
 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

A Blockchain-based IoT Platform Integrated with Cloud

Services

A. Debrath Banerjee1, B. Hai Jiang2

debrath.banerjee@smail.astate.edu, hjiang@astate.edu

Computer Science Department, Arkansas State University, Jonesboro, Arkansas, United States

Abstract – Nowadays, Blockchain is not an enigmatic,

technical term for many people rather a technology that holds

promise as a way not only to record financial transactions but

also to decentralize infrastructure and build a trust layer for

business logic. Currently it is considered to be a game-

changer that could propel us into next industrial revolution.

Motivated by the recent explosion of interest around

blockchains, blockchain development is undoubtedly

accelerating and empowering many financial sectors.

However non-financial application areas such as supply

chain, health care or eCommerce industry have incredibly

grown complex due to the involvement of IoT. So, although

they intend to reshape the model, still lots of uncertainty exist

in terms of privacy, integrity, scalability and effectiveness. In

convergence of blockchain and IoT, there is no definite design

model. With all of these considerations in mind, we have

developed a blockchain based IoT platform to replace the

traditional monolithic sales order management process. The

design prototype is associated with the contract creation to

enable automated fulfilment of orders from warehouse. This

hybrid design represents the convergence of smart contract

enabled private Ethereum Blockchain with IoT & also ensure

IoT security and controls with combination of AWS-IoT cloud

services.

Keywords: Private Blockchain, Internet of Things, Smart

Contract, AWS-IoT, Convergence, Sales Order Management

1 Introduction

 In recent days, the blockchain technology is undoubtedly

an ingenious breakthrough of secure computing without any

dependency of centralized authority. From data management

perspective to security, it provides an efficient mechanism

through intelligent and decentralized utilization of

cryptography with crowd computing. As a new and

revolutionary technology, it faces lots of hurdles and touted as

new internet after it was documented by Satoshi Nakamoto [1]

in 2008. Its introduced as a platform for virtual

cryptocurrency Bitcoin which uses blockchain to record all of

its transactions. However, this ingenious technology has the

potentiality to change the way of internet functions. This

technology is not only to facilitate the exchange of virtual

currency, but also to utilize it in the financial or non-financial

field. After the induction of the Ethereum platform, most

sectors including finance, supply chain, logistics, health care

have been rapidly accelerated towards adopting this evolution.

Furthermore, we are also witnessing the proliferation of

Internet of Things (IoT) technologies which mostly make a

big impact on supply chain or order management industry.

However existing IoT technologies are poorly designed and

implemented with diverse protocols and technologies based

on centralized server/client paradigm. Convergence of the

Blockchain and IoT has shown a new direction to transform

the traditional model [2][3].

In reality, blockchain with IoT architecture is very complex

and has certain limitations, especially regarding scalability.

The design approach is not very transparent to the industry

that sometimes make them unresponsive. Although public

blockchain undoubtedly have greater consensus strength and

visibility, it is not a secure approach to expose the

organizational data publicly. Most of the real sector initially

intended to apply blockchain, but they pushed back later due

to the privacy constraint and lack design approach for private

blockchain. Nowadays supply chain industry also have grown

incredibly complex due to the involvement of various actors.

However, it is unmanageable to track unethical practices

[4][5]. Several industries are still accustomed to centralized

digital contracts. Furthermore, involvement of IoT also comes

with lot of constraints in terms of security, integrity and

scalability. Most of the blockchain based IoT solutions face

resource constraint issues.

So, based on the literature study and after analysis of various

Blockchain perspective, we have taken an use case on sales

order management process which is associated with contract

creation to enable automated fulfillment of orders from

warehouse with the convergence of Smart contract,

Blockchain, IoT and Cloud services. Our implementation is

based on micro-service architecture to restructure traditional

monolithic model. Rather than using public blockchain

infrastructure, cloud independent private blockchain

framework is developed with smart contract. In our design,

IoT is not involved as a direct blockchain node and also is not

holding subset of blockchain for transaction validation. IoT is

taking advantage of blockchain rather than involving as a peer

to avoid resource constraint issues. Device integrity is

managed with the exchange of digital certificates instead of

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

using agents. AWS-IoT platform is used not only to ensure

device integrity also to facilitate device controls. Furthermore,

we have looked upon to protect the node servers from DDoS

attack with the reverse proxy mechanism. This research work

is conducted with some goals. Firstly, it is providing a clear

exposure for those sectors who are planning to reshape their

traditional model. Secondly, it will provide a gateway for non-

security experts to gain better understanding of private

blockchain and smart contract. In addition, it will help

specialists and blockchain enthusiast to explore cutting edge

technologies related to blockchain, IoT and Cloud services.

