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Abstract

The use of Internet of Things devices is an integral part of our mod-
ern society. Communication with internet of things devices is secured
with asymmetric key encryption that is handled by the centralized
certificate authority infrastructure. The emerging Blockchain technol-
ogy now provides a safe way to change ownership of digital resources
through a decentralized system that challenges the traditional central-
ized view of trust in digital systems. This project studies the security
of building public key infrastructures and access communication pro-
tocols on Blockchain technology for IoT devices. An informal cryp-
tographic analysis that used proof by contradiction showed that it is
cryptographically safe to build Blockchain based Public Key Infras-
tructures. The analysed Blockchain based public key infrastructure
was implemented with smart contracts and tested on the Ethereum
platform along with a dynamic access control protocol ensuring dy-
namic authentication and distributed logging. The project also con-
cluded that advancements in the software clients of nodes are required
before Blockchain can be used in Internet of Things devices. This
is due to the high storage demands required by currently available
nodes.
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Sammanfattning

Användandet av ”Internet of Things”-enheter är en integral del av
vårt moderna samhälle. Kommunikation med ”Internet of Things”-
enheter är säkras genom asymmetrisk nyckelkryptering som hante-
ras i ett centraliserat system administrerat av certifieringsmyndighe-
ter. Den banbrytande Blockchain-tekniken erbjuder nu ett säkert sätt
att byta ägandeskap av digitala resurser i ett decentraliserat system,
och utmanar den traditionella synen på tillit i digitala system. Det här
projektet studerar säkerheten i att bygga en infrastruktur för publik
nyckeldistribuering samt protokoll för accesskontrollering med hjälp
av Blockchain-teknik för ”Internet of Things”-enheter. Genom en in-
formell kryptografisk analys och metoden motsägelsebevis visades det
att det är kryptografiskt säkert att bygga infrastrukturer för publik
nyckeldistribuering på Blockchain-teknik. En Blockchain-baserad in-
frastruktur för public nyckeldistribuering implementerades med smar-
ta kontrakt och testades på Ethereum-plattformen tillsammans med
ett protokoll för dynamisk accesskontroll som säkerställde dynamisk
autentisering och distribuerad loggning. Projektet kom även fram till
att ny mjukvara för noder behövs för att tekniken ska bli applicerbar
i ”Internet of Things”-enheter. Detta eftersom nuvarande noder behö-
ver stort datautrymme för att fungera.
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Chapter 1

Introduction

The Internet of Things (IoT) is commonly referred to as embedded
electronic devices that have the ability to communicate over a net-
work interface. While some devices can communicate directly to the
Internet, others have to relay their traffic through a local hub. The pri-
mary goals of having network interfaces on embedded devices are to
enable remote management, information gathering and software up-
dates. IoT is an integral part of the modern society and enables remote
access to the embedded devices that automate our infrastructure. Hy-
dropower plants, indoor climate control systems and automated cars,
to name a few examples, all depend on embedded devices with net-
work interfaces. In order for the safe use of embedded devices with
network interfaces, access and communication with them need to be
secure.

Public key encryption enables safe communication given access
to the public key of the intended recipient. In an ideal world, two
parties would share their public keys directly with each other under
a guarantee that their keys are not tampered with. This is not the
case when a new connection is established through a shared network.
Through a shared network an adversary might intercept and change
non-authenticated or encrypted messages. Since the two parties might
have never communicated before, this leaves them no way of estab-
lishing a secure connection [40]. Aside from manually distributing
keys to the devices, the use of a Public Key Infrastructure (PKI) is a
solution to this problem.

1
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1.1 Public Key Infrastructure

The purpose of a PKI is to distribute and validate the authenticity and
integrity of public keys. In a PKI some form of central authority is
established that ensures trust for the public keys in the network. The
central authority is then used to verify the integrity and authenticity
of the public keys. There are two models traditionally used when con-
structing the trusted central authority: Certificate Authority (CA) and
Web of Trust (WoT) [25].

1.1.1 Certificate Authorities

The CA model uses multiple parts to ensure trust for the public keys
of the network. New users in the network submit their public keys
for registration to a Registration Authority (RA). The RA verifies the
identity of the user and its public key. After approval from the RA
a CA issues a digital certificate ensuring the connection between the
user and the public key. The certificate includes among other things
the identity of the user and the public key and is signed with the cer-
tificate authorities private key. This makes the certificate verifiable for
any user holding the CA public key. The certificates are also stored in
a secure central directory that can be queried for certificates of other
users. In order for the CA method to be secure two assumptions need
to be true:

1. The public key of the CA is obtained in a secure way [25].

2. The administration of the CA is trusted [14].

1.1.2 Web of Trust

In the WoT model, users of the network themselves sign other users’
public keys ensuring the authenticity of the connection between a user
and a public key. A user can then choose to trust other users signed
public keys in order to grow its sphere of trusted public keys. This cre-
ates multiple WoTs where the trusted users together act as the central
authority that verifies public keys. Compared to the CA method this
is a decentralized model that does not need trust to be placed under a
central administration [25].
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1.1.3 Challenges with current PKI structures

With a PKI structure based on the CA model, a single point of trust is
created in the network. This forces the users in the network to place
trust in the administration of the CA. A single point of failure is also
created where a compromise of the CA would result in a complete
compromise of the network [14].

The WoT model mitigates the single point of failure by distributing
trust in the network and successfully removes the need for a trusted
central administration. The WoT instead has a significant vulnerability
in its spread of trust in the network as each user becomes a possible
point of attack. The WoT model also makes it difficult for new users
to join the network as this typically involves distributing their keys
through another secure way, for example meeting in person.

To solve both of the inherent problems of traditional PKI models,
new solutions based on the Blockchain technology have emerged [22].

1.2 Blockchain

Blockchain is a technology that enables permanent and verifiable trans-
fer of ownership for digital resources in a decentralized system. It is
built upon a distributed ledger that records all transactions between
parties in the system. The ledger consists of blocks typically contain-
ing transaction data, a hash pointer to the previous block that is secure
by cryptography and a time stamp. The transactions are validated,
and new blocks are calculated distributed through a peer to peer net-
work which makes it difficult to manipulate the chain. Blockchains are
supposedly secure by design and solve the problem of double spend-
ing without the need of a trusted authority or a central server. The first
Blockchain was implemented in the Bitcoin cryptocurrency in 2009 af-
ter its conception by the anonymous person or group Satoshi Nakamoto
in 2008 [32].

Today Blockchain is mainly used for cryptocurrencies. However,
there are high expectations that the technology can be used in other
fields. One such field is communication for IoT devices. Multiple stud-
ies suggest the use of smart contracts, explained in section 2.5.5, on
Blockchain platforms dedicated for the use of them such as Ethereum,
explained in section 2.6, for blockchain based PKIs [17] [27].
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1.2.1 Additional properties

A Blockchain based PKI solution is further motivated by the predicted
future challenges facing the development of IoT. A recent gap study
draws the conclusion that a dedicated marketplace and simple ma-
chine to machine communication is needed for the IoT platform to
reach its full potential [31]. These conclusions are also reflected in a
newsletter published by the IEEE but with a greater focus on the need
for a secure communication standard [12].

1.2.2 State of the art

What is generally viewed as the first Blockchain based PKI was the
CertCoin presented 2014 [22]. Since then multiple PKI approaches
based on Blockchain technology and smart contracts have been de-
veloped. Modern commercial examples can be seen in emercoin [2]
or beame.io [3], while scientific examples can be seen in the research
papers Dynamic Access Control Policy based on Blockchain and Machine
Learning for the Internet of Things [34], Smart Contract-Based Access Con-
trol for the Internet of Things [43] and SCPKI: A Smart Contract-based PKI
and Identity System [13]. The basic ideas behind blockchain based key
distribution are to spread public keys through the blockchain ledger.

1.2.3 CertCoin key distribution

The goal of CertCoin is to maintain track of domains and their associ-
ated public keys through the blockchain ledger. When a new domain
is registered in CertCoin, a transaction is made that contains the signed
information about two public keys associated with the new site. The
first "public" key is used to authenticate the website while the second
"offline" key is used to sign or revoke new keys. If a new key is created
for the domain, it is signed with the old key of the same type. This
way, both valid keys can be traced back to the initial registration of
the domain. To look up or verify the public key pk of a domain d the
following steps are taken [22]:

• Check that the domain d is registered exactly once.

• Check that all signatures in subsequent updates to the public key
corresponding to d verify with d’s previous public key.
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• Find the last updated public key corresponding to d, and either
check that it corresponds to pk or store it.

• Check that the user claiming to be the owner of domain d knows
the secret key sk corresponding to pk using zero-knowledge proof
of knowledge.

Even though multiple implementations have been developed from
the method, there does not exist enough research studying the security
of the approach needed to ensure trust in the model.

1.3 Project Goals

To build any PKI based on Blockchain technology, it must first be
proven that there exists a safe way to distribute public keys in a Blockchain
ledger. More specifically this involves adding, storing and reading
public keys from a Blockchain ledger. The first goal of the project is to
perform an informal cryptographic analysis and implement a simple
Blockchain PKI to answer this question, this is referred to as Project
Goal 1 (PG1). Based on the Blockchain PKI, the second goal of the
project is to develop a simple proof of concept protocol that inherently
has dynamic authentication, i.e. devices should be able to connect di-
rectly without going through a cloud service, and distributed logging,
i.e. all data transactions are recorded and distributed to all parties, this
is referred to as Project Goal 2 (PG2).

1.3.1 Research Question

Is it cryptographically safe to distribute public keys in public Blockchain
ledgers?

1.3.2 Scope

In a typical setting, a cryptosystem is often evaluated on the basis of
if a secret or private key of the system can be compromised by an ad-
versary. This would lead to a total breakdown as the adversary would
then be able to decrypt any message sent. There are however other
attacks to cryptosystems that do not involve retrieving the secret key,
such as only gaining some knowledge from the messages that can be
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useful for the adversary. This involves being able to decrypt some
messages but not all or being able to recognise ciphertexts from ran-
dom strings. This is called semantic security.

Since the scope of the report is limited by the time limitations re-
garding a master thesis project, and because of the complexity of prov-
ing semantic security and probabilistic attacks, these will not be con-
sidered in the report. Instead, all cryptographic actions will be viewed
as secure and atomic given their underlying assumptions hold. The
report will only use one cryptographic protocol model and deduc-
tive reasoning when answering the research question. Only crypto-
graphic safety with currently available technology will be considered,
this means that quantum computing or other emerging technologies
will not be regarded.

Denial of Service (DoS) attacks is a common form of adversary tac-
tic that involves cutting of a devices network connection. Because of
the complexity of protecting against DoS attacks and the time limita-
tion regarding the project this will not be included in the scope of the
project.

1.4 Scenario

In a newly constructed building, there are temperature sensors built
into the walls. These devices are IoT devices that can be queried for
the temperature of the room. The devices are referred to as producers
since they produce data. When a new family moves into the building,
they bring their own smart hub responsible for controlling the heat-
ing of the home. In order for the smart hub to efficiently control the
heating, it will want to query the sensors of the house of their tem-
perature reading. The smart hub is referred to as a consumer since
it consumes the data the producers produce. The devices have never
communicated before and have different vendors.

