ICO smart contracts Documentation
Release 0.1

Mikko Ohtamaa

Oct 03, 2017

Contents:

1 Introduction

2 Contracts

3 Installation

4 Command line commands

5 Interacting with deployed smart contracts
6 Contract source code verification

7 Test suite

8 Chain configuration

9 Design choices

10 Other

11 Commercial support

12 Links

11

17

37

39

41

43

45

47

49

ICO smart contracts Documentation, Release 0.1

This is a documentation for ICO package providing Ethereum smart contracts and Python based command line tools
for launching your ICO crowdsale or token offering.

ICO stands for a token or cryptocurrency initial offering crowdsale. It is a common method in blockchain space,
decentralized applications and in-game tokens for bootstrap funding of your project.

This project aims to provide standard, secure smart contracts and tools to create crowdsales for Ethereum blockchain.

Contents: 1

https://github.com/tokenmarketnet/ico
https://tokenmarket.net/what-is/ico

ICO smart contracts Documentation, Release 0.1

2 Contents:

CHAPTER 1

Introduction

* Links

* About the project

* Token sales

* Quick token sale walkthrough

* Features and design goals

* Support

This package contains Ethereum smart contracts and commnd line toolchain for launching and managing token sales.

Links

Github issue tracker and source code

Documentation

About the project

ICO stands for a token or cryptocurrency initial offering crowdsale. It is a common method in blockchain space,
decentralized applications and in-game tokens for bootstrap funding of your project.

This project aims to provide standard, secure smart contracts and tools to create crowdsales for Ethereum blockchain.

As the writing of this, Ethereum smart contract ICO business has been booming almost a year. The industry and
development teams are still figuring out the best practices. A lot of similar smart contracts get written over and over
again. This project aims to tackle this problem by providing reusable ICO codebase, so that developers can focus

https://github.com/tokenmarketnet/ico
https://ico.readthedocs.io/en/latest/
https://tokenmarket.net/what-is/ico

ICO smart contracts Documentation, Release 0.1

on their own project specific value adding feature instead of rebuilding core crowdfunding logic. Having one well
maintained codebase with best practice and security audits benefits the community as a whole.

This package provides

Crowdsale contracts: token, ICO, uncapped ICO, pricing, transfer lock ups, token upgrade in Solidity smart
contract programming language

Automated test suite in Python

Deployment tools and scripts

Token sales

These contracts have been tested, audited and used by several projects. Below are some notable token sales that we
have used these contracts

Civic
Storj
Monaco
DENT
Bitquence
InsureX

... and many more!

Quick token sale walkthrough

Features and design goals

Best practices: Smart contracts are written with the modern best practices of Ethereum community

Separation of concerns: Crowdsale, token and other logic lies in separate contracts that can be assembled
together like lego bricks

Testable: We aim for 100% branch code coverage by automated test suite
Auditable: Our tool chain supports verifiable EtherScan.io contract builds

Reusable: The contract code is modularized and reusable across different projects, all variables are parametrized
and there are no hardcoded values or magic numbers

Refund: Built-in refund and minimum funding goal protect investors

Migration: Token holders can opt in to a new version of the token contract in the case the token owner wants
to add more functionality to their token

Reissuance: There can be multiple crowdsales for the same token (pre-ICO, ICO, etc.)
Emergency stop: To try to save the situation in the case we found an issue in the contract post-deploy

Build upon a foundation: Instead of building everything from the scratch, use OpenZeppelin contracts as much
as possible as they are the gold standard of Solidity development

Chapter 1. Introduction

https://www.civic.com/
https://storj.io/
https://mona.co/
https://dentcoin.com/
https://www.bitquence.com/
http://insurex.co/
http://ico.readthedocs.io/en/latest/verification.html
https://github.com/OpenZeppelin/zeppelin-solidity/

ICO smart contracts Documentation, Release 0.1

Support

TokenMarket can be a launch and hosting partner for your token sale. We offer advisory, legal, technical and marketing
services. For more information see TokenMarket ICO services. TokenMarket requires everyone to have at least
business plan or whitepaper draft ready before engaging into any discussions.

Community support is available on the best effort basis - your mileage may vary. To get the most of the community
support we expect you to be on a senior level of Solidity, Python and open source development. Meet us at the Gitter
support chat.

1.6. Support 5

https://tokenmarket.net/ico-professional-services
https://gitter.im/TokenMarketNet/ico
https://gitter.im/TokenMarketNet/ico

ICO smart contracts Documentation, Release 0.1

6 Chapter 1. Introduction

CHAPTER 2

Contracts

e Introduction

* Preface

* TODO

Introduction

This chapter describers Ethereum crowdsale smart contracts.

Preface

* You must understand Ethereum blockchain and Solidity smart contract programming basics

* You must have a running Ethereum full node with JSON-RPC interface enabld

TODO

http://solidity.readthedocs.io/

ICO smart contracts Documentation, Release 0.1

8 Chapter 2. Contracts

CHAPTER 3

Installation

* Preface

o Setting up - OSX
 Setting up - Ubuntu Linux 16.04

Preface

Instructions are written in OSX and Linux in mind.
Experience needed
* Basic command line usage

* Basic Github usage

Setting up - OSX

Packages needed
* Populus native dependencies

Get Solidity compiler. Use version 0.4.12+. For OSX:

’brew install solidity ‘

Clone this repository from Github using submodules:

’git clone —-recursive git@github.com:TokenMarketNet/ico.git ‘

http://populus.readthedocs.io/en/latest/quickstart.html
http://solidity.readthedocs.io/en/develop/installing-solidity.html

ICO smart contracts Documentation, Release 0.1

Python 3.5+ required. See installing Python.

python3.5 —-version
Python 3.5.2

Create virtualenv for Python package management in the project root folder (same as where setup . py is):

python3.5 -m venv venv

source venv/bin/activate

pip install -r requirements.txt
pip install -e

Setting up - Ubuntu Linux 16.04

Install dependencies:

sudo apt install -y git build-essential libssl-dev python3 python3-venv python3-
—setuptools python3-dev cmake libboost-all-dev

Python 3.5+ required. Make sure you have a compatible version:

python3.5 —--version
Python 3.5.2

Install Solidity solc compiler:

sudo apt install software-properties—common

sudo add-apt-repository -y ppa:ethereum/ethereum
sudo apt update

sudo apt install -y ethereum solc

Then install ico Python package and its dependencies:

git clone #

cd Smart-Contracts

python3.5 -m venv venv

source venv/bin/activate

pip install wheel

pip install -r requirements.txt
pip install -e

10 Chapter 3. Installation

https://www.python.org/downloads/
http://solidity.readthedocs.io/en/develop/installing-solidity.html

CHAPTER 4

Command line commands

e Introduction
* deploy-contracts
* deploy-token
* distribute-tokens

e token-vault

e combine-csvs

Introduction

ico package provides tooling around deploying and managing token sales and related tasks.