We organize the rest of the paper as follows. Section 2

describes about the related works and challenges. Section 3

talks about the overview of key design components. Section 4

presents the overview of our approached design and its

functional aspects. Section 5 introduces the implementation

workflows based on our design. Section 6 describes about the

experimental result. Section 7 concludes this paper.

2 Related Works

 In this section, some blockchain based IoT projects are

introduced. Most of them are recently and recognized by the

academia and industry. IBM has unveiled its proof of concept

for ADEPT, a system developed in partnership with Samsung.

It uses the underlying design of Bitcoin to build decentralized

Internet of Things. A paper [6] published by IBM and

Samsung describes by how this will enable autonomous smart

devices to directly communicate and verify the validity of

transactions without the need for a centralized authority.

There are many use cases for blockchain based

communications. A paper [7] published by IBM and Samsung

describes by how blockchain can enable a washing machine to

become “semi-autonomous device capable of managing its

own consumables supply, performing self-service and

maintenance, and even negotiating with other peer devices

both in home and outside to optimize its environment”. In

spite of all its advantages, the blockchain model suffers its

flaws and shortcomings. Bitcoin itself is dealing with

scalability issues pertaining to blockchain, which are actually

casting a shadow over the future of cryptocurrency.

Furthermore, most devices of devices in IoT networks have

very different computing capabilities, and not all of them can

run the powerful cryptographic algorithms. Storage is another

big constraint in this model.

Current centralized, cloud based IoT solutions are not scalable

and incapable to meet security challenges. Several ongoing

projects adopt blockchain enabled IoT solution and most of

them utilize cloud services. IBM recently made contributions

in developing blockchain platform for an IoT applications. It

is based on the implementation of Hyperledger Fabric [8].

However, this model is also based on IBM Cloud. Though the

concept is all about the decentralization but still it is not fully

trustless and independent of central authority.

Our purpose is to approach a model based on private

framework which will focus on scalability, integrity and

privacy in order to address these common issues.

3 Overview of Key Design Components

 In this section, key elements are introduced as the core

ingredients to design this decentralized prototype. For

blockchain enabled architecture, the selection of platform for

decentralization is important as there are many platforms

available for decentralization like Ethereum, Hyperledger,

Lisk etc. Based on our system requirement, we have chosen

Ethereum which is an open source, public blockchain-based

distributed computing and operating system with smart

contract functionality.

3.1 Ethereum Virtual Machine

 The concept of Ethereum was introduced by Vitalik Buterin

in November 2013. To turn a machine into a node in the

Ethereum network, various Ethereum clients have been

developed and the most popular ones are go-Ethereum (Geth)

and parity. For Ethereum based development, Ganache is also

very efficient solution to provide a virtual blockchain

development environment, but it uses the same principle as

any real node. It has the capability to sets up Ethereum

addresses, complete with private keys and preload them with

100 simulated Ether each. Also, it can interact with smart

contract in the same way as a real node does. Now in order to

interpret the smart contract code, Ethereum Virtual Machine

(EVM) is a key component to create ethereum smart contract

byte code execution environment and act as a simple stack-

based execution machine [9][10]. The stack size is limited to

1024 elements and is based on the LIFO (Last in First Out)

queue. Since all the nodes execute all transactions that point to

smart contract using EVM, every node does the same

calculations and stores the same values. Every node executes

the transactions and stores the final state. Furthermore, every

transaction requires some computation and storage in the

network. Therefore, there needs to be a transaction cost to

maintain the network from being flooded with spam

transactions.

3.2 Smart Contract

 The term “smart contract’ was first coined by Nick

Szabo on 1997. The purpose of this protocol is to digital

facilitate, verify and enforce the business logic by self-

execution for security which is commonly superior property

than traditional agreement. We can deploy the smart contract

inside of Ethereum blockchain network which is executed by

EVM. That makes the contract become immutable and

decentralized as the code executed in every node as a part of

transaction. A contract resides on blockchain in the Ethereum-

specific binary format called EVM bytecode which is an

assembly language one made up of multiple opcodes. Each

opcode performs a certain action on the Ethereum blockchain.