All devices are directly connected to the same Ethereum network
with a private account. The account was created in a secure way and
the device is the only holder of the account key. Once a device has suc-
cessfully registered to the network, it is publicly listed. For example,
the temperature sensors send their account information to the owner
and the accounts are listed on the owner’s website. In this environ-
ment, the integrity of any device is assured and there exists no way to
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extract information from them except from the communication proto-
col. That is, all secrets stored on the devices are secured. Three use
cases are derived from the scenario.

1. The consumer wants to read sensor data from a producer.

2. Owner of the producer wants to monitor and audit number of
data requests from producer.

3. The producer wants to be able to accept multiple consecutive
connection requests from previously unknown consumers.

Therefore, any communication protocol suggested for this environ-
ment should fulfil the requirements of the use cases.



Chapter 2

Theoretical framework

The security of the Blockchain technology relies on a couple of well-
established security tools and principles. In order to perform a cryp-
tographic analysis of distributing public keys with Blockchain, a basic
understanding for the security of hash functions and public key en-
cryption is needed. Then a theoretical background is given for Blockchain,
Ethereum, cryptographic protocol analysis and Media Access Control
(MAC) addresses.

2.1 Secure hash function

An efficient way to ensure data integrity is to identify the data with
a unique fingerprint. The hash function is constructed to solve this
problem. A hash function is a one-way function, f(x) = y, that takes
data of any length, x, and has a seemingly random but unique map-
ping to a specific fingerprint hash value, y. For a hash function to be
regarded secure, three properties need to be ensured [40]:

1. Pre-image resistance - Given a fingerprint y, it should be hard to
find data x so that f(x) = y.

2. Second pre-image resistance - Given data x, it should be hard to
find another data x′ where x 6= x′ so that f(x) = f(x′).

3. Collision resistance - Given the hash function f() it should be
hard to find two different datasets x, x′ where x 6= x′ such that
f(x) = f(x′).

8
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The produced fingerprint hash value is often of a fixed length. The
common so far secure hash function, SHA-256, always produces fin-
gerprint hash values of length 256 bits [40]. By producing a hash value
of length 256 bits, 2256 unique mappings from data to fingerprint hash
values can be created. This can be compared to the approximate num-
ber of 2272 atoms in the known, observable universe [23].

2.2 Security in cryptography

Unconditional security is never guaranteed in any useful cryptographic
system. A useful cryptosystem should provide a way for two parties to
communicate over a public channel without an adversary being able
to understand the information being sent. There are often multiple
assumptions that are required to assert that a cryptosystem is secure
[33]. To successfully analyse any cryptosystem, it is essential to un-
derstand the fundamental assumptions being made and their impacts
on the system. Following are some general assumptions used when
analysing the security of cryptosystems.

2.2.1 Computational power

An underlying assumption is that an attacker never has unconditional
computational power. If for example an attacker was given unlimited
time and computational power, the total key space of every key would
eventually be able to be brute force calculated. Therefore, the running
time for accepted algorithms of attacks is often polynomial [40].

2.2.2 Computationally infeasible problems

Given polynomial limitation for running time, most cryptographic sys-
tems rely on the computational difficulty of the two following prob-
lems:

• Prime integer factorization - Given integer n, find two prime
factors p, q such that p ∗ q = n.

• Discrete Logarithm Problem (DLP) - Given a multiplicative group
(G, ·), an element α ∈ G having order n, and an element β ∈ 〈α〉,
calculate integer a where 0 ≤ a ≤ n− 1 such that αa = β.



10 CHAPTER 2. THEORETICAL FRAMEWORK

So far, there exists no known polynomial algorithm to solve these
problems running on classical computers. Given that large integers are
used, this makes them computationally infeasible to solve. However,
Shor’s algorithm is a polynomial algorithm for quantum computers
proposed already 1994 that solves both the problems [38]. But since the
technology is still not publicly available quantum computing solutions
are generally disregarded.

2.3 Public key encryption

The purpose of public key encryption is to enable two parties that have
never communicated before to establish a secure connection over an
insecure communication channel. The first conceptualisation of this
was the Diffie-Hellman key exchange protocol that was introduced in
1976 [20]. This symmetric key encryption algorithm enabled two par-
ties to establish a shared secret key over an insecure channel. How-
ever, the first true asymmetric key encryption algorithm, RSA, was
published 1978 [37]. Elliptic Curve Cryptography (ECC) is another
asymmetric key encryption first invented 1985 that is widely used in
many modern systems because of its efficiency [30].

In an asymmetric cryptosystem, a user creates two keys, one public
key and one private key. The two keys are connected so that anything
encrypted with the public key can only be decrypted by the private
key and vice versa. The user can then publish its public key and any
party that wants to send an encrypted message can use it for encryp-
tion. The party is then ensured that only the user will be able to de-
crypt the message.

This builds on the basic idea of using a one-way function with a
trapdoor. The one-way function creates a representation of a message
that seems purely random. The representation will not give any infor-
mation to an adversary about what the message was about. The mes-
sage can only be restored by using a linked key, the backdoor. If an
adversary does not have the correct key it should be computationally
infeasible to restore the original message, while restoring the message
with the correct key should be computationally easy.
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2.3.1 Security of the RSA encryption scheme

For the RSA encryption scheme, the public and private keys are cre-
ated so that the only known way to retrieve the private key from the
public key is to factor a large integer. Therefore, the security of the
RSA encryption scheme relies on the first stated assumption for com-
putationally infeasible problems, that factoring large prime integers is
hard [26].

2.3.2 Security of Elliptic Curve Cryptography

In ECC a group of points on an elliptic curve over a finite field replace
the subgroup of Z∗p [30]. Therefore, ECC relies on the same compu-
tational infeasibility of the DLP except in an elliptic curve finite field,
this is referred to as the Elliptic Curve Discrete Logarithm Problem
(ECDLP). ECDLP is considered computationally harder than the DLP
which enables the use of smaller keys while still providing the same
level of security [24]. At the time the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) was accepted as a standard by ANSI, IEEE
and NIST (1999-2000) [24] no known polynomial algorithm existed for
solving ECDLP even including speculations regarding quantum com-
puters. It has since been proven that shor’s algoritm can be adjusted
to solve also ECDLP with additional estimations of hardware require-
ments [28].

2.4 Digital signatures

Digital signatures are used to ensure the authenticity of a document or
a message. The signature serves as a proof of correctness and authen-
ticity for any intended reader of the document. In order to do this a
digital signature has to ensure the three following properties:

1. Authentication - A valid signature can only have been produced
by the sender.

2. Non-repudiation - Once a digital message is signed and pub-
lished, the sender cannot deny having signed the message.

3. Integrity - The message has not been altered after it was signed
and send.
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The digital signature also has to be easily verified by a third party.
The first formally accepted digital signature scheme to achieved legal
legitimacy was the Digital Signature Algorithm (DSA) issued by the
National Institute of standards and technology 1991 [39]. DSA used
properties from secure hash functions and public key encryption to
generate a private key for signing and a public key for verification.
Simplified, DSA encrypts a fingerprint of the document with a private
key. Any user holding the public key can then themselves generate
a fingerprint for the document and verify that this is the same as the
fingerprint encrypted with the document. Since the introduction of
DSA new methods has been developed. A conventional method for
digital signatures used today is the ECDSA based on Elliptic Curve
cryptography.

2.4.1 Elliptic Curve Digital Signature Algorithm

ECDSA is a Digital Signature Algorithm which uses ECC as a basis.
The description of the protocol is outside the scope of the report, in-
stead the properties of it are presented. With ECDSA we have a private
key used for signing and a public key used for verification. ECDSA
utilises fingerprint hashes together with properties of its keys to en-
sure that the three required properties of a digital signature hold.

Authentication is ensured by the uniqueness of the signature gen-
erated by the private key. Only the holder of the private key can create
a valid signature verifiable with the public key. Non-repudiation is
ensured by the binding of the private key to an entity. Any signature
produced by the private key has legal binding, therefore it is the best
interest of the owner of the private key to keep it hidden. Integrity is
ensured by the fingerprint of the document together with properties
of the key. If the document has been changed since it was signed, the
signature will prove invalid.

The security of ECDSA relies on the computational infeasibility of
ECDLP. The ECDSA is defined by what properties the elliptic curve
it uses has. For example, Ethereum uses the elliptic curve secp256k1
[1]. The choice of the elliptic curve is critical for the security of the
algorithm. If the properties of the elliptic curve are badly chosen it
might be trivial to solve the ECDLP problem. There have also been
instances where NIST recommended elliptic curves might have been
deliberately constructed containing backdoors [15].
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2.5 Blockchain technology

The Blockchain can be viewed as a state transition system. The states
are defined by accounts holding currency or information. To retrieve
the full state of the system one has to view all the accounts of the sys-
tem. In all state transition systems, there needs to be a way to change
the state. To change state in Blockchain technology transactions are
used to transfer currency or information.

2.5.1 Transactions

In Blockchain the currency, referred to as coin, is defined as a chain
of digital signatures. Using public key encryption, the ownership of
the coin can be transferred. This is done by digitally signing a hash
consisting of the previous transaction together with the public key of
the next owner and adding these to the end of the coin. With trans-
actions some Blockchain systems allow additional information to be
appended. By the properties of digital signatures, two important fea-
tures are ensured. First, it is easy for the receiver of a coin to verify the
signatures to verify the chain of ownership. Second, only the previous
owner of the coin can produce the correct signature to send it forward.
This prevents unauthorised state changes [32].

However, in order to ensure that a coin is not double spent, i.e. sent
to two receivers at the same time, the transactions need to be atomic.
This is ensured by the concept of proof of work and first to file.

2.5.2 Proof of work

Proof of work is an addition to the timestamp server method. In a
timestamp server, a collection of data creates a block. The block is
then hashed with the previous timestamp, forming a chain, to create
a new timestamp. The timestamp is then published. Each timestamp
reinforces the one before it and ensures a certain order for the data.
The data must have existed at the time of the timestamp to get into
the hash. The data will be included in the blocks depending on the
time they reach the timestamp server. This is referred to as first to file.
This ensures a single line of history for the data since the order of data
is important to produce the same hash. Therefore, all the data in the
block is locked into place once a new timestamp is created [29].
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The timestamp method works for a centralized network, but in or-
der to achieve a distributed state transition system, some modification
is needed. The calculation needs to be able to be done at any point in
the network at any time. This is solved by creating a challenge with a
reward for each new block. The block is extended with a nonce that
the block creator can choose. The challenge is to find a nonce that
produces a block hash with a certain amount of leading zeros. The
challenge can create the following behaviour:

1. New transactions are broadcasted to the network.

2. Each node collects and verifies transactions (verifying the trail of
hashes) in a block.

3. Each node tries to find a hash for its block with a certain amount
of leading zeros.

4. When a nonce is found the new block is broadcasted to the net-
work.

5. Network accepts the block only if the included transactions are
valid.

6. Nodes express their acceptance by working on creating the next
block in the chain based on the accepted block as the previous
hash.