Here are listed some of the available command line commands. For full list see setup.py [console-scripts]
section.

All commands read populus.json file for the chain configuration from the current working directory. The chain config-
uration should set up a Web3 HTTP provider how command line command talks to an Ethereum node. The Ethereum
node must have an address with ETH balance for the operations. For more information see Chain configuration.

The most important command is deploy-contracts that allows scripted and orchestrated deployment of multiple related
Ethereum smart contracts.

deploy-contracts

Scripted deployment of multiple related Ethereum smart contracts.

See also Contract source code verification.

11

https://github.com/TokenMarketNet/ico/blob/master/setup.py#L61

ICO smart contracts Documentation, Release 0.1

Example YAML deployment scripts

* ‘allocated-token-sale <https://github.com/TokenMarketNet/ico/blob/master/crowdsales/allocated-
token-sale-example.yml>‘_ (based on DENT)

e dummy mintable token saale example

Help:

Usage: deploy-contracts [OPTIONS]
Makes a scripted multiple contracts deployed based on a YAML file.

Reads the chain configuration information from populus.json. The resulting
deployed contracts can be automatically verified on etherscan.io.

Example:
deploy—-contracts —-deployment-file=crowdsales/example.yml
——deployment —name=kovan——

address=0x001£fc7d7e506866aecab82clldab515e9dded02c25

Example files:

* https://github.com/TokenMarketNet/ico/blob/master/crowdsales/allocated-
token-sale-example.yml

* https://github.com/TokenMarketNet/ico/blob/master/crowdsales/example.yml

Options:

——deployment-name TEXT YAML section name we are deploying. Usual options
include "mainnet" or "kovan" [required]

——deployment-file TEXT YAML file definiting the crowdsale [required]

——address TEXT Deployment address that pays the gas for the
deployment cost. This account must exist on Ethereum
node you are connected to. [required]

—-help Show this message and exit.

deploy-token

Deploy a single token contract.

Example usage:

deploy-token —-help
Usage: deploy-token [OPTIONS]

Deploy a single crowdsale token contract.

Examples:

deploy-token —-chain=ropsten
——address=0x3c2d4ebeae8c4a31lccc56075b5£d81307b1627¢c6 ——name="MikkoToken
2.0" —-symbol=MOO --release-—

agent=0x3c2d4e5eae8c4a3lccc56075b5£d81307b1627c6 ——supply=100000

deploy-token --chain=kovan —--contract-name="CentrallyIssuedToken"

12 Chapter 4. Command line commands

https://github.com/TokenMarketNet/ico/blob/master/crowdsales/allocated
https://github.com/TokenMarketNet/ico/blob/master/crowdsales/example.yml

ICO smart contracts Documentation, Release 0.1

——address=0x001FC7d7E506866aEAB82C11dA515E9DD6D02c25 ——-name="TestToken"
——symbol=MOO --supply=916 —--decimals=0 —--verify —--verify-
filename=CentrallyIssuedToken.sol

Options:
——chain TEXT On which chain to deploy - see populus.json
——address TEXT Address to deploy from and who becomes as a owner
(must exist on geth) [required]
——contract-name TEXT Name of the token contract
——release—agent TEXT Address that acts as a release agent (can be same as
owner)
—--minting-agent TEXT Address that acts as a minting agent (can be same as
owner)
——name TEXT Token name [required]
——symbol TEXT Token symbol [required]
—--supply INTEGER Initial token supply (multipled with decimals)
—-—decimals INTEGER How many decimal points the token has
--verify / --no-verify Verify contract on EtherScan.io
—-verify-filename TEXT Solidity source file of the token contract for
verification
——master—address TEXT Move tokens and upgrade master to this account
--help Show this message and exit.
distribute-tokens
Help:

Usage: distribute-tokens [OPTIONS]

Distribute tokens to centrally issued crowdsale participant or bounty
program participants.

Reads in distribution data as CSV. Then uses Issuer contract to distribute
tokens. All token counts are multiplied by token contract decimal
specifier. E.g. if CSV has amount 15.5, token has 2 decimal places, we
will issue out 1550 raw token amount.

To speed up the issuance, transactions are verified in batches. Each batch
is 16 transactions at a time.

Example (first run):

distribute-tokens —--chain=kovan
——address=0x001FC7d7E506866aEAB82C11dA515E9DD6D02c25
——token=0x1644a421ae0a0869%pacl27fadcce8513bd666705 ——-master—
address=0x9a60ad6del85c4ea95058601beafl6f63742782a ——csv—
file=input.csv —--allow-zero --address-column="Ethereum address"
——amount-column="Token amount"

Example (second run, continue after first run was interrupted):

distribute-tokens —--chain=kovan
——address=0x001FC7d7E506866aEAB82C11dA515E9DD6D02c25
——token=0x1644a421ae0al0869%9bacl27fadcce8513bd666705 ——-csv—
file=input.csv —--allow-zero —-—-address-column="Ethereum address"

4.4. distribute-tokens

13

ICO smart contracts Documentation, Release 0.1

——amount-column="Token amount" —--issuer-—
address=0x2c9877534f62c8b40aebcd08ec9£54d20cb0a945

Options:
——chain TEXT
——address TEXT

——token TEXT
—-—csv-file TEXT
——address—-column TEXT
——amount—-column TEXT
-—limit INTEGER

--start-from INTEGER
——issuer—address TEXT

——master—address TEXT

On which chain to deploy - see populus.json
The account that deploys the issuer
contract, controls the contract and pays for
the gas fees [required]

Token contract address [required]

CSV file containing distribution data
[required]

Name of CSV column containing Ethereum
addresses

Name of CSV column containing decimal token
amounts

How many items to import in this batch

First row to import (zero based)

The address of the issuer contract - leave
out for the first run to deploy a new issuer
contract

The team multisig wallet address that does
StandardToken.approve () for the issuer
contract

-—allow-zero / —-no-allow-zero Stops the script if a zero amount row is
encountered
—-help Show this message and exit.
token-vault

Help:

token-vault —-help

Usage: token-vault [OPTIONS]

TokenVault control script.

