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Abstract

Traditional centralized record-keeping systems establish a consensus based on trust

in the record-keeper. Trust arises from the ability to incentivize honest reporting. Rents

extracted by the record-keeper create an internal source of trust, allowing the system to

be self-sufficient. Blockchains decentralize record-keeping, dispensing with the need for

trust in a single entity. Some build a consensus based on externally verifiable resource

costs (proof-of-work), whereas others do not (proof-of-stake). We prove a blockchain

trilemma: it is impossible for any digital record-keeping system to simultaneously be (i)

self-sufficient, (ii) rent-free, and (iii) resource-efficient. Record-keeping systems without

rents or resource costs must ultimately rely on some external source of trust.
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1 Introduction

Traditionally, records have been maintained by centralized entities. Blockchain has

provided us with a radical decentralized alternative to record information. It has the po-

tential to be as groundbreaking as the invention of double-entry bookkeeping in fourteenth-

century Italy. Blockchain could revolutionize record-keeping of financial transactions and

ownership data.

The central problem in digital record-keeping is how to ensure agents come to a

consensus on the true history of events. Consensus, in turn, requires that a ledger’s

record-keepers have the incentive to report honestly, i.e., the ledger should be devoid of

fraud. These incentives can be provided in three ways. First, agents may face external

punishments for dishonest behavior, which may be social, commercial, or legal in nature.

In this case, the ledger is not self-sufficient: a failure of the external punishment mecha-

nism results in a failure of the ledger. Second, record-keepers may be punished through

a loss of rents if users of the system abandon it upon discovering fraudulent activity.

Third, record-keepers may face physical resource costs to write on the ledger, as in most

decentralized blockchains, rendering dishonesty unprofitable from an ex-ante perspective.

Figure 1: The blockchain trilemma.

In this paper we prove a “blockchain trilemma”: consensus requires external punish-

ments, rents, or ex-ante resource costs to write on the ledger. Hence, it is impossible for

any digital ledger to simultaneously be (i) self-sufficient, (ii) rent-free, and (iii) resource-

efficient.

In centralized record-keeping systems, consensus is achieved through trust in the

2



record-keeper. Agents simply ask the record-keeper to report the history of events to

them, giving the record-keeper ample opportunity to benefit by misreporting. Trust can

emerge from the record-keeping system itself if the record-keeper earns sufficient rents

to keep it honest. Trust can also stem from external mechanisms: there may be legal

authorities to punish fraud or commercial relationships that incentivize the record-keeper

to keep its reputation intact.

Blockchains seek to minimize the role of trust in achieving consensus. A blockchain

is a type of distributed ledger written by decentralized and usually anonymous groups

of agents rather than known centralized parties. In a decentralized setting, users of the

system may be faced with multiple internally consistent but mutually conflicting ledgers,

making consensus all the more important. Record-keepers effectively “vote” on the history

of events that they believe to be correct, and users of the system then aggregate those

votes to determine the current state using a consensus algorithm.

The consensus algorithms used by some blockchains are completely objective in na-

ture: they permit any two agents looking at the same set of ledgers to come to the

same conclusion regarding the current state. The most popular blockchain consensus

algorithm, called proof-of-work (PoW), has this property. Anonymous record-keepers

(known as “miners”) effectively vote on the true state (i.e., a chain of blocks) by extend-

ing that chain, which in turn requires an expenditure of computational power. When

deciding the true state, agents simply look for the chain of blocks to which the greatest

amount of computational power has been contributed. A new user of the system with no

prior knowledge of the state, therefore, would come to the same conclusion as all others.

Furthermore, this consensus algorithm disincentivizes misbehavior by making it costly

for any agent to alter the state, so there is no need for trust in any particular entity.

Some blockchain consensus algorithms have sought to eliminate the resource costs

entailed by the PoW algorithm. The most popular such consensus algorithm, known as

proof-of-stake (PoS), instead allocates voting power based on the number of tokens held in

each account. It is not costly to vote, so voting is secure only to the extent that the record-

keepers can be punished for casting conflicting votes. Record-keepers are identified only

by the pseudonyms attached to their accounts. Once the accounts that held a majority

of the votes at some point in the past are empty, there is no way to guarantee that the

owners of those accounts will not misbehave. They may conspire to use their historical

majority to produce an alternate history that, to a new user, looks indistinguishable from

the true history. To protect against such “long-range” attacks, new users need access to

a trusted source of information in order to begin using the system, although no trust is

required thereafter. Therefore, PoS blockchains require some external social trust and

are not self-sufficient.

We formalize these intuitions underlying our trilemma by building a general model

of record-keeping. Agents in our model keep track of transfers of digital tokens using

a publicly viewable ledger. The tokens serve to facilitate the transfer of goods in some

underlying mechanism, with few restrictions placed on the nature of that mechanism. Our
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model can capture record-keeping by a single centralized entity, a group of known entities,

or anonymous entities. Different systems of record-keeping correspond to different ways

of allocating voting power on the ledger and forming a consensus on the current state.

In a fully centralized record-keeping system, a single entity votes by signing the ledger

with a digital signature. By contrast, in a PoW system, any agent may vote by paying a

computational cost, and in a PoS system, voting power is given to token holders. Resource

costs correspond to proof-of-work, rents are associated with surplus accruing to record-

keepers, and external punishment (trust) comes from a social network in which agents

have mutually beneficial relationships that may break down.

Importantly, in our model, nothing links agents directly to digital identities (e.g., ac-

counts or digital signatures). Hence, agents may create alternate, internally consistent

ledgers by simulating the behavior of honest record-keepers who observed the correspond-

ing alternate history. In a centralized system, the record-keeper could, for example, cir-

culate different ledgers with different groups, always maintaining with each group that

any other ledgers it receives are forgeries. In a PoW system, any agent may create an

alternate history by acquiring enough computing power, and in a PoS system, agents

who held a majority of votes in the past may engage in a long-range attack. Formally,

we prove that in the class of models we consider, a mimicking lemma holds: any agent

may, in principle, create a ledger that appears indistinguishable from the true consensus

ledger in terms of the votes cast on each ledger.

The trilemma is a consequence of the mimicking lemma. We consider the situation

faced by a new user of the system who sees conflicting ledgers reflecting two different

histories: the true history and an alternate history created by an attacker. If the two

ledgers contain identical votes, the new user will need to ask her social connections to tell

her the true history. For the new user to be able to rely on that information, she must

trust her social connections to some extent. She may impose punishments by ceasing

to participate in the underlying mechanism, destroying any rents that those connections

derive from her participation, or by breaking off mutually beneficial social relationships.

Therefore, in order to prevent her social connections from conspiring to defraud her,

they must either face sufficiently large ex-ante costs of creating a conflicting ledger or

sufficiently large ex-post punishments. In turn, ex-ante costs correspond to resource

inefficiency, and ex-post punishments correspond to rents or external punishments (a

failure of self-sufficiency).

After proving the trilemma, we discuss how other important issues related to blockchains

could be addressed by extensions of our model. We outline the potential mechanisms

through which decentralization of record-keeping can be beneficial. While our general

model speaks to the ways in which incentive provision differs between centralized and

decentralized record-keeping systems, it does not explicitly take a stance on how a cen-

tralized record-keeper’s rents arise and how decentralization eliminates those rents.

We also make the important point that while blockchains guarantee transfers of owner-

ship, some sort of enforcement is required to ensure transfers of possession. For example,
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in a housing market, the owner of the house is the person whose name is on the deed, but

the possessor of the house is the person who resides in it. The buyer of the deed needs

to be certain that once she holds the deed, her ownership of the house will be enforced.

In the stock market, the purchaser of a share has ownership of future dividends but not

necessarily possession, since the delivery of dividends needs to be enforced. Broadly,

blockchains can record obligations. Currency, for example, is special because its value

derives only from the fact that it can be passed on, so no obligations need to be enforced.