The speed of block production can then be adjusted by changing
the difficulty on the challenge, where the average computations needed
are exponential to the number of leading zeros.

The proof of work also solves the problem of determining what
line of history that is correct. This is simply done by always viewing
the longest chain as the correct representation of history. The longest
chain produced by the network will have most computational work in
it. The nodes that calculate the proof of work are commonly referred
to as miners and producing new blocks is referred to as mining. The
probability of creating and propagating multiple correct blocks at the
same time is at around 1.78% [19]. Therefore, the risk of maintaining
multiple correct chains of the Blockchain history, both chains grow at
the rate, is practically negligible.
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2.5.3 Incentive

There are two main incentives for miners to calculate the new blocks.
The first is a special transaction included in each block that starts a new
coin. This is used to initially distribute coins into circulation and the
coin is rewarded to the creator of the block. The second is transaction
fees that can be paid to the miner. If the output value of a transaction
is less than its input, the difference is added to the miner’s account.
With these incentives, nodes will try to be first when calculating new
blocks. This causes the network to quickly agree on a single line of
history.

2.5.4 Security of Blockchain

In the cryptocurrency Blockchain, public key encryption prevents coin
theft or the creation of false transactions and hashes in the proof of
work create a single line of history preventing double spending. The
state and correctness of the Blockchain is thus secured. Therefore, the
only attack left for an adversary is to change its own transactions. An
attack of this kind can be described with the following scenario:

1. Adversary A orders something from B and pays with a crypto
currency.

2. B verifies that the transaction from A has been processed in the
Blockchain and sends the order.

3. Once the order is sent, A calculates an alternative chain that does
not include A’s transaction to B.

4. A’s alternative chain surpasses the honest chain so that it is ac-
cepted as the correct representation of history and the transaction
thus never happened.

5. A receives an order that B never gets paid for.

The race for the adversary to surpass the honest chain can be char-
acterised as a Binomial Random Walk. The probability of an attacker
catching up is said to be analogous to a Gambler’s Ruin problem [32].
The probability can be calculated as follows:
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p = probability that an honest node finds the next block
q = probability that the attacker finds the next block
qz = probability that the attacker will ever catch up from z blocks behind

qz =

{
1 if p ≤ q

( q
p
)z if p > q

(2.1)

Equation 2.1 shows that given at least 51% of the computational
power in the network are honest nodes, the probability that this attack
succeeds drops exponentially with the number of blocks the adversary
is behind. From this equation, the legitimacy of the transaction can be
ensured to B by creating a lead for the honest chain. Without knowing
the amount of progress the attacker has made since the transaction was
registered, the attacker’s potential progress is a Poisson distribution
with an expected value described by equation 2.2.

λ = z
q

p
(2.2)

To get the probability of the attacker catching up, the Poisson den-
sity for each amount of progress is multiplied by the probability of
catching up from that point. This can be calculated by equation 2.3
where k represents the number of blocks the adversary already has
calculated:

∞∑
k=0

λke−λ

k!
∗

{
( q
p
)z−k if k ≤ z

1 if k > z
(2.3)

It has been proven that the probability drops off exponentially with
z [32]. Equation 2.3 can be used by B to calculate a comfortable prob-
ability before accepting a transaction as final.

2.5.5 Smart contracts

Smart contracts are a concept of ideas proposed already 1994 [41].
Smart contracts enable enforcement of agreement through the Blockchain
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by having parties admit self-executing code to the ledger that works
on an if else premise. The contracts are distributed throughout the net-
work, so they inherit the properties of transactions on the Blockchain.
This makes them reliable and immutable. The contracts are thus visi-
ble and verifiable by all parties.

Users interact with smart contracts by performing transactions with
function calls towards them. The miner verifies that the transactions
are valid try to execute the function call towards the smart contract.
The status of the execution is recorded in along with the transaction
in the mined block. If the execution is successful, function calls could
cause a state transition in the system. If not, an error was encountered
mining the transaction and no changes were made to the state. Either
way, the transaction is included in the Blockchain and removed from
circulation so that miners won’t process it again.

This technology is viewed as one of the cornerstones for Blockchains
use in IoT communication. Ethereum is a cryptocurrency platform
specifically designed with smart contracts in mind.

2.6 Ethereum

Ethereum is a cryptocurrency platform powered by Blockchain tech-
nology with a built in turing-complete programming language. Ether
is the cryptocurrency whose Blockchain is generated by the Ethereum
platform. By differentiating the platform from the cryptocurrency, it
more resembles a distributed computing platform than just a pure
cryptocurrency platform. The platform supports the implementation
of advanced smart contracts and pure decentralized applications for-
matted to fit any purpose. Accounts operating on the Ethereum plat-
form consist of both externally owned accounts, controlled by public
and private keys and contract accounts, controlled by their contract
code [16]. The "first class citizen" property of Ethereum states that ex-
ternally owned accounts and contract accounts have equivalent power.

In Ethereum all accounts are said to represent a state and transac-
tions between accounts represent state transitions. Since the first to
file attribute hold for transactions the system can be viewed as a state
transition machine where each transaction transforms the state of the
Blockchain to the next. At any given time, all transactions combined
therefore give the current state for the system. The platform also pro-



18 CHAPTER 2. THEORETICAL FRAMEWORK

vides an open sandbox environment which makes it suitable for re-
search purposes.

2.6.1 Ethereum virtual machine

The Ethereum Virtual Machine (EVM) is where contracts are run in
Ethereum. Contract accounts cannot send transactions by themselves
but can launch them as a response to a transaction. Therefore, a trans-
action from an externally owned account is required to start a sequence
of contract executions. The contract code execution is performed by
the miner when it’s mining a new block. When contracts send trans-
actions to other contracts this is referred to as message calls. Message
calls can only exist in the runtime environment. Therefore, the result
of all contract calls caused by an externally owned accounts transac-
tion are mined in the same block. The order of the execution of the
transactions are recorded in the block and indexed. The order of the
transactions prevents data races from happening in the EVM. The re-
sulting state changes together with the indexed transactions are then
included in the next block mined by the miner.

Upon receiving the new block, other nodes of the system can re-
trace the miner’s transaction order and execute the contract code. If
the block is accepted by the other nodes, a consensus has been reached
about the contract codes execution and results. Therefore, the consen-
sus of the execution of the virtual machine is reached by the same way
as the other transactions in the system. Security regarding the execu-
tion of a contract is assured by the trailing child blocks after the block
the contract execution transaction is included in, described in section
2.5.4.

Return values from functions of smart contracts that invoke state
transitions can only be accessed by contract accounts. If externally
owned accounts wish to retrieve a return value for functions that in-
voke state transitions, event logs are used. Event logs are distributed
together with their respective mined block. This is to allow externally
owned accounts to assert the validity of a returned value by the trail-
ing child blocks. However, functions that do not invoke state transi-
tions returns directly to externally owned accounts.
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2.6.2 Ethereum Blockchain data structure

The Ethereum Blockchain is best viewed as a decentralized, replicated
database in which the current state of all accounts is stored. All full
nodes of the Ethereum network are expected to hold a local key/-
value database that maintains a mapping of byte arrays to byte arrays,
referred to as a state database. The state of all accounts in the sys-
tem, that represents the state of the system is then stored in the state
database according to the Merkle Patricia trie structure described in
section 2.6.3 [42]. Therefore, looking up information in the storage is
done locally on each node’s internal database.

The state of each account is stored in a four-tuple containing:

• Account nonce - The number of transactions sent from the ac-
count, kept to prevent replay attacks.

• Ether balance - Ether balance of the account.

• Code hash - Hash of the code if the account is a contract, other-
wise an empty string. The Code is stored in the state database
under the corresponding hash.

• Storage root - Root of another Merkle Patricia trie that stores the
data for the account.

The state root works as the start node for looking up information
in the state. The state root is distributed with each new mined block
and the address of the accounts is used as a path to the state of the
specified account, illustrated in figure 2.1. Because of the properties
of the Merkle Patricia trie structure, the shared state of the system is
verifiable with the state root. The state root can therefore be used to
check that the state transitions recorded by the miner were correct. If
not, another state root would be derived by the node. Because of the
unlikelihood of a hash collision and as long as the state database is
not purged, any older state of the system can also easily be explored
starting from an older state root.

2.6.3 Merkle Patricia trie

A Merkle Patricia trie is a key/value storage that utilises nodes to
build deterministic paths to resources. Each node is stored in an un-
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Figure 2.1: Ethereum data structure, Source: [4]

derlying key/value storage by its own hash value. A node can be one
of the following four types:

1. NULL - represented as the empty string.

2. branch - A 17-item node [v0 ... v15, resource].

3. leaf - A two item node [encodedPath, resource].

4. extension - A two item node [encodedPath, node hash].

The first sixteen items of a branch node are used to store hash val-
ues to other nodes or the NULL node, that is an empty node. The last
item is used to store a resource. The leaf is used as an end node that al-
lows skipping ahead directly to the resource. The first item of the node
stores the remainder of the encoded path and the second item stores
the resource. The extension node is used when all stored resources for
a path share some part of their path. The shared part of their path is
stored as the first item and the hash value of the next node is stored as
the second item.

The path is parsed from the key to the resource, for example in
Ethereum the key to the accounts state is its address. The path is built
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up of the hex representation of a key. So if the key is dog the path
would be the hex representation of dog, giving 64 6f 67. The path is
traversed by starting from a set root node and parsing parts of the
path depending which node is encountered. Table 2.1 describes the
parsing taking place for each node type.

NULL Represents an empty value, meaning no resource is stored for the
path.

branch Uses the value of the first nibble of the remaining path as an in-
dex of the array. The value of the index is used to lookup the next
node in the underlying database. If there are no more steps in the
path, returns the resource of the node. If the index is empty, no
resource is stored for the path.

leaf If the remaining path is the same as the encodedPath, the re-
source is returned. Else, no resource is stored for the path.

extension If the encodedPath corresponds to the next steps for the remain-
ing path, the node hash is used to lookup the node after the skip
ahead. Else, no resource is stored for the path.

Table 2.1: Path parsing for each node type

So given the path 64 6f 67 and that there are branch nodes all the
way to the resource. The resource is found by starting at the root
node and then looking up the entries in the underlying database cor-
responding to the value of the node indexes 6→ 4→ 6→ 15→ 6→ 7.

Merkle Patricia trie ensures integrity by using the hash value of the
node as its key in the state database. And since each node is pointed to
from previous parts of the path, this ensures that any change in data
for a node is propagated upwards to all parent nodes.

Merkle Patricia trie also has the property that if a node is changed
for the trie, only the affected branch needs to be updated in the state
database. Therefore, unaffected branches of the trie can still point to
the old nodes. This is used in the Ethereum storage to only update
affected storages and is illustrated in figure 2.2 [4].

