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Hash Functions
You don't do what you want to

But you do the same thing every day
Jello Biafra, 1987

wo chapters ago I said I would explain what a hash-linked list
was,  and  why  hash-linked  lists,  and  indeed  hashes,  are  of

fundamental importance in the blockchain world. As is usually the
case with blockchain,  hash-linked lists  only offer  one part  of  the
solution,  which  is  to  provide  non-repudiation.  The  other  part  is
called consensus – either through proof of work or through some
other means.

T

I’ve just read back over that paragraph, and realized that there
are too many terms and concepts packed into too few words. It’s the
kind of paragraph that makes sense if you already understand the
individual concepts and the effect of their combination, but if you
don’t, then it’s gibberish.

So  let’s  back  up,  forget  about  computer  science  and
cryptography concepts,  and  start  by  looking  at  something  in  the
familiar social world, namely what non-repudiation is.
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That never happened!
When it comes to complicated social interactions, people often

go back on their word. A handshake deal turns into an argument
after one party fails to deliver to the other, or delivers something
that the second party considers insufficient.

That  is  why society invented contracts  –  agreements,  usually
(but  not  always)  drafted  in  writing,  in  which  all  the  terms  and
conditions  are  laid out,  along with costs,  deadlines,  deliverables,
and above all penalties if the contract isn’t honored. Contracts are
backed by the courts,  and hence governments with their ultimate
threat of force: either imprisonment or the seizure of assets.

repudiation: the act of  refusing to accept some-
thing or someone as true, good, or reasonable.

— the Cambridge Dictionary26

So what happens if one party claims that they never signed the
contract? Or that the sheaf of papers being waved by the other party
has been altered, and the terms currently being presented weren’t
the terms that were initially agreed on?

This is known as repudiation, and a number of techniques to
ensure  the  opposite,  namely  non-repudiation,  have  been  used
through history to avoid this, the two most obvious being signatures
and witnesses.

Signatures do not just include scrawling your name in your own
handwriting or style on a piece of paper. In days gone by things
called  “seals”  were used.  Devices  such  as  signet  rings  or  chops
(symbols  carved  into jade or  soapstone)  for  making  unforgeable
marks in wax or with ink, presumably by the individual who had
control  of  the  seal.  And  in  these  modern  days,  we  have  digital
signatures, in which the controller of a unique sequence of ones and
zeros can use software based on cryptographic algorithms to create
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yet another sequence of ones and zeros that only the holder of a
digital signing key could have produced.

Witnesses  are  usually  people  with  “skin  in  the  game”,  either
notaries who are effectively paid witnesses, or other professionals
such as lawyers,  doctors,  or  priests,  who have something to  lose
from lying about their earlier attestation.

There is, however, a third way. You can put the document out in
public, which means that enough people will have a copy for future
comparisons, in which case you are using the world as a witness.
But what if your document is very large? Or even worse, what if you
want  to  prove at  a later  date  that  you had the document in your
possession, but it  contains confidential  information that you can’t
simply publish on the World Wide Web?

Cryptographic hash functions to the rescue!

Shorter is better
To begin with, you need to understand what a hash function is:

an algorithm that takes as its input a data file of any size (so it will
work on any kind of data, whether it’s a short string of letters and
numbers, or a large video file), and outputs a fixed-length number.
Furthermore, if you put the same data in at a later date, you get the
same  output  back.  Hash  functions  don’t  change  their  mind  over
time, and there is no true randomness built into them.

The  initial  use  of  hash  functions  was  for  indexing  and  then
searching  for  data.  An  analogy is  car  number  plates.  It  is  much
easier to report a car to the police, and for them to subsequently find
it  if  you can give them the number  on the plate.  Describing the
make,  model,  color,  and distinguishing marks such as fluffy dice
hanging from the rear-view mirror doesn’t really cut it.

In Finland,  number plates are typically two or three letters,  a
dash, and one, two, or three digits.

However, number plates are simply serially assigned, so there is
no algorithm used to generate them. The authorities could have used
a simple formula based on the vehicle identification number (VIN),
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instead. The VIN itself can’t be used, because it is 17 characters
long, which would make it  too small to read if put on a number
plate.