Punishing those who default on their obligations is another matter: it typically requires a

trusted legal enforcement entity. We propose that it may be beneficial to bundle record-

keeping and enforcement duties given that the punishment mechanisms that create trust

in the enforcer also allow for trust in its role as record-keeper.

Related Literature. Our paper is related to the emergent literature on the economic

properties and implications of blockchains. The paper most closely related to ours is Bud-

ish (2018), which studies the costs of incentivizing honesty for cryptocurrency blockchains

in isolation, whereas our work compares the cost and incentive schemes required to secure

both centralized and decentralized record-keeping systems. Biais et al. (2019) study coor-

dination among miners in a blockchain-based system. They show that while the strategy

of mining the longest chain proposed by Nakamoto (2008) is in fact an equilibrium, there

are other equilibria in which the blockchain forks, as observed empirically. We study forks

as well, in the sense that agents in our model may attempt to defraud others by forking

the blockchain. Cong and He (2019) focus mostly on the issue of how ledger transparency

leads to a greater scope for collusion between users of the system, placing more emphasis

on users’ perspective than on record-keepers’, which is where our interest lies.

Some of the recent literature on blockchains in economics focuses on the security and

the costs of the system. Huberman, Leshno, and Moallemi (2017) study transaction

fees in Bitcoin and compare that environment to one with a monopolistic intermedi-

ary. They emphasize the role of free entry and conclude that the blockchain market

structure completely eliminates the rents that a monopolist would extract in an identi-

cal market, whereas we focus on the role of rents as a disciplining device for centralized

record-keepers and compare that to the incentive provision mechanisms of decentralized

blockchains. Easley, O’Hara, and Basu (2017) use a game-theoretic framework to analyze

the emergence of transaction fees in Bitcoin and the implications of these fees for mining

costs. The R&D race between Bitcoin mining pools is described in Gans, Ma, and Tourky

(2018), who argue that regulation of Bitcoin mining would reduce the overall costs of the

system and improve welfare. We focus on the key economic role of mining costs, which

is to dissuade agents from creating alternate histories of events for their own benefit.

We also relate to the literature on cryptocurrencies. Chiu and Koeppl (2017) develop

a macroeconomic model in which the sizes of cryptocurrency transactions are capped by

the possibility of an attack on the blockchain and derive optimal compensation schemes

for record-keepers. Schilling and Uhlig (2018) study cryptocurrency pricing in a monetary

model and derive necessary conditions for speculation to occur in equilibrium. Pagnotta
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and Buraschi (2018) derive a pricing framework for cryptocurrencies that explicitly ac-

counts for the interplay between demand for the currency and the cryptographic security

provided by miners.

Recent computer science literature has studied blockchain security extensively. Most

papers in computer science, such as that by Gervais et al. (2016), study how to defend

against “double-spend” attacks or other types of attacks that could be undertaken by a

single individual who holds control over a large portion of the network’s computing power.

The conclusion of studies in the computer science literature is that a large fraction of the

blockchain record-keepers must always play honestly in order for the network to be secure.

In contrast, we do not assume any record-keepers are compelled to play honestly. Rather,

agents are permitted to act and collude in arbitrary ways, and they have well-defined

incentives to behave as the system’s protocol dictates they should. Our model shows

that the real cost of operating a PoW blockchain is intrinsically linked to the benefit of

a successful attack. It also outlines the types of incentives required for a PoS blockchain

to operate correctly.

The rest of the paper is structured as follows. Section 2 discusses the basics of

blockchain technology and introduces some concepts and notation used in the model.

Section 3 develops intuition for the trilemma by providing examples of the opportunities

for fraud and the incentive schemes used in centralized record-keeping systems as well as

PoW and PoS blockchains. Section 4 presents our general model of record-keeping and

proves the blockchain trilemma. Section 5 discusses other issues related to blockchain

from a less formal perspective. Section 6 concludes.

2 Digital Assets and Blockchain Technology

2.1 The digital record-keeping problem

The motivation behind blockchains, and digital record-keeping algorithms in general,

is that it is often necessary to maintain ledgers that keep track of sequences of events. In

particular, it is often important to determine whether one event occurred before or after

another. A canonical example of the necessity of sequential record-keeping arises in the

context of digital assets (often referred to as coins, or tokens).

In account-based digital token systems, users have secure accounts protected by public

key encryption. With public key encryption, it is possible for users to sign messages

with a signature that publicly proves they own an account without revealing the secret

“password” (private key) that grants access to the account. Tokens are transferred by

messages: the owner of an account can send a signed message indicating a transfer from

her own account to another. Thus, it is not possible to spend others’ tokens.

Unlike physical assets, however, the transfer of digital assets does not inherently pre-

clude their reuse by the original owner. That is, there is no fundamental scarcity of

digital assets. To see this point clearly, we consider a simple example. Suppose Alice
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owns accounts 1 and 2, Bob owns account 3, and each account holds one token. The

initial state is denoted ω0 = (1, 1, 1). If Alice may transfer the token held in account 1

to Bob by sending a message m1, what prevents her from sending the same token again

to account 2 by sending another message m2? Alice may want to do this, for instance,

because she wants a third user Carol to believe that she has two tokens. One might say

that as long as it is commonly known that m1 preceded m2, all users of the digital token

system would simply ignore m2 because they consider the tokens to be in Bob’s account,

concluding that the state is ω1 = (0, 1, 2).

There are two issues with this reasoning. First, latency in the arrival of digital mes-

sages may result in Carol seeing m2 before m1 if the two messages were sent in close

succession. Second, if Carol joins the system long after both messages were sent, she

would be unable to discern which message came first. She would see two public messages

attempting to send the same token but would be uncertain as to whether it currently

resides in account 2 or account 3.

The problem of sequencing the two messages is known as the double-spend problem,

which highlights the need for a stable consensus on the ordering of messages. It is the

main issue that most consensus algorithms attempt to solve. We will work with this

example throughout to build intuition for the concepts introduced.

2.2 What is a blockchain?

A blockchain is a digital ledger in which information is recorded sequentially in data

structures known as blocks. A block consists of (1) a set of messages, (usually) (2) a

pointer to another block, and (3) a header. In the context of a cryptocurrency (or other

digital asset) ledger, the messages contained in blocks correspond to transfers of tokens

from one account to another or seignorage received by accounts.1 The blockchain is ef-

fectively a device to keep track of a state, i.e., the quantity of tokens in each account.

Pointers serve to order the messages contained in blocks. The first block in a blockchain,

known as the genesis block, has no pointer, and pointers on other blocks indicate imme-

diate their predecessors in the blockchain.

Simply adding pointers to collections of messages does not solve the double-spend

problem, however. In the context of the previous example, suppose that the token is in

Alice’s account in the genesis block b0, and there is a block b1 pointing to b0 that contains

message m1. Then the blockchain C1 = {b0, b1} results in state ω1 = (0, 1, 2). However,

the existence of chain C1 does not preclude the possibility that someone could create a

block b2 that points to b0 and contains message m2. This would create another chain

C2 = {b0, b2} that conflicts with C1 and implies instead that the state is ω2 = (0, 2, 1), so

Alice still owns two tokens. A situation in which there are two conflicting ledgers (chains

of blocks) with a common genesis is known as a fork, and blocks on different branches of

a fork are called conflicting blocks.

1These messages are collected into a data structure known as a Merkle tree.
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When faced with multiple valid yet conflicting chains, the consensus algorithm dictates

which chain agents should consider to be the current state. The outcome of the algorithm,

in turn, depends on block headers. The form of these headers depends on whether the

consensus algorithm is permissioned, proof-of-stake, or proof-of-work, so we discuss each

case separately below.