2.6.4 Solidity

One programming language that can be used to generate the binary
code used by smart contracts is Solidity. The language was influenced
by C++, Python and JavaScript and is designed to implement smart
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Figure 2.2: Merkle Patricia Trie update, Source: [5]

contracts. Solidity is a statically typed programming language that
has support for inheritance, libraries and complex user-defined types
[6].

One important aspect of the language is the data type mappings that
together with the Ethereum data structure becomes a powerful tool for
smart contracts to store values. The mappings data type can be seen
as a hash table which is virtually initialised such that every possible
key exists with a mapping to a value whose byte-representation is all
zeros. Therefore, a lookup in mappings is always successful, even if
nothing is stored for the value. When a new key/value is stored in the
mapping, this can be added without re saving the whole mappings
structure. This is due to the properties of the underlying Ethereum
data structure.

2.6.5 Geth

Geth is a command line interface for running full Ethereum nodes im-
plemented in Go. Geth supports all actions an Ethereum account can
take along with mining ether and exploring the block history of the
Ethereum network. Geth is developed as an open source project and
is available through Github [7].

2.7 Cryptographic protocol analysis

Cryptographic Protocol Analysis (CPA) is the field of analysis of cryp-
tographic protocols. The goal of CPA is to ensure trust in the tested
protocol in regard to certain security goals. The security goals are spe-
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cific for each protocol but can for example be to ensure secure authen-
tication between two parties through the protocol. CPA consists of a
suite of models and verification methods. Because reality is often too
complex to model, abstractions of reality are used. One of the most
common abstractions is to remove the probabilistic uncertainty of a
protocol [18]. A common model that abstracts away probability is the
Dolev-Yao model.

2.7.1 Dolev-Yao model

The Dolev-Yao model was specifically created to study the security of
public key protocols. The method has been tried and tested for over 30
years and is a standard method used in protocol analysis. The Dolev-
Yao model is a CPA model used as base for verifying the behaviour of a
protocol. The model is based on the assumption that all cryptographic
functions are safe and atomic. More precisely the Dolev-Yao model
states that the following four assumptions hold [21]:

1. Perfect public key system.

(a) One-way functions used are unbreakable.

(b) Public directory is secure and cannot be tampered with (place
where the public keys are distributed).

(c) Everyone has access to all public keys.

(d) Only the owner knows his private key.

2. Assistance of third party in decryption or encryption is not needed.

3. Uniform protocol, same format is used by every pair of users to
communicate.

4. Saboteur is an active eavesdropper. Someone first taps the com-
munication to obtain messages and then tries everything he can
in order to discover the plaintext. More precisely the following
assumptions applies to the saboteur:

(a) He can obtain any message passing through the network.

(b) He is a legitimate user of the network and can initiate a con-
versation with any other user.

(c) He will be received by any user.
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These assumptions are commonly referred to as perfect encryption
since they abstract away ways to break encryption without a key. In
order to use results achieved by the Dolev-Yao model, mapping from
the assumptions to the system of operation is needed. It has been ar-
gued that proofs based on the Dolev-Yao model should be sufficient
to consider a protocol secure [11]. An important note from this is that
there exist secure protocols analysed in the Dolev-Yao model, such as
the SSH protocol [36]. Therefore, any system proven to be equivalent
to the Dolev-Yao model, as seen later in section 4.2, can be used to run
these protocols as well. The model gives an easier representation of
reality that then can be used in protocol verification tools. An example
of this is an algorithmic method for checking if a name-stamp protocol
is secure included in the Dolev-Yao paper [21].

2.7.2 Protocol verification

The abstracted model created by the Dolev-Yao can then be used to-
gether with verification tools for protocols. The inductive verifica-
tion approach often portrays the protocol as a state machine where
all states are explored. If a state that break any of the security goals
specified for the CPA is reached, the protocol is unsafe in regard to its
security goals [35] [18].

When only properties of an already proven secure protocol is used
to create a new protocol, deductive verification can instead be used.
The goal of the CPA is then to prove that the additions to the protocol
does not break any of the pre-existing security goals. Deductive veri-
fication through proof by contraction is a common method used in the
field of mathematics and cryptology [40]. The method involves assum-
ing that the security goal under test has been breached and deducts
that this leads to a contradiction with other properties of the protocol
or system. Therefore, either the security goal is not breached, or the
other properties of the protocol or system do not hold.

2.8 Media Access Control address

In order for devices to be uniquely identified in a network, each de-
vice has a MAC address assigned to the network interface controllers.
The MAC address is unique for each network connected device in the
world and is typically never changed for the devices life time. The
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MAC address is often stored in hardware and is assigned by the com-
ponent manufacturer but there also exists software defined MAC ad-
dress schemes.



Chapter 3

Methods

This chapter explains the methodology used to reach the two project
goals and answer the research question.

3.1 Literature research

The first step of the project was a thorough literature research. The
goals of the literature research were to gain enough understanding in
the fields of PKI, Blockchain and cryptographic analysis to reach the
two project goals. Initially, the google scholar platform was used to
identify important research papers related to the study. The search
started using keywords such as Public key infrastructure, Blockchain,
Public key security. The search was then broadened using an iterative
method where references from identified important research papers
were used. An important reference for the project was also the book
Cryptography Theory and Practice [40].

3.2 PKI security goals

The literature research formed a general set of security goals required
for any secure PKI. Any functioning public key infrastructure, as men-
tioned in section 1.1, requires safe registration and distribution of pub-
lic keys. Therefore, the following security goals were defined to repre-
sent the requirements of a secure PKI:

1. Safe key deployment - Only the owner of a device should be
able to safely tie a public key to a physical ID in the PKI.

26
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2. Safe key retrieval - Given the ID of a device, safely retrieve its
connected public key.

The research question could then be answered by analysing the in-
tegrity of the security goals on a Blockchain based PKI.

3.3 Analysis model

To remove complexities of the real world, a model is often used in
cryptographic analysis. Dolev-Yao model was specifically created to
study the security of public key protocols. The method has been tried
and tested for over 30 years and is a standard method used in proto-
col analysis. As explained in section 2.7.1, many authentication pro-
tocols such as SSH have been proven secure in regard to the model.
The Dolev-Yao model abstracts away probability and semantic secu-
rity. However, the first assumption of the model, perfect public key sys-
tem listed in section 2.7.1, is used to abstract away difficulties involved
with public key distribution. This assumption undermines any anal-
ysis ensuring the integrity of the security goals for a PKI. Therefore, a
modified model based on the Dolev-Yao model was constructed.

3.3.1 Blockchain model

In order to preserve the integrity of the Dolev-Yao model the under-
lying assumptions for the Dolev-Yao model were not changed. The
difference for the constructed Blockchain model was that the assump-
tion of a perfect public key system was removed and the Blockchain
assumption was added. Therefore, the Blockchain model used for the
analysis was built on the following assumptions:

1. All cryptographic functions are safe.

2. One-way functions used are unbreakable.

3. Only the owner knows his private key.

4. Assistance of third party in decryption or encryption is not needed.

5. Uniform protocol for all users.
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6. Saboteur is an active eavesdropper - Can obtain any message, is
legitimate user, will be received by any user.

7. Majority of the computational power in the Blockchain network
are honest nodes.

More specifically the assumptions removed from the Dolev-Yao
model were:

A. Public directory is secure and cannot be tampered with

B. Everyone has access to all public keys

The Blockchain model provided two things. First, a model where
the security goals could be analysed for a PKI to answer the research
question. Secondly, by analysing if the two removed Dolev-Yao as-
sumptions held true given the security goals were true, it provided a
way to verify that the security goals represent the state of a perfect
public key system. Assuming this was true, any PKI proving to hold
the security goals in the Blockchain model would represent the state of
a perfect public key distribution system in the Dolev-Yao model and
thus also rendering any protocol, such as the SSH protocol, proven se-
cure in the Dolev-Yao model to be considered secure in the Blockchain
model.

3.4 Analysis method

For formal proofs in cryptography the whole environment and all pos-
sible actions must be formally defined. Providing this would require
more time than was available for the research project. Informal analy-
sis simplifies the requirements of an analysis, but at the cost of the sci-
entific accuracy of the results. For the purpose of the project, informal
analysis was viewed as an adequate method to answer the research
question.

Proof by contradiction is a common method used in the field of
mathematics and cryptography. It is an effective method used as base
for many mathematical proofs. It provides a safe way to assert the
validity of propositions from existing knowledge. In cryptography
it is often very hard to prove that certain security properties hold.
Therefore, proofs are often constructed by asserting that the opposite
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statement results in a contradiction for the properties of the system.
Both the necessary informal proofs needed to evaluate the Blockchain
model and answer the research question could be constructed using
proof by contradiction.

The Blockchain models equivalence to the Dolev-Yao model was
evaluated by analysing propositions that represented a breach of the
two removed assumptions when the security goals were assumed true.
The constructed propositions were:

1. Public directory is not secure and can be tampered with

2. Some public keys are not accessible

The Blockchain PKI was evaluated by a similar method. First the
two propositions representing a breach of the corresponding security
goal were constructed:

1. Imposter can register a public key for another device ID.

2. Imposter can provide its public key in place for another device
ID.

The propositions were then analysed for the Blockchain PKI using
the Blockchain model. If a contradiction was found when the propo-
sition was assumed true, the corresponding security goals could be
assumed to hold. An informal proof could then be constructed evalu-
ating if the Blockchain PKI could be used to build a secure key distri-
bution infrastructure, thus answering the research question.

3.5 Implementation

The following describes the configuration and environment used for
implementing and testing the Blockchain PKI smart contract and the
access control smart contract.

3.5.1 Hardware

The network and all participating nodes were run on a personal laptop
computer with the specifications presented in table 3.1.
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OS Processor Ram Storage
macOS Sierra, Version 10.12.6 2,3 GHz Intel Core i5 16 GB DDR3 256 GB

Table 3.1: Computer hardware specifications

3.5.2 Software

The Ethereum cryptocurrency platform was used for testing the im-
plementations. The Geth software was used to configure a private
network and run all participating nodes in the network. All smart
contracts were constructed using the Solidity programming language
using version 0.4.0. The contracts were compiled using the built-in
command line compiler and documentation for the language and best
practice guidelines were gathered from the solidity documentation [6].
Scripts for setting up the testing environment was constructed in Python.
Scripts for automating the actions of the nodes were constructed in
JavaScript, available in Appendix A and B, and loaded into the Geth
software.