A simple example would be to use the first three letters of the
VIN and sum each pair of digits of the serial number (modulo 10)
to get the last three digits of the plate. So for example, a vehicle
with a VIN of SCEDT26T8BD005261 would be fitted with a much
shorter number plate that reads SCE-077, as shown in figure 1.

Here you can immediately see one of the problems with hash
functions – different inputs can map to the same output. The first
three  characters  of  a  VIN  number  represent  the  “world
manufacturer identifier”, and the last six digits are the vehicle serial
number,  so  two  identical  models  of  the  car  made  in  the  same
factory  nine units apart  will  often end up with the same number
plate.

In the computer science world, this is described as a collision,
and a good hash function is supposed to be collision-resistant. Two
different inputs to the hash function should have an extremely low
probability  of  producing  the  same  output.  Our  number  plate
algorithm obviously doesn’t satisfy that requirement, so it’s not a
good hashing function.

Figure 1: An example of a hash function
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The fingerprint of a file
Sometimes a hash of a file is described as a “fingerprint”, in that

it’s often a lot smaller, but it is almost uniquely linked to the file.
Almost. 

There  is  a  very  simple  proof  that  a  hash  function  cannot
guarantee  uniqueness.  Consider  a  hash  function  that  outputs  an
eight-digit number for any input. That means that the outputs can
range anywhere from 0 to 99,999,999, so there are a total of 100
million possible outputs. However, there have been over 100 million
books published27. This means that if you fed each book in turn into
the hash function and were amazingly lucky in that when processing
the first 100 million books there were no two books with the same
hash output, it is guaranteed that once you feed in the 100,000,001st

book, it has to have the same output as one of the previous books.
However,  the  cryptographic  hash  functions  that  are  used  to

produce  fingerprints  for  files  have  much  bigger  outputs.  For
example, the RIPEMD-160 hash function outputs a 160-bit number,
which means there are about 1.5 × 1048 possible outputs. Roughly
speaking, that’s  comparable to the number of atoms that constitute
the Earth28.

Another very popular blockchain cryptographic hash function is
called SHA-256, and it has as its output a 256-bit number, of which
there are about 1.15 × 1077. For comparison, the current estimate as
to how many particles there are in the entire visible universe is about
1080,  so that’s one distinct output for every thousand particles we
know of (or rather,  can estimate  the  existence of29).  In any case,
they’re  both  numbers  that  are  so  big  that  they  make  the  USA’s
budget deficit  of  $3 trillion look like pocket change, even if you
count it in cents30. 

Although there may be a lot of 256-bit numbers, any individual
number can be represented very simply using a 16 by 16 grid, as in
figure 2. When represented as such, it does start to look a bit like a
fingerprint, or perhaps four chess boards glued together in a bigger
square.
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Figure 2: Grid representation of a SHA-256 hash output

Cryptographic hash functions
In the previous section,  I  subtly switched from talking about

“hash functions” to “cryptographic hash functions”. To qualify as
the latter you need to have a few extra properties. First, let’s recap
what we have so far:

1. A hash function  takes as an input some data of any size
(even empty data), and invariably produces an output of a
fixed length,

2. Outputs are deterministic, which means that the same input
gives  the  same hash output  time  after  time,  even if  you
perform the hashing again days, weeks, or years later.
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3. Collisions (identical hash outputs for two different inputs)
are rare.

Cryptographic hash functions also require that:

4. When given a  hash output,  it  is  practically  impossible  to
produce  an  input  that  when  hashed  returns that  output.
Cryptographic hash functions are meant to be irreversible.
That’s  why  they  are  also  sometimes  known  as  one-way
functions or trapdoor functions. 

5. It  should  be  practically  impossible  to  find  two  different
inputs  that  give  the  same  output  (this  is  kind  of  a
combination  of  items  3 and 4 on  this  list,  but  there  is  a
subtle difference that should become clearer later).