2.3 Consensus algorithms

In our setting, the purpose of a consensus algorithm is to permit agents to agree

on a consensus state. Consensus algorithms are essentially voting systems: when faced

with multiple valid chains, agents can look at the “votes” cast on each chain in order

to come to a consensus. We examine three distinct classes of blockchains that differ in

their consensus algorithms: permissioned blockchains, proof-of-stake (PoS) blockchains,

and proof-of-work (PoW) blockchains. These types of systems differ mainly in how they

allocate voting power, and, as we will show later, in how they incentivize correct record-

keeping.

A permissioned blockchain is one in which a known consortium of entities has full,

unimpeachable power to update the ledger. When the blockchain is operated by a single

known entity, it is called a private blockchain. A simple example of a private blockchain

is one in which a monopolist maintains and updates the ledger of a transaction system it

operates. The monopolist may add transactions to blocks and approve blocks by signing

them with a digital signature (e.g., by proving that he has access to a secret password).

As long as no other agent has access to this digital signature, the monopolist will be the

only one able to alter the ledger. In principle, any agent who knows the monopolist’s

signature could verify whether the monopolist has equivocated by publishing conflicting

ledgers, but agents still need some trusted source of information to learn this signature.

Typically, the monopolist is the trusted source.

PoS and PoW blockchains are types of public blockchains, in which anonymous agents

can become eligible to write on the ledger. The question, then, is how voting power to

approve blocks should be allocated. In an ideal world, one might imagine a “one-person-

one-vote” system in which all users of the ledger have equal voting power. However,

this type of voting system is infeasible, because it is not costly for one person to acquire

multiple digital identities (e.g., IP addresses) and pretend to be a larger group of people.

This type of attack, which will play an important role in our analysis, is known as a Sybil

attack. The possibility of Sybil attacks creates an identity management problem, which

is what the PoS and PoW algorithms attempt to solve.

The PoS and PoW algorithms differ in how they allocate voting power. In PoS

blockchains, voting power is allocated to accounts in proportion to the number of to-

kens held in those accounts. PoW blockchains, by contrast, allocate voting power to

agents who prove they have solved intrinsically useless computational problems. Effec-

tively, then, PoW allocates voting power in proportion to expenditures on computational
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resources. The act of solving computational problems is typically known as mining, and

miners are compensated for their expenses through block rewards. Mining expenditures

and block rewards are both sizable in reality. For example, as of this writing, the Bitcoin

block reward was worth over $125,000 and was distributed every ten minutes on average.

2.4 Blockchain security

In communication across anonymous digital channels, nothing intrinsically links votes

to individuals. At best, votes are linked to accounts (as in PoS and private blockchains),

but additional information is needed to determine which accounts belong to specific indi-

viduals. This feature of digital communication creates opportunities to deviate that are

at the heart of our analysis.

In the context of a completely centralized private blockchain, a monopolist can cheat

by creating two internally consistent ledgers with different genesis blocks, each with its

own special permissioned account (digital signature) used to update the blockchain. It

can then send these different ledgers to different groups. Nothing links those permissioned

accounts to the monopolist, so even if a group discovers the ledger circulated by the other,

it would not constitute proof that the monopolist had equivocated. The monopolist may

always insist that the other ledger is an unsanctioned forgery.

In PoS systems, the problem is similar, as voting power is linked to accounts holding

monetary tokens. As in a centralized system, a group of attackers may create a fraudulent

genesis block and a new set of accounts owning all tokens in that block. The attackers

would then have all of the voting power necessary to update that ledger as they chose,

making it indistinguishable from a ledger used for transactions in the economy. The

attackers could then proliferate this seemingly valid ledger to unsuspecting new users, who

would need additional information to distinguish it from the true ledger used by others.2

More realistically, attackers can attempt to acquire the private keys corresponding to

accounts that held a supermajority of votes long in the past (e,g., on the black market).

It is plausible that the accounts that held a supermajority in a block bpast are eventually

emptied, so it could be cheap to acquire these keys and start a fork from block bpast that

looks just as valid as the true consensus chain to new users. In this situation, it would

also be impossible to say for certain that any agent had equivocated. This attack, known

as a “long-range attack,” is of principal importance in the study of PoS security.

Finally, in PoW systems, attackers can mimic the behavior of agents reporting honestly

simply by paying a high enough computational cost to create blocks at the same pace

as the rest of the network. Nothing about the attackers’ blocks indicates that they were

fraudulently created, as the votes on those blocks look identical to those on any other

block. The consensus algorithm that PoW blockchains use is typically a “longest chain

2The genesis block is often hard-coded into the software client used to run a blockchain protocol. In order
to fool unsuspecting new users, the attackers would have to create a modified version of the software client
and tell those users that their version is the correct one.
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rule”: all users converge on the chain with the greatest amount of work committed to

it, which typically coincides with the longest chain of blocks. Hence, an attacker can

generate a consensus on a chain he privately created, so long as he controls a majority of

the network’s computational power. This type of “51% attack” is the primary concern in

the security of PoW systems.

3 Examples of consensus algorithms

Formally, all three classes of consensus algorithms allow agents who know (1) the

previous consensus state (given by a chain C) and (2) the current set of blocks (B) to

come to an agreement on a new consensus state when blocks are added. A consensus

algorithm can then be described by a function g(C,B) = C ′. We will assume that, as in

reality, the consensus algorithm depends only on the headers of each block. In particular,

the header of a block b contains a message that we will call a vote, v(b). The consensus

algorithm is effectively a way to decide on the next state based on the previous state and

any votes cast on newly formed blocks.

We now give a rough description of the three broad classes of consensus algorithms

and outline the problems that may arise in each case. We will continue to work with our

example in Section 2.1. For concreteness, we assume there are two periods, t = 1, 2. Alice

and Bob are both present at t = 1 and know the true genesis block b0 and the state ω0,

but Carol does not know this information and arrives only at t = 2.

Figure 2: The setup in the example of Section 3.

Alice may also create a new genesis block at t = 1, b′0, with state ω′0 = (1, 1, 1).3 We

assume she owns all the private keys corresponding to the accounts in the new genesis

3There is another realistic interpretation of an attack involving a fraudulent genesis block. In our setting,
this type of attack can be thought of as a metaphor for “long-range attacks” in proof-of-stake systems, where
attackers cheaply acquire the private keys to defunct accounts that held voting tokens a long time in the past.
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block, but this fact is not publicly known. She may also send a message m′1 in which

account 1 sends a token to account 3 on this new chain, leading to state ω′1 = (0, 1, 2)

if it is included in a block b′1 following b′0. Therefore, these two blocks may be present

in addition to b1 and b2, which contain messages m1 and m2 as in Section 2.1. Figure 3

illustrates this setup.

Note that a consensus algorithm g(C,B) does not necessarily guarantee consensus

when some agents do not know the initial state. In our example, Carol may require

information about the initial state when she arrives in order to arrive at a consensus.

We assume she is socially connected to Alice or Bob, who may communicate with her

through private messages.

3.1 Private blockchain

For simplicity, here we consider a situation with a monopolist who holds a single

non-transferable voting token in an account. This voting token effectively constitutes the

monopolist’s signature, as the monopolist is the only one in possession of the private key

that can be used to sign messages from the corresponding account. We denote a vote on

a block b by a vote v(b) = 1.

The consensus algorithm gives any agent with knowledge of the genesis block the

ability to deduce the current state. Agents simply look for the longest chain in which the

voting token has voted on every block. However, if the monopolist has voted on conflicting

chains, then agents detect this deviation, and consensus is lost (or, equivalently, agents

abandon the system). Formally, the algorithm chooses g(C,B) = C ′ to be the longest

chain C ′ (containing the known genesis) such that v = 1 for every block in C ′. If there is

more than one such chain, instead choose g(C,B) = ∅, regardless of the initial chain C.