3.5.3 Ethereum network configuration

A private Ethereum network was initiated using a constructed genesis
block, presented in listing 3.1.
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1 {
2 "config": {
3 "chainId": 1994,
4 "homesteadBlock": 0,
5 "eip155Block": 0,
6 "eip158Block": 0,
7 "byzantiumBlock": 0
8 },
9 "difficulty": "400",

10 "gasLimit": "2000000",
11 "alloc": {
12 "43b35057e4a3fed1bc1ec8cec5b9d763a8672e57": {
13 "balance": "100"
14 },
15 "dd485ab9c96ac346ca01ed86769475a55f9d5cd8": {
16 "balance": "100"
17 },
18 "2d36b7e3f6a90c6659cc3ba1b25bc8e10cb720fb": {
19 "balance": "1000000000000000000"
20 },
21 "a0d56b2dc4045895d57c430bebead2fa637d23e2": {
22 "balance": "1000000000000000000"
23 },
24 "3fc3b686a3e688bd1be4d31fe1bfcb232a64fde4": {
25 "balance": "1000000000000000000"
26 }
27 }
28 }

Listing 3.1: Genesis block

The configuration specifies the difficulty for mining new blocks,
maximum gas limit for transactions and five accounts. The first two
accounts, initiated with a smaller amount of Ether on row 12 and 15,
were intended as mining accounts. The three last accounts, initiated
with a higher amount of Ether on row 18, 21 and 24, were intended as
actors in the tests able to perform transactions.

For each test the Ethereum network was restarted from the gene-
sis node. Two miners were used to simulate the state of a consensus
network.

3.5.4 Blockchain PKI test suite

The purpose of the Blockchain PKI test suite is to assure the functional
requirements for a Blockchain PKI defined in section 4.1.1 are fulfilled.
For all tests in the Blockchain PKI test suite, the following setup was
performed upon initialisation:

1. The two miner accounts are instructed to start mining.
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2. The setup account deploys the Blockchain PKI smart contract,
and the address to the smart contract is recorded. This account is
then never used again.

3. The device accounts are given the address to the Blockchain PKI
smart contract.

The state of the network after initialisation is illustrated in figure
3.1.

Figure 3.1: Blockchain PKI test suite network

The test cases of the test suite are defined in table 3.2. For each
test the required action is stated along with the expected result and a
verification method to verify the result.

3.5.5 Access control test suite

The purpose of the access control test suite is to assert that the re-
quired functions from an access control smart contract, defined in sec-
tion 4.5.1, are fulfilled. For all tests in the access control test suite, the
following setup was performed upon initialisation:

1. The two miner accounts are instructed to start mining.
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No. Action Expected result Verification
1. Register one device. Registration transaction is ac-

cepted and executed, device is
registered with PKI.

Public key and account address
is retrievable from PKI with de-
vice ID.

2. Register two different
devices.

Registration transactions are ac-
cepted and executed, devices
are registered with PKI.

Public keys and account ad-
dresses are retrievable from PKI
with device IDs.

3. Register a device on an
occupied ID.

Registration transaction is ac-
cepted but not executed.

Public key and account address
for first the already registered
device is returned when lookup
is performed in PKI for device
ID.

4. Request public key and
account address for not
registered ID.

Returns nothing. Nothing is stored for not regis-
tered ID.

Table 3.2: Blockchain PKI test suite

2. One account is picked as a producer account and the access con-
trol smart contract is deployed, the address to the smart contract
is recorded.

3. Two accounts are picked as consumer accounts and are given the
address to the producer access control.

The state of the network after initialisation is illustrated in figure
3.2.

Figure 3.2: Access control test suite network

Test cases of the test suite are defined in table 3.3. For each test the
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required action is stated along with the expected result and a verifica-
tion method to verify the result.

No. Action Expected result Verification
1. Consumer requests ac-

cess to free producer.
Consumer ID is added to pro-
ducer access control.

Consumer ID is retrievable from
smart contract.

2. Consumers requests ac-
cess to occupied pro-
ducer.

Consumer request is denied, no
change in access control.

Old consumer ID is retrievable
from smart contract.

3. Occupied producer re-
quests ID of consumer
from access control.

Access control returns consumer
ID.

ID retrieved is the same as con-
sumer granted access.

4. Free producer requests
ID of consumer from ac-
cess control.

Nothing is returned. No consumer ID is stored in the
smart contract.

5. Occupied producer re-
sets its access control.

Producer is marked as free and
can accept a new request from
consumer ID, stored consumer
ID is removed from access con-
trol.

No consumer ID is stored in the
smart contract and access con-
trol accepts next request.

6. Free producer resets its
access control.

Nothing changes in the smart
contract.

No consumer ID is stored in the
smart contract.

Table 3.3: Access control test suite



Chapter 4

Results

In this chapter, the results of the project are presented. This involves
a constructed Blockchain PKI, two informal analysis and a proof of
concept dynamic access protocol.

4.1 Blockchain PKI

The basic functions of a PKI, mentioned in section 1.1 and given by
the literature research, is registration, where new public keys are con-
nected to physical identities, and key distribution, where users can
query the PKI for public keys tied to IDs in the system. The Blockchain
PKI was therefore defined with the following configuration:

• Registration - Binds the MAC address and account address of a
device with a public key through a transaction in the Blockchain.

• Distribution - Public keys are stored and distributed through the
public ledger.

Because of the properties of MAC addresses, explained in section
2.8, connecting a MAC address to a public key was deemed fit to serve
the purpose of binding a physical entity with a digital key. The first
registration for a MAC address is viewed as the valid connection be-
tween a digital key and a physical entity. To stop an adversary from al-
locating all MAC addresses on the Blockchain a registration cost could
be added. The device verifies its registration towards the state of the
Blockchain. If the device does not see its MAC address is registered

35
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with the correct key and account address, a new MAC address is gen-
erated by the device and is sent with a new registration transaction. An
adversary therefore cannot know the correct MAC address of a device
before registration. Since the Blockchain system naturally distributes
the state of the public ledger to all nodes in the system, the distribution
of the public keys is done through the public ledger.

To register in the Blockchain PKI, a device performs the following
steps:

1. Creates an account in the Blockchain system and generates a
public, private key pair for data transfer.

2. Generates a MAC address.

3. Sends a registration transaction with its MAC address and public
key to the Blockchain PKI.

4. Waits until the transaction is mined and enough trailing child
blocks to the transaction block has been created.

5. Checks if its MAC and account address are registered in the Blockchain.
If so the device has successfully registered. Else, repeat all steps
from step two.

There are two important remarks about step four. The first is that
If the Blockchain PKI is designed as a smart contract, the registration
transaction is always eventually mined, as explained in section 2.5.5,
regardless if the MAC address is already occupied in the Blockchain.
Therefore, the device can successfully wait for the transaction to be
mined. The second is that the that the trailing child blocks of the trans-
action block are the devices guarantee of its registration, as explained
in section 2.6.1.

4.1.1 Functional requirements

For the Blockchain PKI the minimum functional requirements identi-
fied were:

1. Register public key - Registering a public key and an account
address with a MAC address as ID together on the Blockchain.

2. Retrieve public key and account address - Query after public
key and account address connected to MAC address as ID on the
Blockchain.
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4.2 Informal Blockchain model analysis

In order to evaluate the equivalence of the Blockchain model, given
that the security goals are true, and the Dolev-Yao model, abstracting
a perfect PKI, the identified requirements of the PKI security goals,
listed in section 3.2, and the implications of the propositions for the
removed assumptions were listed. The requirements and implications
are then analysed using proof by contradiction.

4.2.1 Requirements and implications

The first security goal, safe key deployment, involves safe key registra-
tion and publication of a public key together with a physical identity.
In the traditional CA PKI this is handled by a RA. Therefore, the fol-
lowing were the identified requirements by the first security goal:

A. Safe key deployment

1. Only owner of ID can deploy public key for ID.

2. Public key is not changed in transit and authenticated towards
provider upon arrival.

The second security goal, safe key retrieval, involves safe retrieval
of all keys deployed in the system. In a traditional CA PKI this is
handled by the CA and therefore involves safe storage of public keys,
safe validation of received keys and safe delivery of all stored keys in
the system. Therefore, the following were the identified requirements
by the second security goal:

B. Safe key retrieval

1. All IDs in storage are accessible.

2. Public key and ID deployed is preserved in storage so that the
same public key is provided on request.

3. All ID and public key connections can be verified by the user.

The implications from the propositions representing breaches of
the two removed Dolev-Yao assumptions were then identified and
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listed. The first propositions, public directory is not secure and can be
tampered with, implies that the public directory providing the public
keys is insecure. Therefore, it is possible for an adversary to change
any information in the public directory or control the connections be-
tween a user and the public directory. The following implications were
identified for the first proposition:

C. Public directory is not secure and can be tampered with

1. Public keys or IDs for public keys can be changed in storage.

2. Requests can be hijacked to provide another public key for stor-
age or delivery.

The second proposition, some public keys are not accessible, im-
plies that there are users in the system that have deployed their public
keys, but the deployed public key is not accessible. Therefore, only
one implication was identified for the second proposition:

D. Some public keys are not accessible

1. Not possible to get public key of ID in storage.

4.2.2 Contradictions

If we assume that the security goals, A and B, and the first proposition,
C, are true, we can informally identify the following contradictions in
the system for all the implications of C:

B.2 contradicts C.1 (4.1)
A.1, A.2 and B.3 together contradicts C.2 (4.2)

Since requirement B.2 ensures that the same public key that was
delivered for storage is the same delivered upon request to a user this
does not allow a public key or ID to be changed in storage which is a
direct contradiction to C.1. This contradiction is defined as contradic-
tion 4.1.

Since requirement A.1 ensures the authenticity of delivered keys
and requirement A.2 ensures the safe delivery of deployed keys, hi-
jacking deploy attempts are made impossible for an adversary. Re-
quirement B.3 also ensures that the received keys from storage can be
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verified by the user. This leaves no room for hijacking connections
and replacing keys. Therefore, A.1, A.2 and B.3 create a contradiction
when regarded as true in the same system as C.2. This contradiction is
defined as contradiction 4.2.

If we assume that A, B and the second propositions, D, are true, we
can informally identify the following contradiction in the system for
the implication of D:

B.1 contradicts D.1 (4.3)

Since requirement B.1 ensures that all deployed keys in storage are
accessible, there does not exist public keys with IDs in storage that
are not available. Therefore, B.1 contradicts D.1. This contradiction is
defined with equation 4.3.

The contradictions 4.1, 4.2 and 4.3 show that the propositions rep-
resenting breaches of the two removed Dolev-Yao assumptions creates
contradictions in a system where the security goals hold. This shows
that assuming the security goals are true for the Blockchain model,
the removed Dolev-Yao assumptions are also ensured. Therefore, the
Blockchain model together with the security goals is equivalent to the
Dolev-Yao model with an abstracted perfect PKI.

4.3 Informal Blockchain PKI security goals
analysis

In order to informally analyse the PKI security goals, listed in section
3.2 for the Blockchain PKI in the Blockchain model we list important
properties of a Blockchain PKI, construct propositions representing
breaches or the PKI security goals and list the implications for those
breaches. The properties of the Blockchain PKI and proposition impli-
cations are then analysed by proof of contradiction.