6. Two very similar inputs should, generally speaking, produce
very  different  hash  outputs.  For  a  cryptographic  hash
function to work that way, it has to act in what seems like a
random  fashion,  without  actually  being  random.  Instead,
cryptographic hash functions should be pseudo-random. See
item 2 on this list.

Some  papers and textbooks also list a further property, namely
that it should be fast and easy to compute the hash output from an
input31.  However,  that  is  not  always the case.  Fast  and easy is  a
relative term, and for some uses, especially in blockchain, we want
the computation of a hash to take a bit of effort. There will be more
on that later as well.

Magical elves under toadstools
The ideal cryptographic hash function would be the algorithmic

equivalent of a magic elf sitting under a toadstool, with a notebook,
a pen, and a coin. We will call him ELF-256.
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ELF-256 sits there patiently waiting for someone to pass him a
message.  On  receiving  the  message,  the  elf  springs  into  action
infinitely quickly (he’s a really fast elf):

He checks in his notebook to see if  the message is already in
there.

• If it is not, he writes it down in his book, and tosses the
coin  two  hundred  and  fifty-six  times,  writing  down  the
result after the message for each coin toss: a 1 for heads,
and a 0 for tails.

Then he checks to see if that particular sequence of 1s and
0s  has  already  previously  been  generated  for  an  earlier
message.  If it  has,  he crosses it  out  and repeats the coin
tosses again, and if necessary, again and again until he is
sure a new unique number has been generated for the new
message.

• If, on the other hand, the message is already in the book, he
looks up the number he wrote down after it the previous
time he saw it.

In either case, he then pauses for a fixed duration of time –
perhaps a  microsecond – and then reads  back the list  of
ones  and  zeros  that  are  jotted  down  in  his  book  to  the
person who handed him the original message.

Oh,  and finally,  ELF-256 jealously guards  his  notebook with
magic, so no one else can see what is written on the pages.

Why is ELF-256 a perfect cryptographic hash function? We can
backtrack through our list of properties and see exactly why:

1. The elf always reads out exactly 256 digits, regardless of
the length of the message passed to him.

2. If the same message is passed to the elf sometime later, he
will read out the same number that he generated the first
time he saw the message.
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3. The elf never uses the same output number twice, so there
can never be any collisions. Well – there can be, but only
once he has generated 2256 outputs,  which as I previously
demonstrated is an almost unfathomably large number.

4. Imagine you are trying to find a message the elf responds to
with a sequence of 256 ones. The chance of the elf tossing
that many heads in a row is 1 in 2256. Given that the elf takes
one microsecond to respond, the odds are that it will take
about two thousand vigintillion years*. For comparison, the
universe  has  only  been  in  existence  for  about  14  billion
years. In short: it’s not going to happen.

5. The  elf  does  not  reuse  output  numbers,  so  two  different
messages can never have the same output.

6. The outputs are generated randomly, so there is no relation
between the original messages and the outputs. As a result,
two  very  similar  messages  are  going  to  get  two  very
different responses from the elf.

Cryptographers  who  work  on  designing  cryptographic  hash
functions are trying to come up with functions that behave as well as
ELF-256, but competing with magical elves is a difficult task.

Oh the wonderful things that a hash 
can do

If you have paid enough attention over the last few pages, you
should have a decent enough understanding of how cryptographic
hash functions work and be able to appreciate how amazingly useful
these things are in all sorts of areas of computing. We have already
looked at the fact that you can take a confidential document, put it
into a cryptographic hash function like SHA-256, and then make the
two hundred and fifty-six bit output number public knowledge. At a
later date, you can produce the original document, and anyone can

* A vigintillion is a 1 followed by 63 zeros.
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hash it with SHA-256 to check that it is indeed the real deal, and
has not been tampered with. If you published the hash output in the
notices  section  of  a  newspaper,  you  even  have  a  time-stamped
record of when you had the document in your possession.

And the best and most interesting uses, in my opinion, are when
you start hashing the output of previous hashes. What that means is
that you feed an input into a cryptographic hash function, and then
you take the output you get and put it back into the hash function
again. And sometimes again and again. In the next four subsections,
we will have a closer look at some of those applications.