1) Deploys a token vault contract

2) Reads in distribution data as CSV

3) Locks vault

Options:
—-—action TEXT
——chain TEXT
——address TEXT

——token—-address TEXT
——csv-file TEXT
——address—-column TEXT

——amount-column TEXT

—-—limit INTEGER

One of: deploy, load, lock

On which chain to deploy - see populus.json
The account that deploys the vault contract,
controls the contract and pays for the gas
fees [required]

Token contract address [required]

CSV file containing distribution data

Name of CSV column containing Ethereum
addresses

Name of CSV column containing decimal token
amounts

How many items to import in this batch

14

Chapter 4. Command line commands

ICO smart contracts Documentation, Release 0.1

—--start-from INTEGER
—-vault-address TEXT

First row to import (zero based)

The address of the vault contract - leave
out for the first run to deploy a new issuer
contract

—-—freeze-ends—at INTEGER UNIX timestamp when vault freeze ends for

deployment

—-—tokens-to-be-allocated INTEGER

Manually verified count of tokens to be set
in the vault

—--help Show this message and exit.
combine-csvs
Help:
combine-csvs ——help

Usage: combine-csvs [OPTIONS]

Combine multiple token distribution CSV files to a single CSV file good
for an Issuer contract.

— Input is a CSV file having columns Ethereum address, number of tokens
— Round all tokens to the same decimal precision
— Combine multiple transactions to a single address to one transaction
Example of cleaning up one file:

combine-csvs —-—-input-file=csvs/bounties-unclean.csv -—output-—

file=combine.csv —--decimals=8 —--address-column="address" —-—-amount-
column="amount"

Another example - combine all CSV files in a folder using zsh shell:
combine-csvs csvs/*.csv(P:——1input-file:) --output-file=combined.csv
——decimals=8 —-—-address-column="Ethereum address" —-—amount-—

column="Total reward"

Options:
——input-file TEXT CsSV file to read and combine. It should be given
multiple times for different files. [required]
——output-file TEXT A CSV file to write the output [required]
——decimals INTEGER A number of decimal points to use [required]

——address—-column TEXT Name of CSV column containing Ethereum addresses
——amount-column TEXT Name of CSV column containing decimal token amounts
—-help Show this message and exit.

4.6. combine-csvs

15

ICO smart contracts Documentation, Release 0.1

16 Chapter 4. Command line commands

CHAPTER B

Interacting with deployed smart contracts

Introduction

— Getting Jupyter Notebook
Transferring tokens
Releasing a token
Transfering tokens

— Etherscan transfer confirmation

— MyEtherWallet transfer confirmation
Setting the actual ICO contract for a pre-ICO contract
Whitelisting crowdsale participants
Change pricing strategy
Test buy token
Halt payment forwarder
Getting data field value for a function call
Set early participant pricing
Move early participant funds to crowdsale
Triggering presale proxy buy contract
Resetting token sale end time
Finalizing a crowdsale

Send ends at

Approving tokens for issuer

17

ICO smart contracts Documentation, Release 0.1

» Whitelisting transfer agent

* Reset token name and symbol
* Read crowdsale variables

* Reset token name and symbol
* Reset upgrade master

* Participating presale

* Distributing bounties

Prerequisites

Merge any CSV files

Deploy issuer contract

Give approve() for the issuer contract

Run the issuance

Introduction

This chapter shows how one can interact with deployed smart contracts.

Interaction is easiest through a Jupyter Notebook console where you can edit and run script snippets.

-2
~ Ju pytef Token tests Last Checkpoint: 2 minutes ago (unsaved changes)
File Edit View Insert Cell Kernel Help

+ < @ B 4 v N B C Coe M CellToolbar

In [1]: import populus
from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth utils import from wei
from ico.utils import check succesful_tx

Which network we deployed our contract
chain_name = "mainnet"

Owner account on geth
owner_address = "0xd58550a50161edf805a25431fc0bb850ff160bad"

Where did we deploy our token
contract_address = "0x04e4240ba9142209382cdecdcd768£51c3736cd8"

project = populus.Project()
with project.get_chain(chain name) as chain:
web3 = chain.web3

print("Web3 provider is", web3.currentProvider)
print("Owner address is", owner_address)

Goes through geth account unlock process if needed
if is_account_locked(web3, owner_address):
request_account_unlock(chain, owner_address, None)

transaction = {"from": owner_address}
Contract = chain.get contract_factory("CrowdsaleToken")

print("Owner balance is", from wei(web3.eth.getBalance(owner_ address),

P Logout

| Python 3 @

"ETH")

18 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

All snippets will connect to Ethereum node through a JSON RPC provider that has been configured in populus.
Jjson.

Getting Jupyter Notebook

Install it with pip in the activated Python virtual environment:

’pip install jupyter

Then start Jupyter Notebook:

’jupyter notebook

Transferring tokens

Example:

from decimal import Decimal

import populus

from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth _utils import from_ wei

from ico.utils import check_succesful_tx

Which network we deployed our contract
chain_name = "mainnet"

Owner account on geth
owner_address = "0Ox"

Where did we deploy our token
contract_address = "0Ox"

receiver = "0Ox"
amount = Decimal("1.0")
project = populus.Project ()

with project.get_chain(chain_name) as chain:

web3 = chain.web3

print ("Web3 provider is", web3.currentProvider)

print ("Owner address 1is", owner_address)

print ("Owner balance is", from_wei (web3.eth.getBalance (owner_address), "ether"),
—"ETH")

Goes through geth account unlock process 1f needed
if is_account_locked (web3, owner_address):
request_account_unlock (chain, owner_address, None)

transaction = {"from": owner_address}
FractionalERC20 = chain.contract_factories.FractionalERC20

token = FractionalERC20 (address=contract_address)

5.2. Transferring tokens 19

ICO smart contracts Documentation, Release 0.1

decimals = token.call () .decimals ()
decimal_multiplier = 10 xx decimals

print ("Token has", decimals, "decimals")
print ("Owner token balance is", token.call() .balanceOf (owner_address) / decimal_
—multiplier)

Use lowest denominator amount
normalized_amount = int (amount * decimal multiplier)

Transfer the tokens

txid = token.transact ({"from": owner_address}).transfer (receiver, normalized_
—amount)

print ("TXID is", txid)

check_succesful_tx (web3, txid)

Releasing a token

See deploy-contracts example how to deploy crowdsale token contracts that have a transfer lock up. The crowdsale
tokens cannot be transferred until the release agent makes the token transferable. As we set our owner address as the
release agent we can do this from Python console.