There is no a priori way to distinguish between two blockchains with different genesis

blocks, though. In other words, agents lack prior knowledge about the monopolist’s

signature, which opens up the possibility of fraud.

In our example, we will assume that Alice is the monopolist. She is able to choose

whether to include m1 or m2 in the blockchain with genesis b0, but it is impossible to

choose to include m1 and then reverse that decision by creating a block in which m2 is

included, for example. Therefore, if Bob is to believe he has received payment, Alice must

vote on b1 at t = 1, and this transaction will be irreversible from Bob’s perspective.

Carol may still be fooled, however. Suppose that Alice casts vote v = 1 on block b′1
as well. When Carol arrives, she sees one blockchain in which the current state is ω1 and

another in which it is ω′1, with no way to distinguish between the two other than through

social messages. If Carol trusts Alice (the monopolist) to provide this information, Alice

can claim that genesis block b0 is a forgery, and her true signature is on block b′0.

How could Alice be incentivized to provide Carol with the correct state? Carol can

punish Alice for lying by abandoning the system if the lie is detected. If Alice extracts

rents from users of her monopolistic system, she may prefer to keep Carol as a user
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long-term rather than deceiving her in the short term.

3.2 Proof-of-Stake blockchain

In a proof-of-stake system, voting power is typically assigned to monetary tokens.

When determining which message is ultimately included in the blockchain, voting power is

assigned based on token holdings before transfers are executed rather than after. That is,

in block b0, Alice has 2
3 of the voting shares, and Bob has the remainder, no matter which

message is chosen. Proof-of-stake blockchains typically operate using a supermajority

rule. A vote v in this context consists of the identities of the accounts that vote in favor

of a particular block. We say a fraction α of tokens vote on a block if the fraction of tokens

held in accounts voting on that block is α. The consensus algorithm chooses g(C,B) = C ′

such that

1. C ′ is the longest chain containing C such that at least two-thirds of all tokens vote

on each block in C ′; and

2. The fraction of tokens that have voted on conflicting blocks is less than 1
3 .

When condition (2) fails, it means that at least 1
3 of tokens have been used to cast multiple

conflicting votes. If C is contained in a block tree on which such conflicting votes have

been cast, instead, g(C,B) = ∅. Sufficiently severe equivocation is punished by a loss of

consensus in the same way as in the case of a private blockchain, although with a PoS

blockchain there is some tolerance for a small fraction of equivocating voters.4

It is easy to check that no state contained in a chain C can be reversed by this updating

rule. For instance, if Alice and Bob both use a token to vote on b1, Alice must then use all
2
3 of her tokens to vote on a block containing b2 if she wants ω2 to have any chance of being

considered a consensus state. This would require that Alice use at least one account to

vote on both ω1 and ω2, though, so instead of creating a situation in which Carol believes

ω2 could be the consensus state, Alice destroys consensus by equivocating. As in the case

of private blockchain, then, knowledge of an initial state is enough to generate irreversible

consensus. Nevertheless, this system is still subjective and thus exposed to the same type

of attack as the private system: Alice may use her supermajority in state ω′0 to vote on

ω′1, which will fool Carol if Alice communicates inaccurate social messages. For instance,

Alice could tell Carol that any software that considers b0 to be the true genesis block is

fraudulent.

In this context, rent extraction may not provide security. When account ownership

is anonymous, Carol may not be able to conclude whether Alice extracts any rents from

the system, so a threat to abandon the system might not affect Alice. Rather, Carol may

4It is generally agreed upon that there is no secure algorithm to establish consensus when a sufficiently large
fraction of the voting stake belongs to an agent who has equivocated. For instance, in a white paper for the
Casper TFG proof-of-stake algorithm, Vitalik Buterin instead proposes that these instances of equivocation
be resolved by market forces or social consensus instead.
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rely on social trust between herself and Alice that is external to the system, such as a

mutually beneficial business or personal relationship that may be broken off if Alice lies.

3.3 Proof-of-Work blockchain

Proof-of-work blockchains allocate voting power in proportion to the computational

resources spent by agents. A vote in this context is just a real number v corresponding to

the aggregate amount of computational resources spent by agents on the corresponding

block. The chain updating rule in PoW systems is extremely simple: fix some α > 0,

and for collection of blocks B, let the set of valid chains in B be C̃v = {C ⊂ B : v(b) ≥
α ∀ b ∈ C}. That is, the set of valid chains includes all chains in which every block

has received at least α votes. Then g(C,B) = Cmax, where Cmax is the chain with the

greatest aggregate resource expenditure given by

Cmax = arg max
C′⊂C̃v

v(C ′) ≡ arg max
C′⊂C̃v

∑
b∈C′

v(b).

No matter what the initial chain C, the output is always the same given a block chain

B. Hence, agents require no initial information to come to a consensus. This rule is the

analogue of the “longest chain rule” used by most PoW blockchains. In practice, the

consensus state in a PoW blockchain is given by the chain with the greatest aggregate

difficulty of PoW problems solved, and adding an additional block requires a fixed amount

of work (on average).5

Suppose that at t = 1, b1 received α votes (combined) from Alice and Bob. The

consensus state at the end of t = 1 is then ω1. If Alice wishes Carol to believe the current

state is ω2 at the end of t = 2, she simply needs to pay a cost α+ ε (ε > 0) to vote on b2.

Once she does so, ω2 will become the consensus state, and both Carol and Bob will act

according to that state rather than s1. The payment to Bob has effectively been reversed.

Attacks such as this one are why the computer science literature has extensively studied

“51% attacks,” in which one agent acquires a majority of the available computing power.

Whereas Alice faced ex-post costs of deceiving Carol in the private blockchain and

PoS models, in the PoW model the cost of deceiving Carol is incurred ex-ante. The only

thing preventing Alice from reversing her payment to Bob (in everyone’s eyes) is the cost

of computing power required to override the initial payment.6

5One element we omit from our analysis is the endogenous adjustment of the difficulty of PoW problems.
Typically, the difficulty of the problems to be solved adjusts to target a fixed rate at which blocks should be
added to the chain. If blocks are added at a higher rate than desired, the difficulty adjusts upwards, and the
opposite occurs when blocks are added at a lower rate than desired.

6For simplicity, here we assume that Bob will accept the payment after it is included in a single block. In
reality, vendors usually deliver goods only after several blocks have followed the initial block including the
payment, so Alice would have to overwrite multiple blocks rather than just one.
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4 Model

In this section, we present the model. We summarize some of the notation related to

blockchains introduced in Sections 2 and 3 and then outline the primitives of the game

played among players as well as the way in which players interact with the blockchain.

4.1 State space model

The fundamental purpose of a blockchain in our model is to keep track of a state

ω ∈ Ω, which consists of allocations of NT different types of digital tokens in a countable

number N of anonymously owned accounts. Messages are of the form m = (n, n′, s),

which indicates a transfer of a vector s ∈ RNT of tokens from account n to account n′. If

n = 0, the message is instead interpreted as seignorage of s tokens distributed to account

n′. Messages are used to update the state in the obvious way.

4.2 Blockchain definitions

Blocks: A genesis block is the beginning of a blockchain: it is an object (data struc-

ture) containing a single state ω. The state contained in a genesis block b is sometimes

written as ω(b). An ordinary block is an object containing (1) a set of messages m̃ ⊂M ,

(2) a pointer to another block, and (3) a vote. The set of messages, pointer, and vote

corresponding to a block b are denoted by m̃(b), p(b), and v(b), respectively.

A blockchain C is an ordered set of blocks. The ordering on a blockchain is induced by

block pointers. The state implied by a blockchain C = {b0, b1, . . . , bK} can be found by

starting with the genesis state ω(b0) and updating that state with the messages included

in each successive block. We will denote the state associated with a blockchain C by

ω(C).