One time hash pads
Up until a couple of years ago, Finnish banks used “code cards”

to  allow their  customers  to  securely  log  in  to  their  online  bank
accounts. The card would have a list of a hundred different four-
digit numbers, and each time you used one, you would cross it off
the  list,  and  the  next  time  you  logged  in  you  would use  the
following unmarked number.  When you ran out  of  numbers,  the
bank would send you another card in the post.  Now that they’ve
finally  switched to authenticator apps,  I’ve got  a  bunch of them
sitting in the drawer of my desk that I should probably throw away,
but I’m waiting until winter to burn them in the fireplace. You never
know if they might still work, after all.

Such cards are known as one-time password pads, and they are
usually  constructed  randomly.  However,  there  is  another  way  to
make  them using  the  repeated  application of  cryptographic  hash
functions.

In figure 3, I show what happens when the message ‘the quick
red fox jumped over the lazy brown dog’ is passed into the SHA-
256 hash function, and the output is recorded in the next row of the
table. Each row that follows contains a hash of the previous row.

 I’ve entered the numbers in hexadecimal to make sure they fit
in the table. As modern humans, we tend to use decimal notation for
numbers (our digits are 0 to 9, presumably because we have ten
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fingers), but note that not too long ago the Romans used letters like
I, V, X, C, and M instead. So there’s nothing special about the way
we choose to write numbers today. Hexadecimal is a way of writing
numbers  if  you  were  fortunate  enough  to  be  born  with sixteen
fingers (the letters a, b, c, d, e, and f are used to represent the extra
digits), and as it happens, computers like to pretend that they have
sixteen fingers. But don’t worry about it too much. Just think of it as
writing numbers in a slightly different way.

Back to the story at hand: each time the output is fed into SHA-
256 again, to get another number, and so on for seven more goes.
You can keep hashing outputs as long as you like, to make a longer
and longer one-time hash pad, depending on how many times you
think it will be used.

You can try it for yourself, as there are plenty of online SHA-256
hash generators32. One thing to note: your first input is text, but the
output is a hexadecimal number, so when you copy/paste it into the
input box, you need to select the input type to be hex.

You may be wondering, what is the point of all of this? How
does it work? To start with, you need to get the last entry in the table
to the entity that you want to authenticate yourself to (and there is
more on authentication in the chapter titled “Error: Reference source
not found” on page  Error: Reference source not found). And then,
whenever you want to prove to that entity that they are talking to
you rather than someone else, you give them the entry in the table
just before the one they already have.
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the quick red fox jumped over the lazy brown dog

dd77f952e29e4a64c2bf5e27993fd2ebf1b0f378237abd299239bb4454d028b8

355a1ef19cb2e02ca528f60a8d9dfe533cb37e0b52ace3fabf960bd710904fe5

69c3610d92b04e41ef0937b27b06bfbea7e55f7716dd534e354f99041e8fff72

324e14abb32ee21573b5c1bdd7d4dff1d485c0ab030bd2d4c9780d5858c08dda

1c554d67a79a27b12a43d7e3e2b212f468312541cefda684c7678ea819745b24

5470bbf5478dc15bb25cd095bffb09bed25abb20063fc7e914d7e28ab80ac40f

665593ea8363949abcd3208a8470cd35be42f30809fd2ef8254244c585161136

Figure 3: A hash function-generated one-time password pad

So  what  happens  then?  Well,  they  take  the  password  you
presented  them  with,  and  simply  hash  it  with  the  SHA-256
function.  If  the result  is  the previous password that  they already
have, then they know it is you. Do you remember cryptographic
hash function property number 4? It’s pretty much impossible to
create  an input  that,  when hashed,  gives  a  specific  output.  As a
result,  it’s  more than reasonable for the bank to believe that  the
person who gave  them the  precursor  number  to  the  output  they
previously  had  is  the  same  person.  And  that’s  the  point  of
identifying yourself with a one-time password pad: to prove you are
the same person they were previously talking to.