Then copy and edit the following snippet with your address information:

import populus

from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth utils import from wei

from ico.utils import check_succesful_tx

Which network we deployed our contract
chain_name = "ropsten"

Owner account on geth
owner_address = "0Ox3c2d4ebeae8c4a3lccc56075b5fd81307b1627co™

Where did we deploy our token
contract_address = "0x513a7437d355293ac92d6912d9%9a8b257a343fb36"

project = populus.Project ()
with project.get_chain(chain_name) as chain:

web3 = chain.web3

print ("Web3 provider is", web3.currentProvider)

print ("Owner address 1is", owner_address)

print ("Owner balance is", from_weil (web3.eth.getBalance (owner_address), "ether"),
—"ETH")

Goes through geth account unlock process 1if needed
if is_account_locked (web3, owner_address):
request_account_unlock (chain, owner_address, None)

transaction = {"from": owner_address}
Contract = chain.get_contract_factory("CrowdsaleToken")

20 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

contract = Contract (address=contract_address)

print ("Attempting to release the token transfer")

txid = contract.transact (transaction) .releaseTokenTransfer ()
print ("TXID", txid)

check_succesful_tx(web3, txid)

print ("Token released")

Transfering tokens

We have deployed a crowdsale token and made it transferable as above. Now let’s transfer some tokens to our friend
in Ropsten testnet.

* We create a Ropsten testnet wallet on MyEtherWallet.com - in this example our MyEtherWallet address is
0x47FcAB60823D13B73F372b689faA9D3e8b0C48b5

* We include our deployed token contract there through Add Custom Token button

* Now let’s transfer some tokens into this wallet through IPython console from our owner account

import populus

from populus.utils.accounts import is_account_locked
from populus.utils.cli import request_account_unlock
from eth_utils import from_wei

from ico.utils import check_succesful_tx

Which network we deployed our contract
chain_name = "ropsten"

Owner account on geth
owner_address = "0Ox3c2d4ebeae8cd4a3lccc56075b5£d81307b1627c6"

Where did we deploy our token
contract_address = "0x513a7437d355293ac92d6912d9%9a8b257a343fb36"

The address where we are transfering tokens into
buddy_address = "0x47FcAB60823D13B73F372b689faA9D3e8b0C48b5"

How many tokens we transfer
amount = 1000

project = populus.Project ()

with project.get_chain(chain_name) as chain:

Contract = chain.get_contract_factory("CrowdsaleToken")

contract = Contract (address=contract_address)

web3 = chain.web3

print ("Web3 provider is", web3.currentProvider)

print ("Owner address i1s", owner_address)

print ("Owner balance is", from_wei (web3.eth.getBalance (owner_address), "ether"),
S "ETH")

print ("Owner token balance is", contract.call() .balanceOf (owner_address))

Goes through geth account unlock process if needed
if is_account_locked (web3, owner_address):

5.4. Transfering tokens 21

https://myetherwallet.com/

ICO smart contracts Documentation, Release 0.1

request_account_unlock (chain, owner_address, None)
transaction = {"from": owner_address}

print ("Attempting to transfer some tokens to our MyEtherWallet account")

txid = contract.transact (transaction) .transfer (buddy_address, amount)

check_succesful_tx (web3, txid)

print ("Transfered", amount, "tokens to", buddy_address, "in transaction https://
—ropsten.etherscan.io/tx/{}".format (txid))

We get output like:

Web3 provider is RPC connection http://127.0.0.1:8546

Owner address is 0x3c2d4e5eae8c4a3lccc56075b5£fd81307b1627c6

Owner balance is 1512.397773239968990885 ETH

Owner token balance is 99000

Attempting to transfer some tokens to our MyEtherWallet account

Transfered 1000 tokens to 0x47FcAB60823D13B73F372b689faA9D3e8b0C48b5 in transaction,
—https://ropsten.etherscan.io/tx/
—0x5460742a4f40dd573acadedde95£fc57£f££6de800dde9494520c4£7852d7a956d

Etherscan transfer confirmation

We can see the transaction in the blockchain explorer:

@ E thePSC&n. LOGIN m LANGUAGE

HOME BLOCKCHAIN v ACCOUNT v TOKEN v CHART MISC v

Transaction 0x056a15d29508c06da50e16960db2f7618b8fecfod38cdedb710666b9d31513f3

Home / Transactions / Transaction Information

Transaction Information @ RemixDebug

TxHash: 0x056a15d29508c06da50e16960db2f7618b8fecfod38cdedb710666b9d31513f3
Block Height: 3447946 (4 block confirmations)

TimeStamp : 1 min ago (Mar-30-2017 09:25:17 PM +UTC)

From: 0xd58550a50161edf805a25431fcObb850ff160bad

To: Contract 0x04e4240ba9142209382cdecdcd768f51c3736cd8 @

1,000 ERC20 TOKEN TRANSFER From 0xd58550a50161edf805a2... to = 0xd460e5e63575¢259fbe...

Value: 0 Ether ($0.00)
Gas Limit: 152631
Gas Price: 0.000000021556508092 Ether

Gas Used By Transaction: 52630

Actual Tx Cost/Fee: 0.00113451902088 Ether ($0.06)

22 Chapter 5. Interacting with deployed smart contracts

https://twitter.com/tokenmarket/status/847556407033573376

ICO smart contracts Documentation, Release 0.1

MyEtherWallet transfer confirmation

And then finally we see tokens in our MyEtherWallet:

e MyEtherWallet Open-Source & Client-Side Ether Wallet - v3.5.8 English ~ ETH (MyEtherWallet) ~

Generate Wallet Send Ether & Tokens @Swap Send Offline Contracts View Wallet Info Help

+ Send Ether & Tokens

Account Address Send Transaction

To Address

0xD460E5E63575c259Fbe6032d8 ‘
F7F089259A959a0

Amount to Send

Account Balance

QETH ETH ~
Send Entire Balance
Token Balances
© 1000 MOOMOO Gas Limit
Show All Tokens 21000
Add Custom Token +Advanced: Add Data
Equivalent Values
0 BTC
0 REP
0 EUR