4.3.1 Properties and implications

Since the Blockchain model includes the Blockchain assumptions, the
following are important properties for the analysis of the Blockchain
PKI given the Blockchain model:
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D. Blockchain PKI

1. Distributed immutable public directory by the public ledger.

2. Only account holder can perform transactions for accounts.

3. MAC addresses are unique and unpredictable for each device.

4. First registered public key for MAC is valid.

5. MAC address registration has a cost preventing occupation of all
MAC addresses.

The proposition for first breached security goal is unsafe key de-
ployment. The implications of the proposition are given by breaches
for each of the requirements of A. Therefore A.1 and A.2 give the fol-
lowing implications:

E. Unsafe key deployment

1. Imposter can register public key for any ID.

2. Public key can be changed in transit.

The proposition for the second breached security goal is Unsafe key
retrieval. The implications of the proposition are given by breaches
for each of the requirements of B. Therefore B.1, B.2 and B.3 give the
following implications:

F. Unsafe key retrieval

1. Some IDs in storage are not accessible.

2. Public key or ID can be changed in storage.

3. Some IDs and public key connections cannot be verified by users.

4.3.2 Contradictions

If E is assumed true in a Blockchain model system running a Blockchain
PKI, the following contradictions can be identified:



CHAPTER 4. RESULTS 41

D.3, D.4 and D.5 together contradicts E.1 (4.4)
D.2 contradicts E.2 (4.5)

Since the Blockchain PKI uses the MAC address of the device as
ID and the MAC address is unique and unpredictable for each device,
property D.3, it is impossible for an adversary to know what MAC ad-
dress to register to impersonate another device. The cost, property D.5,
prevents an adversary from registering all MAC addresses and since
the first MAC is considered valid, property D.4, an adversary cannot
later hijack a registered ID. Therefore, E.1 creates a contradiction in the
system. This contradiction is defined as contradiction 4.4.

By the properties of the Blockchain system, only the owner of the
account can create valid transactions for the account, property D.2.
This ensures that any information changed in transit for a transaction
would be detected and rejected by the miners. And since the registra-
tion of the public key is a transaction, E.2 creates a contradiction in the
system. This contradiction is defined as contradiction 4.5.

If F is assumed true while we have a Blockchain based PKI the fol-
lowing contradictions can be identified in the system:

D.1 contradicts F.1 (4.6)
D.1 contradicts F.2 (4.7)

D.1, D.3 and D.4 together contradicts F.3 (4.8)

Public key and ID connections are stored in the distributed public
ledger, property D.1, and all connected devices hold a local copy of
the distributed ledger. Therefore, it is not possible that registered IDs
are not accessible and F.1 creates a contradiction in the system. This
contradiction is defined as contradiction 4.6.

The same property of the Blockchain PKI, property D.1, ensures
that there is an immutable public directory. Therefore, it is not possible
to change a stored public key or ID. This contradiction is defined as
contradiction 4.7.

Since all devices have a unique and unpredictable MAC address,
property D.3, and the first registered public key for a MAC address is
considered valid, property D.4, it is easy for all users with access to the
public ledger to verify ID and public key connections. And since the
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connections are stored in the distributed public ledger, D.1, all users
will have access to the ledger. Therefore, F.3 creates a contradiction in
the system. This contradiction is defined as contradiction 4.8.

The contradictions 4.4, 4.5, 4.6, 4.7 and 4.8 shows that the proposi-
tions representing a breach of the security goals leads to contradictions
for a Blockchain model system using a Blockchain PKI. Therefore, the
security goals must hold for the Blockchain PKI in the Blockchain model.

4.4 Blockchain PKI smart contract

Based on the Blockchain PKI, defined in section 4.1, and the functional
requirements, defined in section 4.1.1, the Blockchain PKI was imple-
mented using a smart contract. The contract allows devices with ac-
counts in the Ethereum network to register a unique MAC address
together with a public key and to query for a public key connected to
a MAC address. The PKI also stores the address of the account used to
register creating a connection between the account and the MAC ad-
dress. The PKI contract can be deployed by any account in the system.
See listing 4.1 for the code of the contract.
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1 pragma solidity ^0.4.0;
2
3 /* Smart contract for handling PKI through Blockchain */
4 contract PKI {
5
6 /* Struct to differenciate if there is a key */
7 struct keyHolder {
8 bool isSet;
9 string publicKey;

10 address account;
11 }
12
13 /* Keys stored in the PKI */
14 mapping(string => keyHolder) keys;
15
16 /* Add new key if MAC is unused */
17 function addKey(string mac, string pubKey) public {
18 require(!keys[mac].isSet);
19 keys[mac] = keyHolder(true, pubKey, msg.sender);
20 }
21
22 /* Get the public key for a MAC */
23 function getKey(string mac) public constant returns (string) {
24 return keys[mac].publicKey;
25 }
26
27 /* Get the account address for a MAC */
28 function getAccount(string mac) public constant returns (address) {
29 return keys[mac].account;
30 }
31 }

Listing 4.1: Blockchain PKI smart contract

A device registers its MAC address and public key by performing
a transaction with a call to the addKey function. As parameters for the
function call it supplies its MAC address and public key. If the MAC
address is previously unused the transaction is mined and the execu-
tion is successful. This creates a mapping between the MAC address,
the senders account and the submitted public key in the storage of the
contract. If a public key is already registered for the MAC address, the
transaction is mined but the execution fails, making no changes to the
state of the contract.

To query the PKI for a public key tied to a MAC address a function
call to the getKey function is performed with the MAC address as a pa-
rameter. Given the MAC address is registered in the PKI the function
returns a public key. If the MAC address is not registered, the function
call returns the empty string. Since the function does not change the
state of contract, the function call is performed locally on the device.

To query the PKI for the address of the account that registered a
MAC a function call to the getAccount function is performed with the
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MAC address as a parameter. Given the MAC address is registered
in the PKI the function returns the address of account. If the MAC
address is not registered, the function call returns an address with all
zeros. Since the function does not change the state of contract, the
function call is performed locally on the device.

4.4.1 Storage

Notice that this creates a global data structure that is shared with all
the hosts. In order for this to be practically possible adding infor-
mation to the data structure has to be relatively cheap and lookups
virtually free. Luckily the Merkle Patricia trie structure, explained in
section 2.6.3, used for storing data on the Ethereum platform allows
cheap state changes for the storage. Remember that only the data that
is changed and the path to that data will be updated on state changes.
These are relatively cheap actions for each node to perform when new
devices register. As explained in section 2.6.2, since each node hosts
its own database containing the full state of the Ethereum network,
looking up values in the Blockchain PKI is practically free.

4.4.2 Blockchain PKI test suite results

All tests specified in the test suite passed so the smart contract should
support all the specified functional requirements for the Blockchain
PKI.

4.5 Dynamic Access Protocol

This section describes the constructed Dynamic Access Protocol (DAP)
and the requirements to run it on the Ethereum platform. Based on
three use cases presented for the scenario in section 1.4 the DAP was
designed with these properties in mind:

• Dynamic Authentication - Devices connected to the Blockchain
platform should be able to establish a secure connection.

• Distributed Logging - All data requests in the system are logged
and auditable in the public ledger.
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• Non-repudiation - Data requests should be non-reputable in the
system.

Dynamic authentication allows consumers to connect to producers
and producers to accept multiple consecutive connections. Distributed
logging and non-repudiation ensures that owners of producers can
monitor and audit the number of data requests from a producer. The
properties therefore ensure that the DAP can be used for all use cases
listed in section 1.4.

The DAP utilises two smart contracts deployed in the Ethereum
network, the Blockchain PKI smart contract, presented in section 4.4,
and a new access control smart contract. Before presenting the DAP
the access control smart contract is defined.

4.5.1 Access control

Workings from the definition of producers and consumers in section
1.4, the purpose of the access control is to regulate and log access re-
quests to a producer. The access control should only allow one con-
sumer access rights to a producer at a time and a producer should
only exchange data with consumers granted access by the access con-
trol. Therefore, the minimum functional requirements for the access
control were:

1. Request access - Consumer should be able to request access to a
producer.

2. Retrieve access holder - Producer should be able to retrieve ac-
cess holder.

3. Reset access holder - Producer should be able to reset the access
holder.

4.5.2 Access control smart contract

The access control smart contract implements the access control, de-
scribed in section 4.5.1, on the Ethereum network. The contract stores
information related to the access granted consumer, so the producer
can retrieve the consumers public key in the Blockchain PKI. After
that, any mutual authentication protocol can be used to establish a se-
cure connection between the devices. Each producer deploys its own
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access control smart contract to the Ethereum network. This enables
reserving certain rights of the contract to only being accessible by the
producer. See listing 4.2 for the code of the contract.
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1 pragma solidity ^0.4.0;
2
3 /* Access control contract for a producer */
4 contract AccessContract {
5
6 /* Marks if the producer is already occupied */
7 bool occupied;
8 /* Storage for the consumer ID */
9 string consumerID;

10 /* Storage for consumer address */
11 address consumerAddress;
12 /* Address for the owner of the contract, the producer */
13 address owner;
14
15 /* Modifier to check if caller is the owner of the contract */
16 modifier onlyOwner {
17 require(msg.sender == owner);
18 _;
19 }
20
21 /* Event to transmit an allert to the log */
22 event Alert(address producerAddress);
23
24 /* Constructor for the contract, sets the creator as owner and initiate

values */
25 function AccessContract() public {
26 owner = msg.sender;
27 occupied = false;
28 }
29
30 /* Destroys contract and sends all funds to owner */
31 function kill() public onlyOwner {
32 selfdestruct(owner);
33 }
34
35 /* Allows consumers to set their key for access */
36 function requestAccess(string id) public returns (bool){
37 require(!occupied);
38 occupied = true;
39 consumerID = id;
40 consumerAddress = msg.sender;
41 emit Alert(owner);
42 }
43
44 /* Shows if the producer is occupied or not */
45 function isOccupied() public constant returns (bool) {
46 return occupied;
47 }
48
49 /* Allows producer to retrieve ID for consumer */
50 function getConsumerID() public onlyOwner constant returns (string) {
51 return consumerID;
52 }
53
54 /* Allows producer to retrieve ID for consumer */
55 function getConsumerAddress() public onlyOwner constant returns (address)

{
56 return consumerAddress;
57 }
58
59 /* Allows producer to reset the key and set status for last transmission

*/
60 function reset() public onlyOwner {
61 occupied = false;
62 delete consumerID;
63 delete consumerAddress;
64 }
65 }

Listing 4.2: Access control smart contract
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After the contract is deployed to the Ethereum network by the pro-
ducer, the producer is set as the owner of the contract and the pro-
ducer’s address is stored in the contract. This is important since the
address of incoming transactions are compared to the owner for some
functions of the contract. Upon initialisation the status of the access
control is set to not occupied so that the contract will accept incoming
access requests.

A consumer requests access to a producer by performing a trans-
action with a call to the requestAccess function. As parameters for the
function call it supplies its ID in the PKI. If the producer is not oc-
cupied the transaction is mined and the execution is successful. The
contract then stores the consumers ID along with its account address
and sets the producer’s status to occupied. The contract also emits a
log alert that the producer can look for to notice changes in its access
control contract. If the producer is already occupied the transaction is
mined but the execution fails, making no changes to the state of the
contract. The consumer can also check if the producer is occupied by
making a function call to isOccupied.