Hash linked lists
Imagine you are the proprietor of a popular newspaper. Every

day your presses print out a new issue with the company masthead,
the date, and the news of the day.

And then one day you discover that an eccentric billionaire has
decided to take one of your earlier editions from two months ago,
change one of the stories so it says something completely opposite
to what the genuine issue actually said (perhaps it is even libelous),
and has printed millions of copies. And not only that, but he then
paid an army of highly trained ninjas to break into all the houses of
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your loyal subscribers in order to replace their cherished copies with
the false ones.

That  may sound like  a far-fetched scenario,  but  in  the  online
world it is actually not that hard to achieve – printing digital copies
costs virtually nothing, and hacking allows a single highly skilled
computer ninja to break into many digital accounts. How can you
protect yourself against this scenario?

Cryptographic  hash  functions  to  the  rescue!  These  functions
allow us to produce something called a “hash linked list”. If each
edition of the newspaper contains a paragraph or notice that includes
a hash of contents of the paper published the day before, then the
eccentric billionaire  has a much more difficult  task on his hands.
Why is that the case?

Because your newspaper history is now a hash-linked list. If a
paper from sixty days ago is altered, then its hash is going to be
different. That means that the paper from the next day needs to have
the notification containing that  hash altered too,  which alters  the
hash of that paper. And so on, and so on, through all the papers right
up to today.

Suddenly our eccentric billionaire doesn’t just have to make a
change to the article that he disliked from two months ago, but he
has to change every single newspaper from then on.  That’s a lot
more  work,  and  furthermore,  with  another  application  of
cryptographic hash functions, namely “proof of work”, we can make
it  even harder  for  him,  to  the  point  where  he  might  as  well  not
bother.

Proof of work
The fact of  the matter is  that  in the scenario presented in the

previous  section  we  made  it  a  little  bit  harder  for  the  eccentric
billionaire  to  subvert  our  newspaper,  but  we  didn’t  make  it
impossible. Instead of simply replacing one issue of the paper, our
hash-linked list means that he has to replace sixty issues (or more, if
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the story that he hated was further back in the past). That’s a bigger
pain in the neck, but it can still be overcome.

This is  where “proof of work” properly enters the story.  The
concept was first invented by Dwork and Moni in 1993 as a means
for combating spam emails33. Jakobsson and Juels14 then coined the
term “proof of work” to describe the idea and expanded on it, and
Hal Finney adapted it to enable the creation of tokens backed by
proof of work34, the precursor to Bitcoin.

Satoshi Nakamoto’s insight was to apply that concept to hash-
linked  lists  in  order  to  make  it  harder  and  harder  over  time  to
rewrite  the  past,  and  to  put  the  whole  thing  on  a  peer-to-peer
network, thereby allowing anyone to view the data in the list, verify
that it is correct, and even assist in ensuring so much work is done
when adding more data that no one person can go back and re-write
it. 

In other words,  with a historical record stored in a hash-linked
list that is secured by proof of work, the further back in the past the
alteration  you  want  to  make  is,  the  harder  it  is  to  perform the
rewrite. You have to redo all the work from the point that you want
to change, all the way through to the future.

So how does proof of work actually work in practice? Look
back at figure 3 - all those entries below the passphrase “the quick
red fox jumped over the lazy dog” are numbers. The fifth number
starts with 1, and it’s therefore the smallest number on the list. That
is what proof of work is aiming at – finding a hash output that is
below a target level; one that is small.

Hang on, if I hash the phrase, and I get a big number, then that’s
it. How am I going to get a better cryptographic hash output? The
answer is that you have permission to add some “junk” at the end of
the phrase. In cryptography, this is called a nonce, which is short for
“number used only once”.