Setting the actual ICO contract for a pre-ICO contract

Example setting the ICO contract for a presale:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()
account = "0xd58550a50161edf805a25431£fc0bb850f£f160bad"

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = getattr(chain.contract_factories, "PresaleFundCollector")
contract = Contract (address="0x858759541633d5142855b27f16£5f67ca78654bf")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .setCrowdsale (
—"0xb57d88c2£70150cb688da7b1d749f1blb4d72f4c")

5.5. Setting the actual ICO contract for a pre-ICO contract 23

ICO smart contracts Documentation, Release 0.1

print ("TXID is", txid)
check_succesful_tx (web3, txid)
print ("OK")

Example triggering the funds transfer to ICO:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()
account = "0xd58550a50161edf805a25431£fc0bb850f£160bad"

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = getattr(chain.contract_factories, "PresaleFundCollector")
contract = Contract (address="0x858759541633d5142855b27f16f5f67eca78654bf")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .participateCrowdsaleAll ()
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

Whitelisting crowdsale participants

Here is an example how to whitelist ICO participants before the ICO beings:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()
account = "0x001FC7d7E506866aEAB82C11dA515E9DD6D02¢c25" # Our controller account on,,
—Kovan

with p.get_chain("kovan") as chain:
web3 = chain.web3
Contract = getattr(chain.contract_factories, "Crowdsale™)
contract = Contract (address="0x06829437859594e19276f87df601436ef55af4f2")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}).setEarlyParicipantWhitelist (
—"0x65cbd9%a48c366f66958196b0a2af81fc73987ba3", True)

print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

24 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

Change pricing strategy

To mix fat finger errors:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()
account = "O0x" # Our controller account on Kovan

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = getattr(chain.contract_factories, "Crowdsale™)
contract = Contract (address="0x")

if is_account_locked(web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}).setPricingStrategy ("0x")
print ("TXID is", txid)

check_succesful_tx(web3, txid)

print ("OK")

Test buy token

Try to buy from a whitelisted address or on a testnet with a generated customer id:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth_utils import to_wei

import uuid

p = populus.Project ()
account = "Ox" # Our controller account on Kovan

with p.get_chain("kovan") as chain:

web3 = chain.web3
Contract = getattr(chain.contract_factories, "Crowdsale™)
contract = Contract (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

customer_id = int (uuid.uuid4 () .hex, 16) # Customer ids are 128-bit UUID v4

txid = contract.transact ({"from": account, "value": to_weil (2, "ether")}) .buy/()
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

5.7. Change pricing strategy

25

ICO smart contracts Documentation, Release 0.1

Halt payment forwarder

After a token sale is ended, stop ETH payment forwarder.

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei

import uuid

p = populus.Project ()
account = "0x" # Our controller account on Kovan

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Contract = getattr(chain.contract_factories, "PaymentForwarder")
contract = Contract (address="0x")

if is_account_locked(web3, account):
request_account_unlock (chain, account, None)

initial_gas_price = web3.eth.gasPrice

txid = contract.transact ({"from": account, "gasPrice": initial_gas_price*5}).
—halt ()

print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

Getting data field value for a function call

You can get the function signature (data field payload for a tranaction) for any smart contract function using the
following:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei

import uuid

p = populus.Project ()
account = "Ox" # Our controller account on Kovan

with p.get_chain("kovan") as chain:
web3 = chain.web3
Contract = getattr(chain.contract_factories, "PrelICOProxyBuyer")
contract

Contract (address="0x")

sig_data = Contract._prepare_transaction("claimAll")
print ("Data payload is", sig_datal["data"])

26 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

Set early participant pricing

Set pricing data for early investors using PresaleFundCollector + MilestonePricing contracts.

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth_utils import to_wei, from_wei

The base price for which we are giving discount %
RETAIL_PRICE = 0.0005909090909090909

contract, price tuples
PREICO_TIERS = [
40% bonus tier
("O0x78c6b7£f1£5259406be3bc73ecaleaa859471b9£f3", to_wei (RETAIL_PRICE % 1/1.4, "ether

=")),

35% tier A
("0x6022c6chde7cdab22b070c36c3d5763669777£68", to_weil (RETAIL_PRICE * 1/1.35,
—"ether™)),

35% tier B
("0xd3fa03c67cfbal062325chb6fdfdb5clecd2flcffe”, to_wei (RETAIL_PRICE % 1/1.35,
—"ether")),

35% tier C
("0x925904e90c5980ad2cb16d685254c859f5eddde5", to_wei (RETAIL_PRICE * 1/1.35,
—"ether™)),

25% tier
("Oxee3dfel33e53deb5256f31f63a59cffd14c94019d", to_wei (RETAIL_PRICE * 1/1.25,
—"ether")),

25% tier B
("0x2d3a6cf3172£f967834b59709a12d8b415465bb4c", to_wei (RETAIL_PRICE % 1/1.25,
—~"ether™)),

25% tier C
("0x70b0505c0653e0fedl13d2f0924ad63cdf39%edefe", to_wei (RETAIL_PRICE x 1/1.25,
—"ether")),

25% tier D
("Ox7cfe55c0084bac03170ddf5da070aad55calb97d", to_wei (RETAIL_PRICE x 1/1.25,
—"ether™)),

]

p = populus.Project ()

deploy_address = "0Oxeb6b645a707005bb4086fale366£fb82d59256£225" # Our controller,
—account on mainnet

pricing_strategy_address = "0x9321a0297cde2f181926e9e6ac5c4£1d97¢c8£9d0"
crowdsale_address = "0xaaB817e98eflafd4946894c4476c1d01382clb4el"

with p.get_chain("mainnet") as chain:
web3 = chain.web3

Safety check that Crodsale is using our pricing strategy

5.11. Set early participant pricing 27

ICO smart contracts Documentation, Release 0.1

Crowdsale = chain.contract_factories.Crowdsale
crowdsale = Crowdsale (address=crowdsale_address)
assert crowdsale.call() .pricingStrategy () == pricing_strategy_address

Get owner access to pricing
MilestonePricing = chain.contract_factories.MilestonePricing
pricing_strategy = MilestonePricing(address=pricing_strategy_address)

PresaleFundCollector = chain.contract_factories.PresaleFundCollector
for preico_address, price_wei_per_token in PREICO_TIERS:

eth_price = from _wei (price_wei_per_token, "ether")

tokens_per_eth = 1 / eth_price

print ("Tier", preico_address, "price per token", eth_price, "tokens per eth",
—round (tokens_per_eth, 2))

Check presale contract is valid

presale = PresaleFundCollector (address=preico_address)

assert presale.call() .investorCount () > 0, "No investors on contract {}".
—format (preico_address)

txid = pricing_strategy.transact ({"from": deploy_address}) .
—setPreicoAddress (preico_address, price_wei_per_token)

print ("TX is", txid)

check_succesful_tx (web3, txid)

Move early participant funds to crowdsale

Move early participant funds from PresaleFundCollector to crowdsale.

