + "\"}"
return shim.Error(jsonResp)

} else if valAsbytes == nil {
jsonResp = "{\"Error\":\"name does not exist: " + name + "\"}"

return shim.Error(jsonResp)

return shim.Success(valAsbytes)

82