Instead of feeding the output of the hash function back into the
SHA-256 hash function, as we did in the previous section, let’s feed
our original sentence in again and again with different endings, as
shown in figure 4, until we get an output that starts with 0:
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This input’s hash: Starts with:
the quick red fox jumped over the lazy brown dog 0 3eec2267...

the quick red fox jumped over the lazy brown dog 1 30a16983...

the quick red fox jumped over the lazy brown dog 2 Be2cf376...

the quick red fox jumped over the lazy brown dog 3 12e08101...

the quick red fox jumped over the lazy brown dog 4 729107f6...

the quick red fox jumped over the lazy brown dog 5 297e5ae2...

the quick red fox jumped over the lazy brown dog 6 9e24b096...

the quick red fox jumped over the lazy brown dog 7 3f938d83...

the quick red fox jumped over the lazy brown dog 8 0ca85b7d...

Figure 4: SHA-256 hashing of a phrase with an added nonce

That didn’t take long – only nine tries.  Because the SHA-256
cryptographic hash function acts as a random number generator, on
any individual attempt the odds are 1 in 16 that we will get an initial
digit  of  0  (remember,  in  hexadecimal,  there  are  sixteen  possible
digits). That means that we have a 50% chance of finding a suitable
nonce to go with the  sentence within eleven goes. Of course, we
could be unlucky and have to try hundreds of times, or we could be
lucky and find a suitable nonce in one go.

What if we are looking for an output that starts with two zeros?
The odds for an individual attempt are 1/16 × 1/16, or 1/256. To
have better  than even odds  of  finding the suitable  nonce we  are
going to need to try 178 different nonces, so it’s probably going to
take more work. And if we want to find an output with eight leading
zeros, well for any individual attempt we have a chance of less than
one in four billion that we will luck out and find it. That means to
have a better than 50% chance of finding a suitable nonce, we are
going to have to try hashing over three billion times.

In other words, the smaller the hash output is required to be, the
more work needs to be done to find it. If your computer can perform
a SHA-256 hash in 1 microsecond, and I refuse to read an email you
send me if it doesn’t hash to a number with eight leading zeros, on
average it is going to take you about 50 minutes to find a suitable
nonce to add to your message that satisfies that requirement. And it
only takes me 1 microsecond to check that you have done the work.
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And that is how proof of work could be used to prevent spam.
Similarly, returning to our newspaper example, an individual issue
can be made harder to forge by requiring that a nonce is added to
the last page, such that the full  contents of the newspaper, when
hashed with SHA-256, produce an output with eight leading zeros.
Now our eccentric billionaire would have to do fifty hours extra
hashing work if he wanted to change an issue that came out sixty
days ago. But the downside is that the newspaper office is delayed
by about  an hour each day when issuing the next paper because
they have to do the extra work too. Fortunately, they get to do it day
by day, rather than in one big go.

Merkle trees
We’ve looked at repeatedly hashing a passphrase to generate a

one-time  password  pad,  hash  linking  lists  of  blocks  of  data  by
including  a  hash  of  the  previous  block  in  the  next  block,  and
making  people  (or  rather  their  computers)  prove  that  they  have
done some work by challenging them to add some extra data to
their messages, which causes them to hash to a low number output.
What else can be done with cryptographic hash functions? I will
start with an analogy:

Imagine a fictional country, where all the residents are totally
obsessed  with  the  law,  and  the  laws  that  are  passed  by  the
parliament or that arise from case history out of court decisions are
gathered up and bound in special books.

The funny thing is that the contents of those books then become
the absolute law of the country, which means that if somebody can
tamper  with  one  of  them and add  a  rule  that  says  that  “people
named Gary are  allowed to conduct  bank heists  with impunity”,
then anyone called Gary is allowed to rob banks without fear of
prosecution. Criminals could tamper with the laws in order to get
away with their crimes!

The  residents  have  come  up  with  a  very  clever  scheme  to
protect  these books from such tampering without  it  requiring an
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immense  amount  of  effort.  The  first  thing  is  that  they  have  an
amazing machine that you can feed the text of a book into and it
produces something similar to an ISBN number as an output that
you can stick on the book, but the ISBN number that is produced is
unique  to  each  different  form  of  text.  It’s  a  cryptographic  hash
function machine. If you take a book and you change one letter and
then put it into this machine, you get a completely different ISBN
code out.

The second thing about it is that you can't engineer a book to
give a specific ISBN code - they're almost random in that respect.
Again, evidence that the machine is a cryptographic hash function.