Voting: Votes may be generated either by digital assets internal to the system (proof-

of-stake or permissioned) or physical resources external to the system (proof-of-work).7

In the case of proof-of-work, a vote is simply a real number v ∈ R+ indicating the amount

of computational resources contributed to a particular block. In the proof-of-stake and

private blockchain cases, a vote is a subset v ⊂ N indicating the identities of accounts

that voted on a particular block.

Blocks are formed by voting messages. As we explained in Section 3, voting messages

can be sent from any account n in favor of including a collection of token transfer messages

m̃ in a new block at the end of chain C. Each voting message also includes a vote v

corresponding to tokens held in the account (PoS or private) or the computational cost

incurred by the account’s owner (PoW). Voting messages are thus of the form mv =

(n, m̃, C, v).

7Our analysis generalizes to the case in which the voting protocol is a hybrid of proof-of-work and proof-
of-stake, but we present the concepts separately here for ease of exposition.
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When a collection of voting messages share a common message collection m̃ and chain

C, a new block is formed containing messages m̃. Additionally, a collection of voting

reward messages m̃′ may be added to the block, so the block messages are m̃(b) = m̃∪m̃′.
These reward messages distribute seignorage to accounts that voted on the new block in

some way. The block vote v(b) is simply an aggregation of the votes included in voting

messages. The block pointer p(b) points to the terminal block of chain C.

Consensus algorithm: Record-keeping with a blockchain requires a consensus pro-

tocol g(C,B) to update the state. We will assume that the rule g depends only on block

pointers and votes rather than on the messages contained in each block.

It is also necessary to specify how agents interpret the blockchain when they do not

start with knowledge of an initial state. In practice, this issue is important because this

is precisely the situation faced by a new user of a blockchain (as with Carol in Section 3).

The process of onboarding a new user is usually termed “bootstrapping.” In our model,

the state update rule g induces a bootstrapping protocol ĝ that takes a block collection

B and outputs a collection of chains in B, ĝ(B) = {C ′1, . . . , C ′K} with C ′k ⊂ B for all k.

The bootstrapping protocol is derived via

ĝ(B) = {C ′ ⊂ B : g(C,B) = C ′ for some C ⊂ B}.

4.3 Primitives

Time is discrete and infinite, t = 0, 1, 2, . . . . There are N players who may be present

or absent at each t. The set of present players at t is denoted by Pt ⊂ N . We assume that

the probability of a player’s presence depends only on whether the player was present in

the previous period. When players become absent, they lose all recollection of previous

play. It is as if players are replaced whenever they become absent, so players who become

present are akin to new users.

In this model, there are two types of activities. There are fundamental activities, which

correspond to a blockchain-based record-keeping mechanism in which players anony-

mously trade a single numeraire good. These activities consist of consumption and

production of goods as well as any proof-of-work expenditures that are incurred in record-

keeping (if the blockchain uses PoW).8 There are also social activities, which correspond

to bilateral relationships among players. These activities are completely external to the

mechanism implemented by the blockchain record-keeping system, but, as we show, they

may be useful in building social trust that permits new users of the blockchain to reliably

acquire the correct state.

Fundamental activities: Player n has a fundamental type θn,t ∼ Fn(θ), where

θn,t ∈ Θn. Player n’s consumption and production at t are denoted by cnt and ynt,

respectively. The period utility function is u(c, y, θ). Players’ intertemporal discount

8If the blockchain uses some other consensus algorithm, players will not have to engage in any physical
action in order to keep records. Hence, record-keeping does not fundamentally affect utilities in other settings.
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factor is δ ∈ (0, 1). We set up fundamental preferences in this way because it allows us

to work within a simple framework in which players may agree to do favors for others in

exchange for tokens.

Players also may incur physical computational expenditures to vote in proof-of-work

systems. In order to generate v votes, players must pay a linear cost κv, where κ represents

the rental cost of a unit of computational power.9

Players’ fundamental preference profiles are thus characterized by

UFn,t = Et
[ ∞∑
s=0

δs
(
u(cn,t+s, yn,t, θn,t+s)− κvn,t+s

)]
.

Social activities: Players are connected by a social network G = (N,E), where

E ⊂ N × N is a set of edges. If (n, n′) ∈ E, then players n and n′ are said to be

connected. Connected players may send private messages to each other and may also

derive mutual benefits from their relationship. The per-period bilateral utility obtained

by players connected along edge (n, n′) ∈ E (when both are present) is zn,n′ = zn′,n, but

these relationships may break down when players become absent. The overall (expected)

social utility derived by player n going forward from period t is

USn,t = Et
[∑
n′

1{n′ ∈ Pt+s}zn,n′

]
.

This social network will be important in our analysis because it represents an external

source of trust between players that may be useful in attaining consensus. This type

of social trust is precisely what would have dissuaded Alice from lying to Carol in our

PoS example. In reality, this reduced-form bilateral utility could reflect the value of a

business, personal, or political relationship, but it could also stand in for a capacity for

neighbors to punish each other (legally or otherwise). Importantly, though, the social

interactions in G are completely unrelated to trade in goods. They are important only

to the extent that they enable new users to trust information about the blockchain state

given to them by their social connections.10

Players’ overall preference profiles are then

Un,t = UFn,t + USn,t.

The per-period utility obtained by a player is the sum of (1) the fundamental utilities

derived from rendering and receiving services, (2) the bilateral utility obtained through

trust relationships with present neighbors in G, and (3) computational expenditures.

We allow for coordinated deviations, at least in the communication of social messages

inG, by positing the existence of coalitions g ⊂ N . Each possible coalition g is a connected

9The results generalize to situations in which there are additional fixed costs of computational power.
10We model external trust as coming from bilateral relationships for simplicity, but our results would extend

to a more general setting in which trust comes from the surplus generated by larger coalitions of players.

16



subset of the graph G. The preferences of a coalition g are given by

Ug,t =
∑
n∈g

Un,t.

In this context, it is important to allow for some coordinated deviations in reporting the

state. If such deviations were not possible, record-keeping by two centralized institutions

would be completely secure– if one of the two institutions were to deviate, all agents

would receive conflicting reports and thus would immediately detect the deviation.

4.4 Communication and interaction

In this section, we present a model of how players communicate and interact using

a blockchain. We first discuss the initial setup and the way in which players keep track

of the state. We then outline the user side of the model, which involves the transfer of

tokens among users and actions taken in response to those transfers, and finally discuss

the record-keeping side, which involves the creation of blocks.

Setup and internal state: At the beginning of t = 0, a set of players P0 ⊂ N are

present. There is a genesis block b0 (commonly known to players in P0 but not others)

corresponding to state ω(b0). As before, a state ω ∈ Ω consists of an assignment of tokens

to accounts. There are initially |P0| numbered accounts, with one account being owned by

each player n ∈ P0. Blocks will periodically be published as play proceeds. Once a block

is published, it becomes publicly viewable to all present players in all future periods.

Players must individually keep track of the state in this setting. Each player regards

a chain of blocks, called that player’s internal chain, as a summary of the current state.

The state summarized by a player’s internal chain is called the internal state. When all

present players’ internal chains agree on a terminal state, it is said to be the consensus

state. When new blocks are produced, present players update their internal states using

the consensus algorithm g.

Newly arriving players use the bootstrapping protocol ĝ to narrow down the list of

possible consensus states, but they may require additional information. In that case, the

new player n asks her neighbors in G to provide her with the chain C corresponding to

the current consensus state. If all neighbors in G report the same chain, she accepts that

as her internal chain. Otherwise, she immediately leaves (becomes absent). Importantly,

a player’s neighbors in G may lie about the consensus state. If player n’s neighbors lie at

time t, n discovers the lie at t + 1 and leaves.11 Hence, lying to new users may provide

the short-term benefit of distorting their view of the state but results in two types of

long-term losses. First, lying players lose the social trust stemming from the mutually

beneficial relationship with the new user (i.e., the social connection inG). Second, lying

players lose any rents extracted from the new user through the mechanism. These two

11As will become evident, in our context the assumption that players always discover lies one period later
is conservative. Our results would carry through if players discovered lies only with some probability.
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forces reflect the tradeoff faced by Alice in our private blockchain and PoS examples when

deciding whether to lie to Carol.