Example:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei, from_ wei

from ico.earlypresale import participate_early

presale_addresses = [
"0x78c6b7£1£5259406be3bc73ecaleaa859471b9£3",
"0x6022c6cb5de7cd4ab22b070c36c3d5763669777f68",
"0xd3fa03c67cfba062325cb6f4fdb5clebd2flcffe”,
"0x92590b4e90c5980ad2cb16d685254c859f5eddde5",
"Oxee3dfe33e53deb5256f31f63a59cffd14c940194d",
"0x2d3a6cf3172£967834b59709a12d8b415465bb4c",
"0x70b0505c0653e0fed13d2f0924ad63cdf39%edefe",
"0x7cfe55c0084bac03170ddf5da070aad455calb97d",

p = populus.Project ()

deploy_address = "0x" # Our controller account on mainnet
pricing_strategy_address = "0Ox"
crowdsale_address = "0Ox"

with p.get_chain("mainnet") as chain:

28 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

web3 = chain.web3
Crowdsale = chain.contract_factories.Crowdsale
crowdsale = Crowdsale (address=crowdsale_address)

for presale_address in presale_addresses:
print ("Processing contract", presale_address)
participate_early(chain, web3, presale_address, crowdsale_address, deploy_
—address, timeout=3600)

print ("Crowdsale collected", crowdsale.call().weiRaised() / 10%%18, "tokens_
—sold", crowdsale.call().tokensSold() / 10%%8, "money left", from_wei (web3.eth.
—getBalance (deploy_address), "ether"))

Triggering presale proxy buy contract

Move funds from the proxy buy contract to the actual crowdsale.

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth_utils import to_wei, from wei

p = populus.Project ()

deploy_address = "Ox" # Our controller account on mainnet
proxy_buy_address = "0Ox"
crowdsale_address = "0Ox"
with p.get_chain("mainnet") as chain:
web3 = chain.web3

Safety check that Crodsale is using our pricing strategy
Crowdsale = chain.contract_factories.Crowdsale
crowdsale = Crowdsale (address=crowdsale_address)

Make sure we are getting special price
EthTranchePricing = chain.contract_factories.EthTranchePricing

pricing_strategy = EthTranchePricing(address=crowdsale.call () .pricingStrategy())

assert crowdsale.call() .earlyParticipantWhitelist (proxy_buy_address) == True
assert pricing_strategy.call () .preicoAddresses (proxy_buy_address) > 0

Get owner access to pricing

PreICOProxyBuyer = chain.contract_factories.PreICOProxyBuyer

proxy_buy = PreICOProxyBuyer (address=proxy_buy_address)

txid = proxy_buy.transact ({"from": deploy_address}).setCrowdsale (crowdsale.
—address)

print ("TXID", txid)

txid = proxy_buy.transact ({"from": deploy_address}) .buyForEverybody ()
print ("Buy txid", txid)

5.13. Triggering presale proxy buy contract

29

ICO smart contracts Documentation, Release 0.1

Resetting token sale end time

The token sale owner might want to reset the end date. This can happen in the case the crowdsale has ended and tokens
could not be fully sold, because of fractions. Alternatively, a manual soft cap is invoked because no more money is

coming in and it makes sense to close the token sale.

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei, from _wei

from ico.utils import check_succesful_tx

p = populus.Project ()

deploy_address = "Ox" # Our controller account on mainnet
crowdsale_address = "0Ox"
with p.get_chain("mainnet") as chain:

web3 = chain.web3

block = web3.eth.getBlock ('latest"')
timestamp = block["timestamp"]

15 minutes in the future
closing_time = int (timestamp + 15%60)

Safety check that Crodsale is using our pricing strategy

Crowdsale = chain.contract_factories.Crowdsale

crowdsale = Crowdsale (address=crowdsale_address)

txid = crowdsale.transact ({"from": deploy_address}) .setEndsAt (closing_time)
print (crowdsale.call () .getState())

Finalizing a crowdsale

Example:

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth _utils import to_wei, from_wei

from ico.utils import check_succesful_tx

p = populus.Project ()

deploy_address = "0x" # Our controller account on mainnet
crowdsale_address = "0Ox"

team_multisig = "0Ox"

with p.get_chain("mainnet") as chain:
web3 = chain.web3

Crowdsale = chain.contract_factories.Crowdsale
crowdsale = Crowdsale (address=crowdsale_address)

BonusFinalizeAgent = chain.contract_factories.BonusFinalizeAgent

finalize_agent = BonusFinalizeAgent (address=crowdsale.call().finalizeAgent ())

assert finalize_agent.call() .teamMultisig() == team_multisig

30 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

assert finalize_agent.call () .bonusBasePoints () > 1000

Safety check that Crodsale is using our pricing strategy
txid = crowdsale.transact ({"from": deploy_address}).finalize ()
print ("Finalize txid 1is", txid)

check_succesful_tx (web3, txid)

print (crowdsale.call () .getState())

Send ends at

Example:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

account = "0x4af893ee43a0aa328090bcfl64dfa535al1619c3a" # Our controller account on,,
—~Kovan
with p.get_chain("mainnet") as chain:

web3 = chain.web3

Contract = getattr(chain.contract_factories, "Crowdsale™)

contract = Contract (address="0x0FB81a518dCa5495986C5c2ec29e989390e0E406")

if is_account_locked(web3, account):
request_account_unlock (chain, account, None)

txid = contract.transact ({"from": account}) .setEndsAt (1498631400)
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

Approving tokens for issuer

Usually you need to approve() tokens for a bounty distribution or similar distribution contract (Issuer.sol). Here is an
example.