What the inhabitants of this country could do is to put all of the
books in a library, and then gather all the texts from all the books,
feed them into the machine, and make one single code for the whole
library.  That  would  ensure  that  in  the  future  if  tampering  was
suspected, they could repeat the whole arduous process, and if the
second code matched the first one, they'd know that all the books
were intact and no one had messed about with them.

But this is  terribly inefficient  –  it  means that  every time you
suspect a single letter or word in one book has been changed, you
then have to go and collect all the books in the whole library from
all the different rooms in order to ensure everything is okay.

Instead, they have taken the following approach:

• They group books into pairs. Each book is run through the
machine and gets its own code, which is stuck on the back
of the book, and then the two books are put on a shelf.

• The  pair  of codes  off  the  back  of  the two  books  are
concatenated (that  means  written one after  the other)  and
that new concatenated code is fed into the machine to get
yet another code. The shelf is labeled with that code.

• Each  bookcase  has  two shelves.  They  repeat  the  process
with the codes on  those shelves:  they take a copy of the
codes of the front of the shelves, concatenate them, and put
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them in the machine to get a new code, which they stick on
the bookcase.

• They have two bookcases in each room.  Again, the same
process is conducted with the codes on the bookcases,  in
order to get a label for the room's door.

• And there are two rooms on each floor of the law library so
in order to label the floor, they use the codes from the two
doors and then finally they put a label on the front of the
law  library  that  is  the  codes  from  the  two  floors
concatenated and run through the machine.

I’m sure you understand what the process is by now. but you
may be wondering, “Why are they doing this?”

If  there's  a  court  case,  and  it  requires  the  laws  from  book
number three, the court officials don't have to go and gather up all
the other books to check that just the relevant book has not been
changed. They take book number three and check that its code, or
hash, matches. That means running one book through the machine,
and verifying that the output matches the sticker on the back of the
book.  Now  somebody  could  have  gone  in  and  changed  book
number 3, then run it through the machine and put a new code on it.
But what the court officials can now do is look at the number on the
other book next to it, check that's okay, and that together they hash
to the shelf label.

Of  course,  somebody  could  have  changed  the  shelf  label  as
well, but then the court officials take the shelf label below and they
concatenate  and  check  again,  and  then  they  check  that  the  two
bookcase  labels  give  the  room  number  and  that  the  two  room
numbers on the floor give the floor number and finally that the two
floor numbers give the number on the front of the law library. It still
sounds like a lot of work, so let’s put it in a list:

1. Check that book codes hash to shelf code,

2. Check shelf codes hash to bookcase code,
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3. Check bookcase codes hash to room code,

4. Check room codes hash to floor codes,

5. Check floor codes hash to library code, and

6. Check library code hasn’t changed.

That’s a total of six basic operations instead of collecting all 32
books (did you work out how many books a library of this type can
hold?) in order to ensure that the law in one book is still correct.

There is one final piece, namely ensuring that the code on the
front of the library is correct, but as it is displayed out in public on
the street (and perhaps they have security cameras pointed at it too),
the chances of someone called Gary making all those changes and
then getting up on a ladder in broad daylight without being seen are
slim indeed.

What I have described is called a Merkle tree (because it was
invented and patented by Ralph Merkle35), and it should be pretty
obvious  that  in  blockchain  systems  such  as  Bitcoin  the  books
correspond  to  transactions.  The  code  on  the  front  of  the  library,
which in cryptographic terms is called the root of the Merkle tree, is
stored in the  block header to  ensure it  cannot  be tampered with,
making the library the equivalent of a blockchain block.

These days it is a very common practice to use Merkle trees to
allow people to verify a snippet or chunk of data has remained intact
and unaltered, but without having to download lots and lots of other
irrelevant transactions. You only have to check a single branch of
the Merkle tree, rather than the whole tree. As a result, Merkle trees
are  used  in  such  places  as  the  peer-to-peer  file-sharing  system
BitTorrent,  the  anonymous  communication  network  Tor,  the
distributed version control system for software development called
Git, and of course: blockchains.
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