Once an ID and address for a consumer is stored in the contract
the consumer can query the contract for that information. To get the
ID the producer makes a function call to getConsumerID, the contract
will then return the stored ID. To get the address of the account used
to request access the producer makes a function call to getConsumer-
Address, the contract then returns the stored address. These functions
will only return an answer if they are called by the owner of the con-
tract, that is the producer that deployed the contract. In any other
case, getConsumerID returns an empty string and getConsumerAd-
dress returns an all zero address. Note that the values of the consumer
address and consumer ID might be reachable through another method
since they are stored in the distributed ledger. The purpose of limiting
the function calls is to encourage correct use of the smart contract.

When the producer wants to accept a new connection, it can reset
its status and clear the stored consumer ID and address by making a
transaction with a call to the reset function. When the transaction is ex-
ecuted it will mark the status of the producer as not occupied, remove
the stored consumer ID and address. The contract is then ready to ac-
cept a new access request attempt. This function is also only accessible
for the owner of the contract, that is the producer that deployed the
contract.
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The producer can remove the access control contract from the Ethereum
network by performing a transaction with a call to the kill function.
When the transaction is executed the contract will be destroyed and
if any funds are stored in the contract, they will be transferred to the
producer. This function is also only accessible for the owner of the
contract.

4.5.3 Storage

Since the access control contract only stores four values for the pro-
ducer the storage size required for each contract is constant. Upon
state changes in the contract the Merkle Patricia trie structure, explained
in section 2.6.3, allows that only the affected path and values are up-
dated. This makes changes to the state of the contract effective actions
for nodes in the network. All lookups are done in the producers’ local
storage which are free function calls for the producer.

4.5.4 Access control test suite results

All tests specified in the test suite passed so the smart contract should
support all the specified functional requirements for the access control.

4.5.5 Protocol structure

After the producer and consumer are both registered in the PKI and
the producer has published an access control smart contract, the con-
sumer can initiate contact to retrieve information from the producer.
The protocol is defined by the following seven steps, illustrated in fig-
ure 4.1:

1. The Consumer sends a request to the producer that it wishes to
establish a connection.

2. The producer answers with its ID, registered in the Blockchain
PKI, and the address to the access control smart contract de-
ployed in the Ethereum network.

3. The consumer requests access to the producer through the smart
contract. This is repeated until access is granted.
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Figure 4.1: Dynamic access protocol

4. The producer queries its access control smart contract for the
next consumer to accept a data transfer from and retrieves its
ID and account address.

5. The consumer retrieves the public key for the producer through
the Blockchain PKI.

6. The producer verifies the account address towards the ID in the
Blockchain PKI and retrieves the consumers public key.

7. The producer and the consumer shares data through a public and
private key mutual authentication protocol, such as SSH.

8. The producer resets its access control smart contracts so that a
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new consumer can be granted access.

Since the devices use the Blockchain PKI to retrieve their respective
public key, new devices can connect in a safe way. This ensures the first
property, dynamic authentication, of DAP.

By managing all access rights through transactions in the Ethereum
network, a complete transaction log is constructed in the Blockchain
and distributed to all parties. The transaction log can then be used to
monitor what access requests were granted. This ensures the second
property, distributed logging, of DAP.

Since all access requests are essentially transactions in the Ethereum
network, access requests cannot be done by other parties than the ac-
count holder. By having the producer verify the account and ID con-
nection in the PKI, all access requests in the system had to be per-
formed by the owner of the ID and are non-repuidable. This ensures
the third property, non-repudiation, of DAP.
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Discussion

This chapter contains a discussion about the results of the report, feasi-
bility for using the results and identifies future work and accomplish-
ments in the field of Blockchain technology.

5.1 Research question and project goals

By defining the properties of a simple Blockchain PKI, section 4.1, and
constructing a new CPA model influenced by the Dolev-Yao model,
section 4.2, the Blockchain PKI could be evaluated in an informal anal-
ysis towards a set of security goals for PKIs, section 4.3. The conclusion
of the informal analysis was that the security goals for PKIs where as-
sured in the Blockchain PKI showing that it is cryptographically safe to
distribute public keys in public Blockchain ledgers thus answering the
research question. The successful construction and implementation of
the Blockchain PKI smart contract also supported the theoretical con-
clusions by practical results, section 4.4. By successfully implementing
and testing the Blockchain PKI, PG1 was reached.

By complementing the Blockchain PKI with a successfully imple-
mented and tested access control, section 4.5.2, devices could exchange
public keys and regulate their connections through the Blockchain net-
work. By having the access requests being regulated by a smart con-
tract, all state changes of the contract were logged in the distributed
ledger. This created an immutable record of successful access requests
distributed to all parties. Combining this together in the DAP, sec-
tion 4.5, ensured that all use cases in the scenario, section 1.4, could be
fulfilled and thus PG2 was reached.
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5.2 Research methods

The confidence in the results of the research project is defined by the
validity of the research methods used. This section discusses the meth-
ods used by the research project from a critical perspective.

5.2.1 Model construction

Because the CPA model used for the analysis of the Blockchain PKI
was constructed by the author of this paper, this greatly influences the
credibility of the results. By proving the models equivalence, when the
PKI security goals hold, through an informal analysis to the Dolev-Yao
model, this has to be regarded when the results of the report are used.
In order to preserve the full credibility of the Dolev-Yao model for the
Blockchain model the equivalence should be backed by a formal proof.

5.2.2 Informal analysis

To ensure the validity of any cryptographic proof, it is hard to substi-
tute a formal proof for an informal proof. It is often the case that new
proofs are first presented informally, where the scientists abstract the
intricate details in order to conclude if the new results are of any value
and to get a feeling for the structure of the real proof. If the results
are valuable those proofs are then backed up with a formal analysis of
the results. If no formal analysis can be conducted, it is hard for other
scientists to conclude the same results. This pattern is also observable
in academic literature, where an informal analysis and the results are
often first presented before the formal proof.

This research project can be viewed as the step of determining if
the results would be of any value and determining the order of the full
formal proof. The results should be extended with a formal proof to
gain full credibility.

5.2.3 Proof of concept as verification

By implementing the PKI on the Ethereum network it is shown that
Blockchain can be used to construct PKIs. The proof of concept does
however not improve the validity of the results from the informal anal-
ysis. The proof of concept could be viewed as an induction approach
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to the scientific study. The results are true in this specific setting and
could be repeated time and time again, but it does not provide any
broader truth to the question regarding the security of PKIs on the
Blockchain.

5.3 Technological limitations

The project found three main technological limitations for further use
of Blockchain in IoT devices. These issues can be addressed from the
viewpoint of the Ethereum network.

5.3.1 Ethereum storage demands

Running a full node on for the Ethereum network requires that the
whole state of the network is stored on the device. On the 30 of April
2018, the size of the Ethereum database required to sync a full node
was approximately 69 GB [8]. Syncing a full node also involves ver-
ifying all state transitions on the Blockchain. IoT devices often have
very restricted hardware limitations. Therefore, syncing a full node
wouldn’t be a viable option. The author believes that another node
type is a requirement before the Ethereum network can be successfully
used in IoT devices.

5.3.2 Ethereum security parameter

When working with the Ethereum network each node has to set its
own security parameter in regards to the number of trailing child blocks
before a transaction is viewed as irreversible. Disregarding an adver-
sary and just focus on the effects on the node if the security prop-
erty is wrong two possible scenarios might happen. First is that the
nodes registers with the Blockchain PKI and sees its transaction regis-
tered but later on the transaction belonged to a deselected chain. The
node would believe it has registered and try to point to its place in
the Blockchain PKI where another node would be registered with its
public key. The second scenario is that the nodes believe its transac-
tions were not registered with the Blockchain PKI and send a second
transaction but later on the chain of the first transaction is chosen and
both transactions are registered. This would make the node occupy
two spaces in the Blockchain PKI. As mentioned in section 2.5.2, the
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probability of this happening is almost negligible. Therefore, a secu-
rity parameter of two should suffice to protect a node from the two
scenarios.

Adversary network control Security parameter
10% 5
15% 8
20% 11
25% 15
30% 24
35% 41
40% 89
45% 340

Table 5.1: Parameters for less than 0.1% adversary state change proba-
bility

Taking adversaries into account the requirements for the security
parameter is higher. In section 2.5.4, equation 2.3 is presented that al-
lows a node to calculate the probability of an adversary changing the
state of the network after a number of trailing child blocks have been
created. The problem with the equation is that the node has to make an
assumption of how big percentage of the network an adversary might
control. Table 5.1 shows the required security parameter depending on
the adversaries control of the network to have a less than 0.1% proba-
bility of an adversary changing the state of the network [32]. Assum-
ing the correct network influence be an adversary therefore directly
influences producers’ vulnerability to manipulation.

5.3.3 Ethereum transaction times

At the time this project was conducted, a new block is mined approx-
imately every 15 seconds in the main Ethereum network [9]. Average
time before a transaction is mined into a block is about 20 ∼ 30 sec-
onds depending on the load of the network. Assuming that a trail
of five blocks are enough to assure that a transaction is included in the
main Blockchain this gives an approximate maximum transaction time
of 1 minute and 45 seconds. Therefore, it takes about 1 minute and 45

seconds before a consumer can retrieve data from a producer once a
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request has been made. This greatly limits the use-case of the proto-
col to devices without time sensitive data requests. For time sensitive
data requests another Blockchain network or platform would have to
be used. Because of the many speculated use cases of Blockchain tech-
nology, the author believes improved transaction times are necessary
for the future use of the technology.

5.4 Ethical considerations

Speculations for what Blockchain Technology can be used for are wide
ranging. Some even say that Blockchain might be the most important
invention for the digital era since the internet. The author of this paper
can only speculate what the end use case for Blockchain technology in
the future could be. But since smart contracts can hold currency, it
is not unthinkable that smart contract could gain the same juridical
rights as a company. For example, IoT devices that are not owned by
anyone but finance themselves and the installation of new devices by
charging for sensor access with little to no human supervision.

This would probably lead to a paradigm shift in our view of tech-
nology and ownership. Instead of always having companies run by
people with profit goals, the goals of a company could be coded in a
smart contract and executed deterministically. From that perspective,
it becomes very important to analyse the security of the underlying
technology. Trying to answer questions such as, what would the effect
of self-owned IoT devices be? is hard and out of scope for this research
project but very important.

Having a deterministic PKI would greatly increase the credibility
of the PKIs function. By not having to deal with the human factor,
the behaviour of a PKI could be defined in a smart contract and then
operate after its instructions without exception. However, since the
code of the PKI would be accessible for anyone it is important that
such code and the cryptographic methods used are safe.

5.5 Future work

This section gives a brief overview of some possible further research
topics encountered during the project.
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5.5.1 Physical to digital identity

In the project, it was assumed that the MAC address of a device was
enough the ensure the physical identity of a device. In reality, the MAC
address of a device is often hard coded and is a weak identity of a
device over the internet. To enable devices to register themselves to
a PKI some form of strong identification would be required that ties
the physical device to a digital key. Possible ways to physically ensure
the identify of a device during registration is required for device self-
registration.

