
Token management in Fabric

2 IBM Research

Assets can be conveniently represented with digital tokens

Use cases
̶ Securities

trading
̶ Asset transfer
̶ Digital currency
̶ Supply chain
̶ Provenance
̶ …

Ownership change

Service transactions

atomic

Physical (or external digital)

Reader

Blockchain

Cash Mobility
Service

Vehicles PropertySecurity Trade
Document

Product
Batch

ProductData
Storage

Digital
Right

Digital Tokens

3 IBM Research

Unspent Transaction Output (UTXO) token ownership model

Transaction 1 Transaction 2

In Out

Out

In Out

OutIn

In

Standard case:
• In a transaction, the sum of the values

of all the inputs must be greater or equal to the
sum of the values of all outputs

• Only unspent outputs of previous transactions can
be used as inputs to a new transaction

• With a new transaction, inputs are deleted and new
outputs are created that may be consumed in future
transactions

Transaction 1 Transaction 2

In Out

Out

In Out

OutIn

In

40.1 Cn

1.9 Cn

42 Cn

1.9Cn

20 Cn

30Cn

20 Coin

30 Coin

0.9 Cn

9 Cn

Privacy-preserving case:
• Inputs of a valid transaction make respective

outputs in the UTXO pool cryptographically
unspendable

• Correctness of payments cryptographically
enforced

4 IBM Research

Account model for token ownership

• Single account per system user
• Transactions carry transfer requests, and validation updates corresponding user-accounts
• To some extend and on the client side, can be simulated on top of UTXO model

• Do not support privacy-preserving transactions -> conversion to UTXO is needed

• Support a variety of transfer extensions (e.g, transferFrom/approve)

5 IBM Research

Privacy is a key requirement in token management

Standard model
(No privacy)

BNKA: LYYL 2
BNKB: LYYL3
BNKB: WTC 5
BNKC: MFG 8

Import from Issuer
- 2 LYYL to BNKA
- 3 LYYL to BNKB
- 5 WTC to BNKB
- 8 MFG to BNKC

Transfer BNKA’s
1 LYYL to BNKC

Transfer BNKA’s
1 LYYL to BNKB
& 1 LYYL to self

Alice: LYYL 2
BNKB: LYYL 4
BNKB: WTC 5
BNKC: MFG 8

Transfer BNKB’s
1 LYYL to BNKC

Alice: LYYL 2
BNKB: LYYL 3
BNKB: WTC 5
BNKC: MFG 8
BNKC: LYYL 1

BNKB: LYYL 3
BNKB: WTC 5
BNKC: MFG 8
BNKC: LYYL 2

Participants
• Bank A: BNKA
• Bank B: BNKB
• Bank C: BNKC

Token units
• LYYL
• WTC
• MFG

6 IBM Research

Privacy is a key requirement in token management

BNKA: LYYL 2
BNKB: LYYL3
BNKB: WTC 5
BNKC: MFG 8

Import from Issuer
- 2 LYYL to BNKA
- 3 LYYL to BNKB
- 5 WTC to BNKB
- 8 MFG to BNKC

Transfer BNKA’s
1 LYYL to BNKC

Transfer BNKA’s
1 LYYL to BNKB
& 1 LYYL to self

Alice: LYYL 2
BNKB: LYYL 4
BNKB: WTC 5
BNKC: MFG 8

Transfer BNKB’s
1 LYYL to BNKC

Alice: LYYL 2
BNKB: LYYL 3
BNKB: WTC 5
BNKC: MFG 8
BNKC: LYYL 1

BNKB: LYYL 3
BNKB: WTC 5
BNKC: MFG 8
BNKC: LYYL 2

Alice: LYYL 2
Bob : LYYL 3
Bob : WTC 5
Charlie: MFG 8

Import from Issuer
- 2 LYYL to Alice
- 3 LYYL to Bob
- 5 WTC to Bob
- 8 MFG to Charlie

Transfer Alice’s
1 LYYL to Charlie

Transfer Alice’s
1 LYYL to Bob
& 1 LYYL to self

Alice: LYYL 2
Bob : LYYL 4
Bob : WTC 5
Charlie: MFG 8

Transfer Bob’s
1 LYYL to Charlie

Alice: LYYL 2
Bob : LYYL 3
Bob : WTC 5
Charlie: MFG 8
Charlie: LYYL 1

Bob : LYYL 3
Bob : WTC 5
Charlie: MFG 8
Charlie: LYYL 2

Participants
• Bank A: BNKA
• Bank B: BNKB
• Bank C: BNKC

Token units
• LYYL
• WTC
• MFG

Standard model
(No privacy)