Now, as a process of development to deployment of the smart

contract, the very first step of the smart contract is to write

and compile the code. Truffle framework, Remix or from the

geth JavaScript console helps build the contract and compile

it through Solidity compiler (solc) [9]. Once compilation

done, Application Binary Interface (ABI) and the bytecode is

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP
https://github.com/trailofbits/evm-opcodes

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

generated. The bytecode is what will actually go onto the

blockchain to make the smart contract work. But there is no

way from byte code to identify the contract functions. Calling

such a contract would be next to impossible. This is where

interface comes into play which is JSON representation of a

contract, given by an array of function and/or event

descriptions. It allows us to contextualize the contract and call

its functions. Now the aforementioned bytecode is not yet

accessible until it is deployed on an Ethereum network. The

deployment of a contract bytecode is done through a

transaction. We use Web3.js framework in order to deploy the

contract. Web3 internally creates raw transaction and push

that into node. After that once signed transaction is accepted

by a miner and added to blockchain, the contract code will get

executed at every node. A contract address is created

accordingly for a deployed contract [11][12].

3.3 Internet of Things

 In today’s world, ‘Internet of Things’ is one of the popular

areas where most of the industry starts to depend on it. By

definition, IoT is a special purpose device which connects

wirelessly to a network and engages with the transmission of

data over that wireless connection to monitor or control a

"thing". Essentially IoT devices contain sensors to acquire

data and actuators to control or act on the data. There are few

challenges to build blockchain based IoT platforms including

device security, device management, scalability and of course

control management. Mostly IoT systems are exposed to the

outside world that imposes risk for vulnerabilities. Also, the

control of a device is very critical if there is a network failure,

it is hard to recover the last state of the device. In addition,

IoT also have resource constraint issue if we would plan to

include IoT devices as blockchain nodes. From the design

perspective, these issues have to be properly addressed [13].

4 System Design

 Our approached design intends not only to utilize the

benefits of blockchain, but also look into various technical

and functional aspects of this microservices prototype design.

This hybrid model integrates private blockchain with smart

contract for an immutable decentralized platform to secure the

transactions data, support self-enforcement of business logic

and maintain the privacy of the organizational data. In

addition, AWS IoT platform has been incorporated to secure

and manage IoT devices. The main design components are

ethereum blockchain, smart contract, IoT, AWS cloud

services and a front-end interface hosted on any webserver to

initiate contract and other IoT transactions. Our approach is

partially influenced by fog architecture where private

blockchain will be hosted across different local servers which

form middle layer of fog architecture for smart contract to

reside as an immutable agreement. As an IoT device does not

have the enough capability to hold a blockchain client , it will

do the minimum computation and interact on main private

networks by RPC. Parallelly IoT devices integrity and control

will be managed by AWS-IoT platform. Sale order

management system with sequential flow is shown in Figure 1

for the illustration of smart contract and transactions. Figure 2

displays the communication between IoT and blockchain.

 Figure 1 Design Overview of Contract Creation

Figure 2 Communication Model between IoT and Blockchain

4.1 Creation of Contract

 Sales order management module is solely depended on

three actors where initial two primary actors are Seller/Order

creator and Buyer/customer and third one is IoT

client/devices. Our design is concerned with private

blockchain framework. Each of the primary actors has an

ethereum client installed as a private node which is further

connected with other private ethereum nodes. It is not always

mandatory that buyers or sellers to have ethereum clients.

They should have public key and private key in order to

participate in transactions. For real time applications Go-

Ethereum client will be used to build private blockchain

framework. Private nodes are not supposed to be connected

with publicly available real production ethereum main-net. So,

blockchain framework has to be established within private

networks. New genesis blocks are created to communicate

over inter process communication. Sellers or buyers

participate in transactions or contract creation through

separate browser applications. Sellers will first create a sale

contract with the details like Order name, Serial number, Price

(in Ether) etc. Then Web3.js JavaScript API handles the

request and interact with ethereum network over JSON /RPC.

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

This order creation process actually initiates the creation of

new smart contract with these attributes.