5.5.2 Light nodes

Light nodes are a new node type currently under construction for the
Ethereum network. Light nodes allow devices to participate without
verifying the full state of the network. This is done by allowing light
nodes to request specific pieces of the Ethereum database from other
nodes in the network. Light nodes can still view all new blocks that are
mined, but they don’t store the complete state of the network. Light
nodes are still under development, but the author believes they are
a requirement for successfully running the Ethereum network on IoT
devices [10].

5.5.3 Security of light nodes

While light nodes are still being developed their fundamental technol-
ogy build on retrieving the Blockchain state from other nodes in the
network. Ensuring that the information retrieved from other nodes
is correct is paramount for the use of light nodes. Since light nodes
is probably the best solution for running Blockchain on IoT devices,
ensuring its security is important.

5.5.4 Denial of service and Blockchain

DoS is one of the hardest form of cyber-attacks to protect against. It is
often left out of cryptographic analysis of networked systems because
a simple congestion of a network channel could leave a device discon-
nected completely from a network. Since Blockchain is secured by the
distributed contribution to the state it is especially vulnerable to DoS
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attacks. Nodes cut off from the network would store and act on an out-
dated state which an adversary might be able to leverage. The effects
of such adversary attacks are still mostly unexplored.



Chapter 6

Conclusions

The project shows that it is safe to distribute public keys in a public
Blockchain ledger and that it is possible to implement a secure PKI on
Blockchain technology using smart contracts. The project also shows
that it is possible to construct protocols with dynamic authentication
and distributed logging on Blockchain technology. The informal cryp-
tographic analysis provides a basis for the security of the system but
needs to be extended with a formal cryptographic analysis to ensure
full credibility for the results. Before Blockchain PKIs can replace tra-
ditional CA systems there needs to be a better way of ensuring the
physical identities of devices for public key registration. Because of
hardware limitations the author believes that the technology is not re-
ally viable for IoT devices until other node types are available that
reduces the necessary amount of data stored.
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Appendix A

PKI node scripts

For all scripts the binary code of the contract has been removed from
the pkiOutput line produced by the compiler.
1 var PASSWORD = "";
2
3 var pkiOutput={"contracts":{"PKI.sol:PKI":{"abi":"[{\"constant\":true,\"

inputs\":[{\"name\":\"mac\",\"type\":\"string\"}],\"name\":\"getAccount
\",\"outputs\":[{\"name\":\"\",\"type\":\"address\"}],\"payable\":false
,\"stateMutability\":\"view\",\"type\":\"function\"},{\"constant\":false
,\"inputs\":[{\"name\":\"mac\",\"type\":\"string\"},{\"name\":\"pubKey
\",\"type\":\"string\"}],\"name\":\"addKey\",\"outputs\":[],\"payable\":
false,\"stateMutability\":\"nonpayable\",\"type\":\"function\"},{\"
constant\":true,\"inputs\":[{\"name\":\"mac\",\"type\":\"string\"}],\"
name\":\"getKey\",\"outputs\":[{\"name\":\"\",\"type\":\"string\"}],\"
payable\":false,\"stateMutability\":\"view\",\"type\":\"function\"}]","
bin":""}},"version":"0.4.21+commit.dfe3193c.Darwin.appleclang"};

4 var pkiContractAbi = pkiOutput.contracts[’PKI.sol:PKI’].abi;
5 var pkiContract = eth.contract(JSON.parse(pkiContractAbi));
6 var pkiBinCode = "0x" + pkiOutput.contracts[’PKI.sol:PKI’].bin;
7 personal.unlockAccount(eth.accounts[0], PASSWORD);
8 var deployTransactionObject = { from: eth.accounts[0], data: pkiBinCode, gas:

1000000};
9 var pkiInstance = pkiContract.new(deployTransactionObject);

10
11 var i = 0;
12 while (!eth.getTransactionReceipt(pkiInstance.transactionHash) &&Â i < 10){
13 console.log(’Transaction not mined: ’ + i);
14 admin.sleep(1);
15 i++;
16 }
17
18 var pkiAddress = eth.getTransactionReceipt(pkiInstance.transactionHash).

contractAddress;
19 console.log(’Transaction mined and stored at address: ’ + pkiAddress);
20
21 var pki = pkiContract.at(pkiAddress);

Listing A.1: PKI deploy script
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1 var PKIADDRESS = "0xb209325f9a145acf66c2bfd0a8344196653e3d1f";
2
3 var pkiOutput={"contracts":{"PKI.sol:PKI":{"abi":"[{\"constant\":true,\"

inputs\":[{\"name\":\"mac\",\"type\":\"string\"}],\"name\":\"getAccount
\",\"outputs\":[{\"name\":\"\",\"type\":\"address\"}],\"payable\":false
,\"stateMutability\":\"view\",\"type\":\"function\"},{\"constant\":false
,\"inputs\":[{\"name\":\"mac\",\"type\":\"string\"},{\"name\":\"pubKey
\",\"type\":\"string\"}],\"name\":\"addKey\",\"outputs\":[],\"payable\":
false,\"stateMutability\":\"nonpayable\",\"type\":\"function\"},{\"
constant\":true,\"inputs\":[{\"name\":\"mac\",\"type\":\"string\"}],\"
name\":\"getKey\",\"outputs\":[{\"name\":\"\",\"type\":\"string\"}],\"
payable\":false,\"stateMutability\":\"view\",\"type\":\"function\"}]","
bin":""}},"version":"0.4.21+commit.dfe3193c.Darwin.appleclang"};

4 var pkiContractAbi = pkiOutput.contracts[’PKI.sol:PKI’].abi;
5 var pkiContract = eth.contract(JSON.parse(pkiContractAbi));
6 var pki = pkiContract.at(PKIADDRESS);

Listing A.2: PKI access script
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AC node scripts

For all scripts the binary code of the contract has been removed from
the acOutput line produced by the compiler.
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1 var PASSWORD = "";
2
3 var acOutput={"contracts":{"AccessContract.sol:AccessContract":{"abi":"[{\"

constant\":false,\"inputs\":[{\"name\":\"id\",\"type\":\"string\"}],\"
name\":\"requestAccess\",\"outputs\":[{\"name\":\"\",\"type\":\"bool
\"}],\"payable\":false,\"stateMutability\":\"nonpayable\",\"type\":\"
function\"},{\"constant\":false,\"inputs\":[],\"name\":\"kill\",\"
outputs\":[],\"payable\":false,\"stateMutability\":\"nonpayable\",\"type
\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"isOccupied
\",\"outputs\":[{\"name\":\"\",\"type\":\"bool\"}],\"payable\":false,\"
stateMutability\":\"view\",\"type\":\"function\"},{\"constant\":true,\"
inputs\":[],\"name\":\"getConsumerID\",\"outputs\":[{\"name\":\"\",\"
type\":\"string\"}],\"payable\":false,\"stateMutability\":\"view\",\"
type\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"
getConsumerAddress\",\"outputs\":[{\"name\":\"\",\"type\":\"address
\"}],\"payable\":false,\"stateMutability\":\"view\",\"type\":\"function
\"},{\"constant\":false,\"inputs\":[],\"name\":\"reset\",\"outputs
\":[],\"payable\":false,\"stateMutability\":\"nonpayable\",\"type\":\"
function\"},{\"inputs\":[],\"payable\":false,\"stateMutability\":\"
nonpayable\",\"type\":\"constructor\"},{\"anonymous\":false,\"inputs
\":[{\"indexed\":false,\"name\":\"producerAddress\",\"type\":\"address
\"}],\"name\":\"Alert\",\"type\":\"event\"}]","bin":""}},"version":"
0.4.21+commit.dfe3193c.Darwin.appleclang"};

4 var acContractAbi = acOutput.contracts[’AccessContract.sol:AccessContract’].
abi;

5 var acContract = eth.contract(JSON.parse(acContractAbi));
6 var acBinCode = "0x" + acOutput.contracts[’AccessContract.sol:AccessContract’

].bin;
7 personal.unlockAccount(eth.accounts[0], PASSWORD);
8 var deployTransactionObject = {from: eth.accounts[0], data: acBinCode, gas:

1000000};
9 var acInstance = acContract.new(deployTransactionObject);

10
11 var i = 0;
12 while (!eth.getTransactionReceipt(acInstance.transactionHash) && i < 10){
13 console.log(’Transaction not mined: ’ + i);
14 admin.sleep(1);
15 i++;
16 }
17
18 var acAddress = eth.getTransactionReceipt(acInstance.transactionHash).

contractAddress;
19 console.log(’Transaction mined and stored at address: ’ + acAddress);
20
21 var ac = acContract.at(acAddress);

Listing B.1: Access control deploy script
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1 var ACADDRESS = "0xb209325f9a145acf66c2bfd0a8344196653e3d1f";
2
3 var acOutput={"contracts":{"AccessContract.sol:AccessContract":{"abi":"[{\"

constant\":false,\"inputs\":[{\"name\":\"id\",\"type\":\"string\"}],\"
name\":\"requestAccess\",\"outputs\":[{\"name\":\"\",\"type\":\"bool
\"}],\"payable\":false,\"stateMutability\":\"nonpayable\",\"type\":\"
function\"},{\"constant\":false,\"inputs\":[],\"name\":\"kill\",\"
outputs\":[],\"payable\":false,\"stateMutability\":\"nonpayable\",\"type
\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"isOccupied
\",\"outputs\":[{\"name\":\"\",\"type\":\"bool\"}],\"payable\":false,\"
stateMutability\":\"view\",\"type\":\"function\"},{\"constant\":true,\"
inputs\":[],\"name\":\"getConsumerID\",\"outputs\":[{\"name\":\"\",\"
type\":\"string\"}],\"payable\":false,\"stateMutability\":\"view\",\"
type\":\"function\"},{\"constant\":true,\"inputs\":[],\"name\":\"
getConsumerAddress\",\"outputs\":[{\"name\":\"\",\"type\":\"address
\"}],\"payable\":false,\"stateMutability\":\"view\",\"type\":\"function
\"},{\"constant\":false,\"inputs\":[],\"name\":\"reset\",\"outputs
\":[],\"payable\":false,\"stateMutability\":\"nonpayable\",\"type\":\"
function\"},{\"inputs\":[],\"payable\":false,\"stateMutability\":\"
nonpayable\",\"type\":\"constructor\"},{\"anonymous\":false,\"inputs
\":[{\"indexed\":false,\"name\":\"producerAddress\",\"type\":\"address
\"}],\"name\":\"Alert\",\"type\":\"event\"}]","bin":""}},"version":"
0.4.21+commit.dfe3193c.Darwin.appleclang"};

4 var acContractAbi = acOutput.contracts[’AccessContract.sol:AccessContract’].
abi;

5 var acContract = eth.contract(JSON.parse(acContractAbi));
6
7 var ac = acContract.at(ACADDRESS);

Listing B.2: Access control access script
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