Hyperledger Fabric
(Identities, assets concealed)

7 IBM Research

Privacy is a key requirement in token management

Standard model
(No privacy)

Hyperledger Fabric
(Identities, assets concealed)

Hyperledger Fabric
(e.g., view of auditor of BNKB)

BNKA: LYYL 2
BNKB: LYYL3
BNKB: WTC 5
BNKC: MFG 8

Import from Issuer
- 2 LYYL to BNKA
- 3 LYYL to BNKB
- 5 WTC to BNKB
- 8 MFG to BNKC

Transfer BNKA’s
1 LYYL to BNKC

Transfer BNKA’s
1 LYYL to BNKB
& 1 LYYL to self

BNKA : LYYL 2
BNKB: LYYL 4
BNKB: WTC 5
BNKC: MFG 8

Transfer BNKB’s
1 LYYL to BNKC

BNKA: LYYL 2
BNKB: LYYL 3
BNKB: WTC 5
BNKC: MFG 8
BNKC: LYYL 1

BNKB: LYYL 3
BNKB: WTC 5
BNKC: MFG 8
BNKC: LYYL 2

Alice: LYYL 2
Bob : LYYL 3
Bob : WTC 5
Charlie: MFG 8

Import from Issuer
- 2 LYYL to Alice
- 3 LYYL to Bob
- 5 WTC to Bob
- 8 MFG to Charlie

Transfer Alice’s
1 LYYL to Charlie

Transfer Alice’s
1 LYYL to Bob
& 1 LYYL to self

Alice: LYYL 2
Bob : LYYL 4
Bob : WTC 5
Charlie: MFG 8

Transfer Bob’s
1 LYYL to Charlie

Alice: LYYL 2
Bob : LYYL 3
Bob : WTC 5
Charlie: MFG 8
Charlie: LYYL 1

Bob : LYYL 3
Bob : WTC 5
Charlie: MFG 8
Charlie: LYYL 2

Alice: LYYL 2
BNKB: LYYL 3
BNKB: WTC 5
Charlie: MFG 8

Import from Issuer
- 2 LYYL to Alice
- 3 LYYL to BNKB
- 5 WTC to BNKB
- 8 MFG to Charlie

Transfer Alice’s
1 LYYL to Charlie

Transfer BNKA’s
1 LYYL to BNKB
& 1 LYYL to self

Alice: LYYL 2
BNKB: LYYL 4
BNKB: WTC 5
Charlie: MFG 8

Transfer BNKB ’s
1 LYYL to BNKC

Alice: LYYL 2
BNKB : LYYL 3
BNKB : WTC 5
Charlie: MFG 8
Charlie: LYYL 1

BNKB: LYYL 3
BNKB : WTC 5
Charlie: MFG 8
Charlie: LYYL 2

8 IBM Research

FabToken in a nutshell

• Fabric enablement for direct or as-a-service token management using UTXO

• Modular architecture to accommodate a variety of implementations addressing different
privacy, performance requirements & regulatory restrictions

• Compatible and integrate-able with other UTXO based token systems

• Easily extensible to support a variety of financial services operations

9 IBM Research

Zero-Knowledge Asset Transfer is a leading technology to privacy-preserving
asset management on permissioned Blockchains

• On a per user-level: auditors bound to a user are guaranteed
unconditional access to that user’s transaction detailsAudit support

Privacy • User anonymity
• Transferred token confidentiality (type, value)

• Users associated to long term identities that they cannot deny
use of; provided by the Identity Mixer TechnologyAccountability

Non-repudiation

Strong identity
management }

Performance • Lightweight (trusted) setup, easily decentralized
• Lightweight transfer request computation

Technical
Foundation • Standard cryptographic assumptions

10 IBM Research

How to combine public verifiability with privacy? Using Zero-Knowledge (ZK) proofs!