4.2 Transaction Process

 Once contract is created, raw transaction will be sent over to

the Seller’s local Ethereum node. The transaction carries the

information about contract’s byte code, account details and

related parameters. The Ethereum network needs to know that

seller actually own that account to make sure someone else

does not execute this transaction on the seller’s behalf. The

way to prove this to the network is by signing the transaction

using the private key corresponding to that account.

Once transaction is validated locally using a public key, the

signed transaction is broadcast by Seller’s Ethereum node to

its peers who in turn broadcast it to their peers and so on.

Once transaction is broadcast, local node also outputs

transaction id which is the hash value of the signed transaction

object. With this transaction hash we can examine the

transaction detail using eth.getTransaction() and

eth.getTransactionReceipt(). The contract address belongs to

transaction receipt which is returned to seller in browser

application. However, not all nodes will accept the

transaction. Some of these nodes might have a setting to only

accept transactions with certain minimal gas price. If a gas

price is lower than that limit, that node will just be ignored in

the transaction.

4.3 Mining of the Contract

 In Ethereum network miners are the ones who include the

transactions in the blocks. Miners maintain a transaction pool

where our transaction are added for evaluations. The miners

store all the transactions in the pool and sort them in certain

order for example by gas price. The higher the gas price, the

more likely the transaction is included in the next block. But

in case of private blockchain, miners from the organization

should select the transactions irrespective of gas price. Miners

eventually pick transaction to include in the block along with

other transactions. Once the miners select the transactions to

include in a block, the transactions are validated and included

in a pending block. After Proof of Work is done, miner

broadcasts the new blockchain with the updated block.

Eventually all local nodes will receive this new block and

synchronize its local copy in the blockchain. Upon receiving

the new block, each local Ethereum client executes all the

transaction in the block. So eventually contract code gets

executed inside EVM across the Ethereum network. So right

now, a new contract is successfully deployed across the

network.

4.4 Invocation of Deployed Smart Contract

 With the shared contract addresses, the buyer can access to

deployed contract objects. Once product validation is done,

buyer agrees upon the contract to purchase that order item.

Transaction object will be created to carry the code and

invoke the buy() function within the deployed smart contract.

Once a raw transaction is created, it will be signed by the

buyer’s private key in the same manner as aforementioned

process. The transaction will be included into the blockchain

once the miner validates it. Eventually, contract code will be

executed at all local blockchain nodes. After byte code gets

executed, item status will be changed, and appropriate order

value (Ether) will be transferred from buyer account to seller

account. The balance will only be transferred if contract is

successfully executed. After that everyone’s wallet balance is

updated. Since receipt is one of the important concepts in

Invoice to Cash cycle, an autogenerated barcode is provided

as a transaction receipt to buyer. It includes contract address

and buyer address if smart contract execution is done

successfully. This barcode will be used to release an item from

ware house operated by IoT. But before interaction with

Ethereum network, IoT integrity should be validated.

4.5 IoT Registration with AWS-IoT Core

 Before IoT interacts with Ethereum blockchain, IoT

integrity should be validated. So, we have designed this on the

top of AWS-IoT core platform which uses MQTT or http

protocol to communicate between IoT and cloud services. The

first step of communication between a device and AWS IoT is

protected through the use of X.509 certificates. Certificates

are embedded inside IoT devices. When a device

communicates with AWS IoT, it presents the certificate signed

with private key to AWS IoT as a credential. AWS IoT

validate that certificate with the help of associated public key.

It is advisable to use unique certificate for each of the multiple

IoT devices. If certificate gets compromised, we could revoke

the policy as attached with that particular certificate. Once IoT

integrity is validated, it can start communication with

blockchain [15].

4.6 Request Through Reverse Proxy Server

 IoT initiates a connection by remote procedure call with

Ethereum network. Since mostly IoT is exposed to the outside

world. It is hard to send a request to the private blockchain

node unless that node is running at privileged port with public

IP address. Also, if we run our blockchain in private IP at

different unprivileged port, we have to handle NAT and make

a port to forward requests. This is also not secure approach.