Example:

import populus
from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

from ico.utils import check_succesful_tx
from ico.utils import get_contract_by_name

p = populus.Project ()

account = "O0x" # Our controller account

issuer_contract = "Ox" # Issuer contract who needs tokens

normalized_amount = int ("123000000000000™) # Amount of tokens, decimal points_,
—unrolled

5.16. Send ends at 31

ICO smart contracts Documentation, Release 0.1

token_address = "0x" # The token contract whose tokens we are dealing with
with p.get_chain("mainnet") as chain:
web3 = chain.web3

Token = get_contract_by_name (chain, "CrowdsaleToken")
token = Token (address=token_address)

if is_account_locked (web3, account) :
request_account_unlock (chain, account, None)

print ("Approving ", normalized_amount, "raw tokens")

txid = token.transact ({"from": account}) .approve (issuer_contract, normalized_
—amount)

print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

Whitelisting transfer agent

Token owner sets extra transfer agents to allow test tranfers for a locked up token.

Example:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

account = "0x51b931lebb6ec8beb049dafeafe389ee2818b1b20" # Our controller account
with p.get_chain("mainnet") as chain:

web3 = chain.web3

Token = getattr (chain.contract_factories, "CrowdsaleToken")

token = Token (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}) .setTransferAgent ("0x", True)
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

Reset token name and symbol

Update name and symbol info of a token. There are several reasons why this information might not be immutable, like
trademark rules.

Example:

32 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()

account = "Ox" # Our controller account

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Token = get_contract_by_name (chain, "CrowdsaleToken")
token = Token (address="0x")

if is_account_locked(web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}).setTokenInformation ("Tokenizer", "TOKE")
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

Read crowdsale variables

Read a crowdsale contract variable.

Example:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked

p = populus.Project ()

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Crowdsale = getattr(chain.contract_factories, "Crowdsale")

crowdsale = Crowdsale (address="0x")

print (crowdsale.call () .weiRaised() / (10%%18))

Reset token name and symbol

Update name and symbol info of a token. There are several reasons why this information might not be immutable, like
trademark rules.

Example:

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from ico.utils import check_succesful_tx

5.20. Read crowdsale variables 33

ICO smart contracts Documentation, Release 0.1

from ico.utils import get_contract_by_name

p = populus.Project ()

account = "0x" # Our controller account

with p.get_chain("mainnet") as chain:
web3 = chain.web3
Token = get_contract_by_name (chain, "CrowdsaleToken")
token = Token (address="0x")

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}).setTokenInformation ("Tokenizer",
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

"TOKE")

Reset upgrade master

upgradeMaster is the address who is allowed to set the upgrade path for the token. Originally it may be the

deployment account, but you must likely want to move it to be the team multisig wallet.

Example:

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from ico.utils import check_succesful_tx

from ico.utils import get_contract_by_name

p = populus.Project ()
account = "Ox" # Our deployment account
team_multisig = "Ox" # Gnosis wallet address
token_address = "0x" # Token contract address
with p.get_chain("mainnet") as chain:
web3 = chain.web3
Token = get_contract_by_name (chain, "CrowdsaleToken™)

token = Token (address=token_address)

if is_account_locked (web3, account):
request_account_unlock (chain, account, None)

txid = token.transact ({"from": account}) .setUpgradeMaster (team_multisigqg)
print ("TXID is", txid)

check_succesful_tx (web3, txid)

print ("OK")

34 Chapter 5. Interacting with deployed smart contracts

ICO smart contracts Documentation, Release 0.1

Participating presale

You can test presale proxy buy participation.

Example:

from ico.utils import check_succesful_tx

import populus

from populus.utils.cli import request_account_unlock
from populus.utils.accounts import is_account_locked
from eth_utils import to_wei

p = populus.Project ()

with p.get_chain("kovan") as chain:
web3 = chain.web3

PreICOProxyBuyer = getattr (chain.contract_factories, "PrelICOProxyBuyer")
presale = PreICOProxyBuyer (address="0x4fe8b625118a212e56d301e0£748505504d41377")

print ("Presale owner is", presale.call().owner())
print ("Presale state 1is", presale.call() .getState())

Make sure minimum buy in threshold is exceeeded in the value

txid = presale.transact ({"from": "0x001fc7d7e506866aecab82cllda515e9dd6d02c25",
—"value": to_wei (40, "ether")}) .invest ()

print ("TXID", txid)

check_succesful_tx (web3, txid)

Distributing bounties

There are two commands to support token bounty distribution

* combine-csvs allows to merge externally managed bountry distribution sheets to one combined CSV distri-
bution file

* distribute-tokens deploys an issuer contract and handles the token transfers

Prerequisites

* An account with gas money

¢ A token contract address

CSV files for the token distribution (Twitter, Facebook, Youtube, translations, etc.)

* A multisig wallet holding the source tokens

Merge any CSV files

Merge any or a single CSV files using combine—csvs. This command will validate input Ethereum addresses and
merge any duplicate transactions to a single address to one transaction.

5.23. Participating presale 35

ICO smart contracts Documentation, Release 0.1

Deploy issuer contract

Example:

distribute-tokens —--chain=mainnet --
—address=0x1e10231145c0b670e9eeba7£f5b47172afa3b6186 ——
—token=0x5af2bel93a6abca9c8817001£45744777db30756 ——-csv-file=combined.csv —-—-address-—
—column="Ethereum address" —-—-amount-column="Total reward" —--master-—
—address=0x9%9a60ad6del85c4ea95058601beafl6f63742782a

Give approve() for the issuer contract

Use the multisig wallet to approve() the token distribution.

Run the issuance

Example:

distribute-tokens —--chain=mainnet --
—address=0x1e10231145c0b670e9eeba7£f5b47172afa3b6186 ——
—token=0x5af2bel93a6abca9c8817001£45744777db30756 —-csv-file=combined-bgx.csv —-—
—address-column="Ethereum address" —--amount-column="Total reward" --master-—
—address=0x9%9a60ad6del85c4ea95058601beafl6f63742782a ——issuer—
—address=0x78d30c42a5f9fb19df60768e4c867b697e24b615

36 Chapter 5. Interacting with deployed smart contracts

CHAPTER O

Contract source code verification

* Verifying contracts on EtherScan
* Benefits of verification

* Prerequisites

* How automatic verification works

Verifying contracts on EtherScan

ICO package has a semi-automated process to verify deployed contracts on EtherScan verification service.