“I can prove to
you that I know

a secret”

Funds (e.g., enough
money on account)

Membership (eg,
business network)

Asset ownership
(e.g., private key)

Age threshold (e.g.,
above 18 years)

11 IBM Research

Channel trust domain
Transaction validation that takes place upon
a transaction being added to the channel’s

ledger

Token information flow in Fabric

Block n-1

Block n

Block n+1

Ledger (K-V) Client domain
Application that constructs & submits
FabToken transactions to the system

Ordering
Service

Read ledger
state

Read & Update
ledger state

FabToken
transaction
broadcast

FabToken
transaction
deliver

12 IBM Research

Channel trust domain
Transaction validation that takes place upon
a transaction being added to the channel’s

ledger

FabToken exhibits a modular architecture

Block n-1

Block n

Block n+1

Ledger (K-V) Client domain
Application that constructs & submits
FabToken transactions to the system

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

Construct
Issue/Transfer/Redeem

requests

Construct
Issue/Transfer/Redeem

requests

read requests

read/write
requests

13 IBM Research

FabToken exhibits a modular architecture

Block n-1

Block n

Block n+1

Ledger (K-V)

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

Construct
Issue/Transfer/Redeem

requests

Construct
Issue/Transfer/Redeem

requests

read requests

read/write
requests

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

14 IBM Research

FabToken exhibits a modular architecture to accommodate various privacy levels

Block n-1

Block n

Block n+1

Ledger (K-V)

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

read requests

read/write
requests

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

Plain
(used in standard

case)

Schnorr ZK-based
(used in ZKAT)

SNARKs ZK-based

SideDB-based

15 IBM Research

Token information flow by example

Token
issuer

Prover peer:
Trusted by the client;
Client proof computation

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

16 IBM Research

Token information flow by example

Token
issuer

Prover peer:
Trusted by the client;
Client proof computation

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

1. Issue request
2. Issue request proof

17 IBM Research

Token information flow by example

Token
issuer

Prover peer:
Trusted by the client;
Client proof computation

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

1. Issue request
2. Issue request proof

3. Submit itx with proof

18 IBM Research

Token information flow by example

Token
issuer

Prover peer:
Trusted by the client;
Client proof computation

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

1. Issue request
2. Issue request proof

3. Submit itx with proof

4. Deliver ordered
transaction including itx

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

19 IBM Research

Token information flow by example

Token
issuer

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

5. List tokens
request

6. List of
BNKA tokens

20 IBM Research

Token information flow by example

Token
issuer

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

7. Transfer request

8. Transfer request
proof

21 IBM Research

Token information flow by example

Token
issuer

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

7. Transfer request

8. Transfer request
proof

9. Submit ttx with proof

22 IBM Research

Token information flow by example

Token
issuer

Committing Peers:
Trusted by the network
Transaction validation

Fabric
Ordering
Service

BNKA

Prover peer:
Trusted by the client;
Client proof computation

Token
user 7. Transfer request

8. Transfer request
proof

9. Submit ttx with proof

10. Deliver ordered
transaction including ttx

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

23 IBM Research

FabToken exhibits a modular architecture to accommodate various privacy levels

Block n-1

Block n

Block n+1

Ledger (K-V)

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

read requests

read/write
requests

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

Plain
(used in standard

case)

Schnorr ZK-based
(used in ZKAT)

SNARKs ZK-based

SideDB-based

24 IBM Research

Client wallet library

• A library to expose user-friendly token functionalities to end user/application developer

• https://jira.hyperledger.org/browse/FAB-11153

25 IBM Research

FabToken exhibits a modular architecture to accommodate various privacy levels

Block n-1

Block n

Block n+1

Ledger (K-V)

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

read requests

read/write
requests

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

Plain
(used in standard

case)

Schnorr ZK-based
(used in ZKAT)

SNARKs ZK-based

SideDB-based

26 IBM Research

Prover peer

• A peer trusted by the client to
• Perform computation on the client’s behalf
• Maintain confidential information on the client’s behalf
• Respond properly to client’s ledger queries (status of transactions, list of tokens)

• Implemented as a GRPC service of a peer

• Why do we need it?
• Client needs ledger access to compute issue, transfer proofs
• Proof computation (esp. in the privacy-preserving case) often requires heavy computation that we

want to offload to a common code base

• Currently in https://jira.hyperledger.org/browse/FAB-11149

27 IBM Research

FabToken exhibits a modular architecture to accommodate various privacy levels

Block n-1

Block n

Block n+1

Ledger (K-V)

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

read requests

read/write
requests

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

Plain
(used in standard

case)

Schnorr ZK-based
(used in ZKAT)

SNARKs ZK-based

SideDB-based

28 IBM Research

Token Management System

• An abstraction to represent token management low-level operations (i.e., proof computation &
verification)