Mostly NAT process is operated in routers or firewalls which

are the control of central network administration team in an

organization. Thus, it is not easily accessible. Therefore, the

idea of reverse proxy server [14] is adopted here. The RPC

over http request comes to reverse proxy server which is

normally running at privileged port 80. The proxy will pass

the request to the private Ethereum end point after basic

authentication. Also, if there is multiple IoT devices involved,

reverse proxy server could handle the load balancing of the

multiple requests.

4.7 Verification of Ownership

 Based on the contract address, buyer address and JSON

object of the contract, IoT send a request to the Ethereum

network to invoke the contract function of the deployed

contract. A ‘call’ is the local invocation of contract function

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

which does not broadcast or publish anything on blockchain. It

is a read-only operation and will not consume any Ether. It

simulates what would happen in a transaction but discards all

the state changes when it is done. It is synchronous, and a

value is returned immediately from the contract function. If

valid, it will return true. Otherwise an error message is

returned. Then, the buyer gets messages as its ownership is

validated. The response will be fast because the validation is

done inside Ethereum network, not managed by IoT, assuming

with steady network connection.

4.8 Receive Command from AWS-IoT

 Once ownership is validated, a command is received from

AWS-IoT service to release the item. This process is a

combination of a Publish/Subscribe model, and shadow

service which is used to control the state of the things. Overall

message communication will be done through MQTT

protocol[7]. After the synchronization with AWS, IoT devices

will send publish requests to change their new states to a

desired open state and trigger the actuator. Through message

broker , an AWS - IoT client subscribes to that particular

event request and changes the state. If there is a change

between the current state and previous state stored in shadow,

AWS-IoT will publish a response associated with delta event

which will be again subscribed by the IoT device. Once

response is received, the actuator will be triggered. Then the

IoT device again publishes its latest state as ‘Reported’ state

to the AWS-IoT. If there is no change between the shadow

states, AWS will not send any command.

5 Implementation

5.1 Private Blockchain Configuration

 Firstly, we install ethereum client to the individual system

hosted in local server. Then “geth” command is executed to

start and synchronize the client. In a private blockchain, every

node has to fulfill some requirements where a distinct data

directory has to be created to store database and the wallet.

Furthermore, every node has to initialize the same genesis file

and pair of private and public key to make a transaction. A

folder called keystore/ will be created for the account file

which basically holds the information about the account

address.

Now as a part of p2p algorithm, we have to assume that there

are certain nodes which will be always available. Those are

called as bootstrap nodes in Ethereum. Boot nodes maintain a

list of all nodes that connected to them in a period of

predefined temporal value. The purpose of the boot node is to

help other nodes discover each other. So, when a peer

connects to the Ethereum network, it first connects with the

boot nodes which shares the list of already connected peers.

The newly connected ones then synchronize with other peers

After initialization this creates a value called enode which

uniquely identifies the boot node address. Once boot node

address created, we can start the node as following way.

 $bootnode –nodekey boot.key -verbosity 9 -addr :port no

Now we should start our seller and buyer nodes as presented

with below command. There are few parameters associated

with the command like port - the port through which nodes in

a network communicate with each other and spread new

transactions and blocks, Normally Ethereum uses default Port

30303 (TCP and UDP) as listener port and discovery ports

respectively. Other parameters include rpc – enable HTTP-

RPC server, rpcaddr – HTTP-RPC server listening interface,

rpcport - HTTP-RPC server listening port, rpcapi - list APIs

which can be accessed using RPC port, mine - makes the node

a miner node, which mine ether and transactions, networkid -

this is a unique network identifier that distinguishes one

network from other networks and is used to join all the nodes

of the same network.

$ geth --datadir node/ --syncmode 'full' –port num --rpc --

rpcaddr 'localhost' --rpcport --rpcapi

'personal,db,eth,net,web3,txpool,miner' --bootnodes

'enode://enode address@localhost:port_num' --networkid

--gasprice '1' -unlock 'seller account address' --password

password_file_location –mine

Now we have our own private blockchain with fully

synchronized nodes.

5.2 Application Interface

 Now as a part of order management module, the buyer or

seller will interact with the blockchain through user friendly

GUI. Application is involved with the creation of smart

contract and deals with the recent transactions. Signing of the

transaction and generation of public and private key pair

could be handled inside application before sending the

transaction object into the ethereum network. However, this

application is designed as an interface to communicate with

the ethereum network. Language specific Web3.js JavaScript

API is used to pass the contract’s parameter into the ethereum

network underlying JSON RPC. Now in order to connect

through Web3, Provider is necessary to decide how web3 talks

to the Blockchain. Providers take a JSON RPC request and

submit it to HTTP or IPC socket based JSON- RPC server.