User side: The assignment of tokens to accounts is public knowledge, but account

ownership is private information.12 In any period, players may create new accounts with

no token holdings.

In their capacity as users, players may send messages transferring tokens from an

account n to an account n′. All such messages are sent with reference to a chain C

summarizing the state in which the tokens are to be transferred. In principle, players

should send messages only in reference to their internal states, but they may deviate, as

in a double-spend. Only the player who owns account n may send messages in which

n sends tokens to other accounts, and no player may send tokens from an account that

exceed its holdings.

Players may enter agreements to produce goods for others in exchange for tokens.

Agreements are anonymous and may, in principle, be made between any two players An

agreement stipulates that the producer n will send yn,n′ goods to the consumer n′ if a

particular message mn,n′ (representing a payment) is included in the blockchain at the

end of a chain C. In this model, agreements are needed because token transfer messages

must be sent before it is known whether they will ultimately be included in the blockchain.

Importantly, players’ internal chains will determine the actions they take. They will

agree to produce only if they believe a payment has been included in the consensus state,

so their agreements will require that messages be included in their internal chains. Just as

in practice, vendors will wait until they believe payments are finalized before transferring

goods to buyers.13

Record-keeping side: There are two types of messages players may send in their

capacity as record-keepers. First, players may send voting messages. A player may cast

vote v only if he owns account n and (in PoW systems) completes the requisite amount

of work. Further, while players may choose to omit some observed messages from their

reports m̃, they may not report seeing messages that were never sent.

Second, players may create new genesis blocks with arbitrary numbers of accounts and

token holdings. When they do so, they automatically take possession of all accounts in

the new genesis block. We allow for this possibility so that players may execute deviations

of the type presented in Section 3 in order to fool newly arriving users.

Timeline: There are two subperiods τ = 0, 1 in each period t. Play in these subpe-

riods proceeds as follows:

1. At the beginning of τ = 0, present players are informed as to whether any of their

12The assumption that token holdings are public is not required, but it makes some proofs more transparent.
Encryption schemes used in reality, in fact, sometimes prevent accounts’ token holdings from becoming public
knowledge.

13Actual transactions using cryptocurrencies often occur as follows: the buyer will send a message trans-
ferring tokens to the seller, the seller will wait until the message is entered into the blockchain, and then the
seller transfers the goods to the buyer.
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neighbors in G will arrive in the current period. At the end of τ = 0, new players

arrive and communicate with present players to obtain information about the state.

2. At τ = 1, there are three phases of play:

• Phase 1: Players enter agreements.

• Phase 2: Players send token transfer messages.

• Phase 3: Players cast votes and incur computational costs if necessary.

Once the third phase ends, players update their internal states and carry out agree-

ments. Bilateral utilities from relationships in G are also realized.

4.5 Blockchain mechanism

In this section, we outline the blockchain mechanism that dictates token transfers

among players, voting strategies, and the actions players take. We then characterize a

value function derived from the actions and state transitions in the mechanism.

Player n’s private information in a state ω consists of a type θn and a set An of accounts

owned. These pieces of private information can be summarized as a type θ̃n = (θn, An).

A player’s internal chain Cn,t is an additional piece of private information that determines

which state that player considers to be the consensus state.

The mechanism we consider is effectively a communication protocol. It takes a col-

lection of reports (θ̃n, Cn) and recommends a strategy to be played at τ = 1: players

are informed as to which agreements they should enter, which messages they should send

contingent on the agreements made, and which votes they should cast contingent on the

messages observed.

Communication is anonymous, so players may submit any collection of reports they

would like. Hence, a player n who knows the true consensus chain C∗ but has tricked n′

into believing the consensus chain is C ′ may truthfully communicate with those who know

the consensus state by reporting (θ̃n, C
∗). Simultaneously, n may submit a different set of

reports to C ′ in order to trick n′ into taking some action. Crucially, communication occurs

only among players who report the same internal chain, so the recommendations made

to players who know the true consensus state do not depend on those made to players

who have been incorrectly informed of the consensus state. That is, players simply ignore

those who disagree with them about the state.

We say the mechanism is implemented when it is incentive-compatible for players

to follow its recommendations and take no other actions (in any subgame). When the

mechanism is implemented, it induces a rule

T ∗(θ̃, ω) = (c, y, ω′),

where θ̃, c, and y represent the type, consumption, and production vectors. We assume

that this rule is anonymous, meaning it is invariant to permutations of identities. From
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this rule, it is possible to derive a value function

Vn(θ̃n, ω) = E
[
un(θ̃, ω)− κv(θ̃, ω) + δVn(θ̃′n, ω

′)
∣∣θn, ω],

where un(θ̃, ω) ≡ u(cn(θ̃, ω), yn(θ̃, ω), θn) is the flow utility obtained by n from consump-

tion and production.

There is also a value function deriving from social connections,

V Sn (θ̃n) =

N∑
n′=1

V Sn,n′(θ̃n) =

N∑
n′=1

E
[
1{n′ ∈ P}zn,n′ + δV Sn,n′(θ̃′n)

∣∣θ̃n].
Note that since the probability of a player’s presence in the current period depends only

on whether that player was present in the previous period, we can write V Sn,n′(θ̃n) =

V Sn,n′(Pn′), where Pn′ is an indicator variable equal to one when n′ was present in the

previous period.

4.6 The Blockchain Trilemma

Our main result is the Blockchain Trilemma. It states that no sequential digital

record-keeping system can simultaneously satisfy three properties: self-sufficiency, no

rent extraction, and no waste of resources. In our context, self-sufficiency means that

the system could operate without the mutually beneficial relationships in the underlying

social network G, no rent extraction means that new users extract the full surplus they

generate, and no waste of resources simply means proof-of-work is unnecessary.

The first important piece of our result is a “Mimicking Lemma” that shows that at

a cost, a single player alone can generate a blockchain that mimics the output produced

on the consensus chain in equilibrium. With this result in hand, we will then provide a

sketch of the Trilemma result.

Mimicking Lemma. Let C = {b0, . . . , bK} be a blockchain created by N players, and

let c∗ be the cumulative proof-of-work cost paid by those players in creating C. A single

player n can create a blockchain identical to C at cost c∗.

Proof. First, player n creates a genesis block b′0 with accounts and holdings identical to

those in b0, so ω(b0) = ω(b′0), except n owns all the accounts corresponding to b′0.

After creating the new genesis, player n should successively create blocks b′k for 1 ≤
k ≤ K in the following manner:

1. Create all accounts that appeared for the first time in block bk.

2. Send messages m̃k identical to those that were sent in block bk.

3. Cast votes vk identical to those cast in bk, creating a block with messages m̃k and

votes vk but with a pointer to block b′k−1.
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All three steps are feasible for n. By an inductive argument, the state implied by b′k−1
is identical to that implied by bk−1, so n has the tokens required to send the messages in

step 2 (since it was feasible for the account holders on the original chain to send those

messages). Then in step 3, n again has the tokens required to cast those votes if necessary.

If the system is instead proof-of-work, n pays a cost κv(b′k) = κv(bk), so the cumulative

cost of casting votes is exactly the same as that paid by the original N players who created

C.