• Currently as parts of two epics:
• https://jira.hyperledger.org/browse/FAB-11149
• https://jira.hyperledger.org/browse/FAB-11144

29 IBM Research

FabToken exhibits a modular architecture to accommodate various privacy levels

Block n-1

Block n

Block n+1

Ledger (K-V)

Ordering
Service

FabToken
transaction
broadcast

FabToken
transaction
deliver

TokLib
[Token Management

System Factory]

read requests

read/write
requests

Client-SDK

Application
(End-user
transactor/

issuer)

Client Wallet
Library [cwLib]
(constructs &
submits token
transactions)

Prover component
(computation of

fabtoken input on
trusted peer)

Verifier Component
(custom validation -

VSCC - &
commitment -

transaction
processor)

Channel
committing peers

Plain
(used in standard

case)

Schnorr ZK-based
(used in ZKAT)

SNARKs ZK-based

SideDB-based

Currently in https://jira.hyperledger.org/browse/FAB-11144

30 IBM Research

Transaction processing flow @Committing peer

Validation for
TX1 (e.g.,
VSCC1)

…

Block n

TX1

TX2

TX3

Block n+1

…
Block n-1

Validation for
TX2 (e.g.,
VSCC2)

Validation for
TX3 (e.g.,
VSCC1)

Validation phase is served via
validation system chaincodes
& can take place in parallel for
different transactions;
transaction which successfully
pass the validation checks we
call valid

Commit phase is served via
transaction processors & takes
place sequentially for valid
transactions in a block after the
validation phase completes for
all block’s transactions

Commit TX1
(e.g., apply
Transaction
Processor 1)

Commit TX2
(e.g., through
Transaction
Processor 2)

Commit TX3
(e.g., through
Transaction
Processor 1)Time

More Diagrams

IBM CONFIDENTIAL

32 IBM Research

Token system bootstrapping on a given channel
• Token system stakeholders agree on the configuration of the token system & compile this into a

config file, config⇒ tools can be used to convert config into protobuf messages

• config (or protobuf equivalent) is passed to the channel stakeholders that deploy the token
system using chaincode lifecycle operations, i.e.,

• A namespace would be reserved for the token system & activated
• config would serve as the validation parameter for validation of transactions that aim to

modify state with the token system’s namespace (stored in the LSCC table)

• The peer retrieves config from the ledger to:
• serve queries to the client (prover peer) for that channel
• setup validator/committer components for transaction validation/commit (committing peer)

• Trust assumptions:
• Channel stakeholders are trusted to propagate config for the system’s deployment
• Token stakeholders are responsible for choosing properly parameters in config
• Clients trust their prover peers for i) setup, ii) transaction construction, iii) queries on ledger

state

33 IBM Research

Token system bootstrapping on a given channel

• Related JIRAs for peer setup:
• https://jira.hyperledger.org/browse/FAB-11285
• https://jira.hyperledger.org/browse/FAB-11169

• Related JIRAs for client setup:
• https://jira.hyperledger.org/browse/FAB-11286

34 IBM Research

Token system setup

35 IBM Research

Client setup flow

36 IBM Research

Token issue

37 IBM Research

Token transfer

38 IBM Research

Abstraction/dependency diagram
Token
Setup

Token Issue Support
(similar for Token Transfer/Redeem)

List Tokens Query
Support

Define configuration
Protobuf messages

Construct config tx

Converter from
JSON/YAML to
protobuf

Validation of fbt
config tx: Setup
custom validation
component

Commitment of fbt
config tx: Setup
custom tx
processor

Setup underlying
TMS

Define fabtoken tx
protobuf message

Allow peer to
validate fabtoken
issue transactions

Allow client fbt lib to
produce fabtoken tx
for issue tokens

Allow peer to
commit fabtoken
issue transactions

Enhance tms with
tms issue request
validation &
commitment

Allow client fbt lib to
acquire tms issue
request

Extend client sdk to
make fabtoken txs

Build a grpc peer
service to provide
tms issue request
upon client request

Enhance tms with
issue request
construction

Define fabtoken tx
protobuf message

Allow client fbt lib to
produce fabtoken
query to list tokens

Enhance the peer
grpc service to
respond to list token
queries

Enhance tms with
list tokens
command

Allow client fbt lib to
submit a tms issue
req in a fbt tx

Committing peer TMS

Fbt Client Lib
Client sdk
GRPC service

Legend

Client
Domain{