Once provider is selected, web3 instance is ready to be

initialized. Once web3 object is created, we can use the

methods under web3.eth namespace to interact with RPC

method which talks with EVM. Normally the Web3 object

will look for Ethereum node in a default http://localhost:8545

address. In order to create new contract, compiled byte code

along with JSON interface object is added into raw transaction

and interfaced to ethereum network through web3 object.

Normally web3.eth.Contract object is used to return contract.

5.3 Development of Smart Contract

 Contracts are developed in Solidity language. Compilation,

testing and deployment are done using Truffle framework.

Once a contract is compiled, it generates JSON file to hold the

information about contract unique byte code and Application

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

Binary Interface object. Business logic of the contract is

presented with the following Table 1.

 Table 1 : Smart Contract Function Definitions

Function Description Param Return to

User

constructor

Constructor

to create

new

contract

make,

model,

year,

price,

sold,

owner

Contract’s

address

buy: Payable Allows to

transfer

ether from

contract

address to

seller upon

successfully

sold of item

buyer

address,

default

gas

value,

price

Buyer get

barcode

contains

contract’s

address and

buyer’s

address

isSold: View To check

item sold or

not

N/A true/false

getItem: View Allow user

to retrieve

item details

N/A make,

model,

year, price,

sold, owner,

buyer

verifyOwnership:

View

Allow user

to verify the

item status

and

ownership,

used by IoT

client

N/A true/false

5.4 IoT Registration with AWS-IoT

 AWS-IoT Core enables secure bi-directional

communication between IoT and AWS cloud. Before IoT

interact with blockchain, device integrity is ensured with AWS

security mechanism. Communication between is protected

through the use of X.509 certificates. It is associated with the

registration of the things as shown Figure 3.

 Figure 3 IoT Registration

5.5 Verification of Ownership

5.5.1 Identity Validation

 Communication between IoT and remote ethereum node

will be established by submitting the request to HTTP based

JSON RPC server. IoT application interface uses Web3.js to

interact with remote blockchain nodes over RPC. The

application is powered by Nodejs which creates a runtime

environment to support this JavaScript application. Based on

the contract address, deployed contract instance object is

created which is used to invoke the verifyOwnership()

function and validate the buyer’s identity with the transactions

stored in blockchain.

5.5.2 Request Transmission Process

 Now the request transmission between IoT and private

blockchain node is quite difficult as IoT belongs to different

networks. It is not safe to expose Ethereum JSON-RPC API to

public internet. Access protection to HTTP API is also

important. So, reverse proxy server is introduced to sits

between internal applications and external clients, forwarding

client requests to the appropriate blockchain node. It acts as a

line of defense for backend servers, protecting node servers

from attacks such as DDoS. Also, reverse proxy can perform

load balancing to distribute client requests evenly across

backend servers. We have chosen Nginx [14] open source web

server and proxy_pass directive are used to communicate

with upstream geth that runs in localhost:8545.

5.6 AWS Shadow Service

 In AWS, device shadow is a JSON document that stores

and retrieves state information [15]. In Figure 4, we can see

that devices report their states by publishing messages, in

JSON format, on MQTT topics. These messages are sent to

the MQTT message broker, which is responsible for sending

all messages published on an MQTT topic to all clients

subscribed to that topic. Now if AWS shadow service notices

any change between the previous and the desired state stored

in shadow documents, it publishes a response called Delta.

Then IoT device subscribe to that topic and act accordingly.

After that device again reports their new state to AWS

shadow.

 Figure 4 AWS Shadow Service

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

6 Experimental Results

 In this section, we show some transaction results based on

the data set used to examine the functional behavior of the

system. Input column of the Table 2 represents the parameters

used to create the contract by seller. Once transaction is

validated and added to blockchain, hash value

0x0ea2db81b9a4 for block 1 is generated which points genesis

block. Additionally, contract address is populated. Buyer uses

contract address to verify the transaction as shown in Table 3.

After successful transaction, hash value 0x38af693b7b83 for

block 2 is generated which points to hash value for block 1.