The idea behind the proof is simple. To replicate the blockchain produced by the

other N players, n needs to find a way to send identical messages and cast identical

votes. In this model, players are prevented from sending arbitrary messages and votes

because they do not own certain tokens. However, if n creates a genesis block b′0 and a set

of accounts identical to those in the original genesis b0, he now owns all the tokens on the

alternate blockchain needed to replicate the messages and votes sent in the first block. If

votes require proof-of-work, player n can generate the same set of votes simply by paying

the same cost that the original N players paid. The the state ω(b′1) is identical to ω(b1),

and player n can follow this procedure in each individual block in order to generate an

identical blockchain.

While the mimicking lemma relies on players’ ability to create an entirely new genesis

block that will be believed by others, in reality it would not always be necessary for an

attacker to be able to do that. All that is needed is for an attacker to gain the voting

power necessary to create a chain of blocks identical to the true consensus chain. This

may be an entirely new chain, as in the proof, or it may be a fork of the existing consensus

chain.

In proof-of-work systems, an attacker always has the power to create an identical

chain– he merely needs to acquire enough computing power to compete with the rest

of the network. In proof-of-stake systems, an attacker would need to acquire the tokens

constituting a supermajority of votes in some previous block (as in a long-range attack). If

the current consensus block is bt, it is plausible that the accounts that held a supermajority

of tokens in a block long ago, bt−s, may be nearly empty. An attacker could attempt to

purchase the private keys from the owners of those accounts and gain the ability to create

a mimicking fork starting from bt−s, as in the lemma. In a monopolistic private blockchain

system, however, a fork would be concrete proof of equivocation by the monopolist, so

an attacker would indeed need to present victims with an entirely different blockchain.

The Blockchain Trilemma follows as a consequence of the Mimicking Lemma. First,

we define our concepts of rents, social trust, and resource costs, and then we provide a

statement of the result and a proof sketch.

The rent extracted by a coalition g from a player n′ 6∈ g in state ω when players in g

have types θ̃n is defined as

r∗(g, n′, ω, θ̃) =
∑
n∈g

(
E
[
Vn(θ̃n, ω)

∣∣n′ ∈ P ]− E
[
Vn(θ̃n, ω)

∣∣n′ 6∈ P ]).
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It is simply the value obtained by g when n′ is present minus the value obtained by g

when n′ is absent. When the rent extracted by g is positive, n′ does not capture the full

surplus generated by her presence.14

The social trust of a player n′ in a coalition g is the value of mutually beneficial

relationships for g generated by the presence of n′:

s∗(g, n′, θ) =
∑
n∈g

(
E
[
V Sn,n′

∣∣n′ ∈ P ]− E
[
V Sn,n′

∣∣n′ 6∈ P ]).
The social value is just the expected discounted value of the flow benefits zn,n′ generated

when n′ is present.

The waste of resources c∗ corresponding to a blockchain C is just the sum of the

proof-of-work costs spent on that chain,

c∗(C) =
∑
b∈C

κv(b).

While rents and social trust are defined at the level of relationships between players in a

mechanism, the waste of resources is defined at the level of a ledger.

We now have the definitions required to present our main result.

Blockchain Trilemma. No record-keeping mechanism is implementable without rents,

social trust, or a waste of resources.

Proof. Consider any record-keeping mechanism, and let C∗ be the publicly viewable

blockchain when a player n′ becomes present. We want to show that if the set of social

connections of n′ is the coalition g, then there exists uA > 0 such that

V A ≤ r∗ + s∗ + c∗,

where r∗ and s∗ are the rents and social trust benefits extracted by g from n′, respectively,

and c∗ is the cumulative proof-of-work cost involved in creating blockchain C∗.

By the Mimicking Lemma, when informed at time (t, τ) that n′ will arrive, coalition g

can pay a cost c∗(C∗) to create a blockchain CA identical to C∗ in which one player n0 ∈ g
owns all the accounts and tokens. When n′ arrives, she sees two identical blockchains, C∗

and CA, so she needs additional social information from g to determine which should be

her internal state. The members of g can coordinate to tell n′ that the consensus chain

is CA.

Once n′ has been convinced that the consensus chain is CA, player n0 can simulate

14While rents are not usually defined in this way, it is clear that as the number of players becomes large
(holding the size of g fixed), this surplus is in fact equal to the rent extracted by the coalition g from player
n′. Even if the presence of n′ creates value for the full set of players, it cannot create much value for players
in g. Any value extracted by players in g from n′ must be a result of some transfer of the surplus created by
n′ to g.
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the equilibrium behavior of Ñ players in state ω for any types θ̃A = (θ̃A1 , . . . , θ̃
A
Ñ

) they

might have. At τ = 1, n0 simply submits reports (θ̃Ak , C
A) while n′ submits (θ̃n′ , CA). In

particular, n0 can choose θ̃A to maximize the goods that n′ will produce:

θ̃A = arg max
θ̃

E
[
yn′
(
(θ̃, θ̃n′), ω

)]
.

Player n0 then acts exactly as players of type θ̃Ak would have acted at τ = 1, generating

a set of messages and votes that result in n′ sending him cA = yn′
(
(θ̃, θ̃n′), ω

)
goods.

The coalition g may act towards all other players in the exact same way it would have

if n′ had been absent. Player n′ leaves following the coordinated lie by coalition g, so

both the value derived from the mechanism and the social value enjoyed by g are as if n′

had never been present. However, instead of obtaining the flow value u(c∗, y∗, θ̃n0
) that

would have obtained if n′ had been absent, player n0 gets utility u(c∗ + cA, y∗, θ̃n0
). The

value of this attack to the coalition g is therefore

V A = u(c∗ + cA, y∗, θ̃n0
)− u(c∗, y∗, θ̃n0

) +
∑
n∈g

E
[
Vn(θ̃n, ω) + V Sn (θ̃n)

∣∣n′ 6∈ P ]− c∗
≡ uA +

∑
n∈g

E
[
Vn(θ̃n, ω) + V Sn (θ̃n)

∣∣n′ 6∈ P ]− c∗.
Here the value uA is effectively the value of goods stolen by g from n′.

By contrast, if g had not deviated, players would have obtained the value

V ∗ =
∑
n∈g

E
[
Vn(θ̃n, ω) + V Sn (θ̃n)

∣∣n ∈ P ].
Coalition g pays two costs for deceiving n′. First, it pays the up-front computational

cost c∗ to mimic the true blockchain. Second, it loses the value it would have derived

from the presence of n′, both through the mechanism and through mutually beneficial

relationships between n′ and players in g.

The relevant incentive compatibility condition V A ≤ V ∗ then clearly reduces to

uA ≤ r∗ + s∗ + c∗,

as desired.

The Trilemma can be understood through a simple example. Say a new user n′ has

social contacts in coalition g. The players in g can create a new blockchain that mimics

the behavior of the consensus chain, so n′ will have to ask players in g which is the true

consensus chain. Players in g can lie and then use their anonymous accounts on the

fraudulent chain they created to convince n′ to deliver some goods to them.

The coalition g faces both ex-ante and ex-post costs for engaging in this deviation.
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Ex-ante, the members of the coalition must expend computational resources to create

the mimicking blockchain if a proof-of-work consensus algorithm is used. Ex-post, player

n′ will leave the system after detecting the deviation by g, so players in g suffer both

because n′ may have provided them with some rents by joining the network and because

any social trust relationships with n′ break down. Hence, the sum of these three costs

must be sufficient to dissuade players in g from initially stealing goods from n′.

5 Discussion

In this section, we present an informal discussion of how our benchmark model could be

extended to speak to other important blockchain-related questions. We outline the poten-

tial benefits of decentralized record-keeping and comment on the viability of blockchains

for which enforcement of ownership rights is necessary.

5.1 The benefits of decentralization

While our model is well-suited to highlighting the tradeoffs between the different

ways to incentivize honest record-keeping, it is quite general and thus does not make

sharp predictions on other issues. In particular, the benchmark model is silent on the

specific mechanisms that may make decentralization worthwhile.