Benefits of verification

* You can see the state of your contract variables real time on EtherScan block explorer

* You prove that there are deterministic and verifiable builds for your deployed smart contracts

Prerequisites

¢ You need to have Chrome and chromedriver installed for the browser automation

* You need to have Splinter Python package installed:

pip install Splinter

37

https://etherscan.io/verifyContract
http://brewformulas.org/Chromedriver
http://splinter.readthedocs.io/en/latest/

ICO smart contracts Documentation, Release 0.1

How automatic verification works

You need to specify the verification settings in your YAML deployment script for deploy-contracts command.
You need to make sure that you have your Solidity version and optimization parameters correctly.

Example how to get Solidity version:

solc —--version

Here is an example YAML section:

Use automated Chrome to verify all contracts on etherscan.io
verify_on_etherscan: yes
browser_driver: chrome

solc:
This 1is the Solidity version tag we verify on EtherScan.
For available versions see
https://kovan.etherscan.io/verifyContract2
#
See values in Compiler drop down.
You can also get the local compiler version with:
#
solc —--version
#
Note that for EtherScan you need to add letter "v" at the front of the version
#
Note: You need to have correct optmization settings for the compiler
in populus.json that matches what EtherScan is expecting.
#

version: v0.4.14+commit.c2215d46

#
We supply these to EtherScan as the solc settings we used to compile the_
—contract.
They must match values in populus.json compilication / backends section.
These are the defaults supplied with the default populus.json.
#
optimizations:
optimizer: true
runs: 500

When you run deploy-contracts and verify_on_etherscan is turned on, a Chrome browser will automatically open
after a contract has been deployed. It goes to Verify page on EtherScan and automatically submits all verification
information, including libraries.

In the case there is a problem with the verification, deploy-contracts will stop and ask you to continue. During this
time, you can check what is the actual error from EtherScan on the opened Chrome browser.

38 Chapter 6. Contract source code verification

CHAPTER /

Test suite

e Introduction

* About Populus

* Running tests

Introduction

ICO package comes with extensive automated test suite for smart contracts.

About Populus
Populus is a tool for the Ethereum blockchain and smart contract management. The project uses Populus internally.
Populus is a Python based suite for

* Running arbitrary Ethereum chains (mainnet, testnet, private testnet)

* Running test suites against Solidity smart contracts

Running tests

Running tests:

’py.test tests

Run a specific test:

39

http://populus.readthedocs.io/

ICO smart contracts Documentation, Release 0.1

py.test tests —k test_get_price_tiers

40 Chapter 7. Test suite

CHAPTER 8

Chain configuration

Introduction

ico package uses underlying Populus framework to configure different Ethereum backends.
Supported backend and nodes include

* Go Ethereum (geth)

* Parity

 Ethereum mainnet

* Ethereum Ropsten test network

* Ethreum Kovan test network

e ... or basically anything that responds to JSON RPC

Default configuration

The default configuration set in the packge distribution is in populus. json file. Itis as
e http://127.0.0.1:8545 is mainnet JSON-RPC, populus.json network sa mainnet
* http://127.0.0.1:8546 is Kovan JSON-RPC, populus.json network sa kovan
e http://127.0.0.1:8547 is Kovan JSON-RPC, populus.json network sa ropsten

Ethereum node software (geth, parity) must be started beforehand and configured to allow JSON-RPC in the particular
port.

41

ICO smart contracts Documentation, Release 0.1

Unlocking the deployment account

For Parity you need to have parity —unlock given from the command line to unlock the account for automatic access.

For Go Ethereum you need to use geth console and run personal.unlockAccount to unlock your account for some time,
say 3600 seconds, before running scripts.

42 Chapter 8. Chain configuration

CHAPTER 9

Design choices

* Introduction
» Timestamp vs. block number

* Crowdsale strategies and compound design pattern

* Background information

Introduction

In this chapter we explain some design choices made in the smart contracts.

Timestamp vs. block humber

The code uses block timestamps instead of block numbers for start and events. We work on the assumption that
crowdsale periods are not so short or time sensitive there would be need for block number based timing. Furthermore
if the network miners start to skew block timestamps we might have a larger problem with dishonest miners.

Crowdsale strategies and compound design pattern

Instead of cramming all the logic into a single contract through mixins and inheritance, we assemble our crowdsale
from multiple components. Benefits include more elegant code, better reusability, separation of concern and testability.

Mainly, our crowdsales have the following major parts
* Crowdsale core: capped or uncapped

* Pricing strategy: how price changes during the crowdsale

43

ICO smart contracts Documentation, Release 0.1

* Finalizing strategy: What happens after a successful crowdsale: allow tokens to be transferable, give out extra
tokens, etc.

Background information

* https://drive.google.com/file/d/0ByMtMw2hulOEN3NCaVFHSFdxRzA/view

44 Chapter 9. Design choices

https://drive.google.com/file/d/0ByMtMw2hul0EN3NCaVFHSFdxRzA/view

cHAaPTER 10

Other

» Importing raw keys I

Importing raw keys

You often need need to work with raw private keys. To import a raw private key to geth you can do from console:

’web3.personal .importRawKey ("<Private Key>", "<New Password>")

Private key must be without Ox prefixed hex format.
More information

* http://ethereum.stackexchange.com/a/10020/620

45

http://ethereum.stackexchange.com/a/10020/620

ICO smart contracts Documentation, Release 0.1

46

Chapter 10. Other

cHAPTER 11

Commercial support

Contact TokenMarket for launching your ICO or crowdsale

Tokenbarket
Crowdsale
contract
walkthrough

Minimum funding goal not
reached, waiting for owner
to close the crowdsale

Token transferable, founder
and bounty affocations
issued

¥
Ty

Success

I

Finalized

Preparing

PreFunding

Funding

Setting up contract varables

Waiting for start time

Accepting deposils

End time passed, minimum

R funding goal not reached

Contributars can claim back

Ref { Lk
efunding their invesments

47

https://tokenmarket.net/ico-professional-services

ICO smart contracts Documentation, Release 0.1

48

Chapter 11. Commercial support

cHAPTER 12

Links

Github issue tracker and source code

Documentation

49

https://github.com/tokenmarketnet/ico
https://ico.readthedocs.io/en/latest/

	Introduction
	Contracts
	Installation
	Command line commands
	Interacting with deployed smart contracts
	Contract source code verification
	Test suite
	Chain configuration
	Design choices
	Other
	Commercial support
	Links