One of the original questions that inspired the design of decentralized record-keeping

systems was whether the rents extracted by traditional centralized record-keepers could

somehow be eliminated. In the view of many blockchain proponents, decentralized con-

sensus algorithms are useful because they prevent one entity from being the ultimate

arbiter of which transactions were included in the ledger. The intuition underlying this

view is that competition among multiple record-keepers should prevent any one of them

from extorting users by demanding high transaction fees. Our model indeed implies that

social trust or PoW resource costs can eliminate the need for rents, but it does not provide

an explicit channel by which these rents arise in centralized systems and are eliminated

in decentralized systems.

A simple reputation-based mechanism succeeds in generating rents in the centralized

case that dissipate in the decentralized case. Suppose that players exchange one type of

token for goods, and that a transaction fee compensating record-keepers with tokens is

included in each transaction message, so that record-keepers are paid only if the trans-

action is included in the ledger. In addition to their fundamental types, players also

observe the entire history of transactions (and thus fees) included in the ledger. A his-

tory in which no transaction with a fee less than τ has been included is denoted by S (for

strong reputation), and one in which some transaction with a fee less than τ has been

included is denoted by W (for weak). Suppose that players will submit transactions with

fees less than τ only if they believe these transactions will be added to the ledger, and

that players expect all transactions to be accepted after a history W .
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A single centralized record-keeper may find it beneficial to maintain its reputation by

always rejecting transactions with low fees. By doing so, it potentially passes up some

transactions with low fees, knowing that accepting a low-fee transaction even once will

result in a transition to W and low fees for all future transactions. That is, the fact that

the centralized record-keeper extracts all fees provides a strong incentive to maintain

the status quo. On the other hand, with a decentralized group of record-keepers, such

incentives are minimal. In particular, under PoW systems, record-keepers should break

even. With a PoS system, the transaction fees distributed to each individual record-keeper

would be small. Hence, decentralized record-keepers would not pass up an opportunity

to accept and be compensated for transactions with low fees even if doing so resulted in

lower fees going forward.

This simple example illustrates a broader point. There is a distinction between getting

the current state of the blockchain and updating the state. Decentralization has important

implications for both functions. In general, the consensus algorithm provides a new user

with some information as to the new state, and if that information is incomplete, the user

will have to obtain more precise information from social connections. The PoW consensus

algorithm provides new users with all the information they need, whereas PoS does not

always do so. However, the two decentralized consensus algorithms have similar impli-

cations for how the state is updated. Neither gives high profits to any individual agent,

and thus both prevent record-keepers from internalizing the destruction of “reputation”

if they accept transactions with low fees. Hence, decentralization both determines how

new users acquire the state and, under some circumstances, can prevent users from being

extorted by high fees. For a more detailed explanation of the competitive implications of

decentralized record-keeping, see Huberman, Leshno, and Moallemi (2019).

5.2 Enforcement

In our model, the tokens traded on the blockchain are useful only to the extent that

others accept them in exchange. They do not represent claims to physical or financial

assets. In reality, there have been several proposals for blockchains on which physical

assets such as houses or automobiles can be traded, or on which companies could issue

securities that constitute promises to deliver certain cash flows to the owner. The dif-

ference between these types of blockchains and the ones we consider is that when tokens

represent legally binding claims, there must be some entity willing to enforce those claims.

There is an important distinction between ownership and possession. Blockchains can

record transfers of ownership of a digital asset, but an enforcing entity must ensure that

the owner of a digital claim can come to be in possession of the financial or physical

asset underlying that claim. In most situations, the enforcer would be the relevant legal

authority.

Power ultimately lies with the enforcer. To see this point clearly, consider a simple

example of a blockchain on which each token represents ownership of a particular house.
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Suppose that the blockchain forks into two chains, C1 and C2. On C1, Alice owns house

H in one of her accounts, whereas on C2, Bob owns H. Then who is actually able to

live in the house? The enforcer is endowed with the power to decide that one of the

two has the legal right to live in the house and may evict the other. Then the enforcer

effectively decides which branch of the fork should be considered the true state. There

may be rules governing how the enforcer should act, but these rules must be enforced by

a legal authority as well. Then, to ensure that the enforcer does not act with impunity,

there must be some way to punish the enforcer through the blockchain mechanism (e.g.,

by decreasing the benefits it derives from the mechanism) or externally (e.g., through

elections).

These considerations could be made explicit by extending our model to incorporate

physical assets with digital identities in the form of tokens traded on the blockchain. There

would be an additional player, called an enforcer, who would be tasked with allocating

the physical assets. Without the enforcer’s assistance, players would have no way of

ensuring that their assets are not stolen by others. The mechanism would dictate how

the enforcer should allocate assets based on the state of the blockchain. Importantly, in

case of a fork, the enforcer would have to make a decision as to which branch of the fork

to honor. Of course, the enforcer would need the correct incentives to make the right

decision. The Trilemma indicates that there are two options: the enforcer may directly

extract rents from the mechanism in some way, or there may be external arrangements

that permit others to punish the enforcer (what we call “social trust” in our benchmark

model). Realistically, a legal authority may enjoy private benefits from its position, so any

mechanism that allows for the removal of that authority would constitute an appropriate

punishment option. As long as the enforcer has the correct incentives to follow the rules,

all other players may behave as in the benchmark model.

In this modification of our model, the enforcer has full power to decide the current

state. That is, the enforcer may ultimately decide the allocation of physical assets in each

period. If the enforcer behaves, it is only because it has the correct incentives to do so.

This observation has several important implications. First, if a new user needs to acquire

information about the current state from social connections in G, it is enough for that new

user to ask the enforcer only. The enforcer decides which physical assets will be allocated

to the new user, so any reports that conflict with the enforcer’s are irrelevant for that user.

Second, it may be efficient to bundle the responsibility of record-keeping (i.e., updating

the ledger) with enforcement. The enforcer must enjoy some rents or social trust, so it

may be that its incentives are sufficient to ensure it keeps records honestly as well. This

type of bundling could be beneficial, for example, if allowing another record-keeper to

extract rents would create inefficiencies. Nevertheless, there may still be some benefits of

decentralized record-keeping even when there is a need for centralized enforcement. As

discussed in the previous subsection, decentralization may be an effective tool to lower

the transaction fees paid by participants in the mechanism.
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6 Conclusion

The fundamental question that inspired the invention of public blockchains is whether

consensus can be achieved without trust in a single entity. The blockchain trilemma

answers this question: it is possible to replace trust in a single entity (generated by

rents) either by imposing resource costs or by relying on external sources of trust among

individuals. Proof-of-work blockchains take the former approach. It is possible for a new

user who knows nothing other than the blockchain protocol to read the ledger, deduce

the current state, and use the blockchain-based mechanism with the confidence that

records will be kept honestly. Proof-of-stake blockchains take a less radical approach,

achieving decentralization by changing the structure of trust required for the system to

operate correctly. A new user must rely on external trust with an existing user in order

to acquire the state, but there is no need for all new users to share a common trusted

source. Instead, users may choose who they trust to provide that basic information. The

trilemma implies that these are, in fact, essentially the only possibilities.

We leave to future research the question of which types of ledgers should be central-

ized and which should be distributed. The benefits of decentralization come from the

elimination of rents, potentially above and beyond the minimum level of rents required to

ensure honest reporting. Our model is too general to make specific predictions relating

the record-keeping protocol to rent extraction, but it seems natural that the free entry

of record-keepers permitted by decentralized blockchains should prevent the type of col-

lusion required to extract large fees from users. We also clarify the distinction between

ownership, which can be recorded on a blockchain, and possession, which must be en-

forced by a trusted entity. When there is a need for a trusted entity regardless of whether

record-keeping is centralized or not, it may be more efficient to bundle record-keeping

with enforcement.
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