Table 4 represents the data set used to examine the

functionality of IoT with blockchain. We have tested with

valid and invalid data for buyer’s public key and received an

expected result.

Table 2 : Transaction data for Seller/Contract owner

Input Block hash Contract

address

Remarks

Public key-

0xb4168EA9a4

Model-alpha

Year-2019

Price-50ETH

Number-4AA6

Block 0

0xe6f425940a67

Block 1

0x0ea2db81b9a4

0x3dD9

6E8772

Contract

Created

Table 3: Transaction data for Customer/buyer

Input Block hash Remarks

Public key-

0xD5044AA5aE

Contract address

0x3dD9

6E8772

Block 1

0x0ea2db81b9a4

Block 2

0x38af693b7b83

Item sold,

Barcode generated

Table 4: Transaction data for IoT

IoT Barcode input Result

Valid data set Buyer addr 0xD5044AA5aE

Contract addr 0x3dD96E8772

Ownership

verified

Invalid data set Buyer addr 0xe5048AA5sE

Contract addr 0x3dD96E8772

Not

verified

7 Conclusions

 Convergence of blockchain and IoT definitely benefit the

industry to meet the security demands over traditional security

mechanism. Moreover, smart contract built upon blockchains

offers the opportunity to build reliable decentralized IoT

applications. However, it’s very hard to predict potential

application areas when it comes to implementation. Some

related work has been done. However, they are either cloud

based or faces scalability issues. Although some sectors want

to transform into blockchain based solution, there is no

simplified design approach to make them responsive. We did

our work on a part of sales order management system to

provide hybrid approach with convergence of private

blockchain, IoT and AWS cloud services. At the end, we can

conclude that integrating blockchain with IoT can bring many

benefits over traditional system. But at the same time, it

introduces new challenges that should be addressed. There

still need more research for investigation. Our work is an

initiative in this journey to find a scalable solution.

8 References

[1] Satoshi Nakamoto. 2008. “Bitcoin: A peer-to-peer electronic

cash system”, www.Bitcoin.Org, (2008)

[2] Arijit Chakrabarti, Ashesh Kumar Chaudhuri, “Blockchain and

its Scope in Retail”, IRJET, Volume: 04 Issue: 07, July 2017

[3] Suruchi Mann, Vidyasagar Potdar, Raj Sekhar Gajavilli,

Anulipt Chandan ,“Blockchain Technology for Supply Chain

Traceability, Transparency and Data Provenance”, International

Conference on Blockchain Technology and Application, 2018

[4] Rui Zhang, Rui Xue, Ling Liu “Security and Privacy on

Blockchain”, www.arXiv.org , Cornell University, 2019

[5] Johan Alvebrink, Maria Jansson, “Thesis: Investigation of

Blockchain Applicability to Internet of Things within Supply

Chains”, Uppsala Universitet, June 2018

[6] “IBM ADEPT Practitioner Perspective Pre Publication Draft”,

formally announced at CES in Las Vegas, 2015

[7] “Device democracy, Saving the Future of the Internet of

Things”, IBM Institute for Business Value, 2014

[8] Amitranjan Gantait, Joy Patra, Ayan Mukherjee,

“Implementing Blockchain for Cognitive IoT Applications”, IBM

Developer Works, IBM Corporation, 2017

[9] Imran Bashir, “Mastering Blockchain”, Packt Publishing Ltd,

pages 210-353, March 2017

[10] Vitalik Buterin, “Ethereum’s White Paper: A Next-Generation

Smart Contract and Decentralized Application Platform”, 2013

[11] Amit Taherkordi, Peter Herrmann, “Pervasive Smart Contracts

for Blockchains in IoT Systems, International Conference on

Blockchain Technology and Application, 2018

[12] Konstantinos Christidis, Michael Devetsikiotis “Blockchains

and Smart Contracts for the Internet of Things”, IEEE Access, 2016

[13] Ahmed Banafa, “IoT and Blockchain Convergence: Benefits

and Challenges”, IEEE Internet of Things, January 2017

[14] Art Stricek, “ A Reverse Proxy Is A Proxy by Any Other

Name, published in SANS Technology Institute, 2019

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

 Proceedings of the 2019 International Conference on Parallel and Distributed Processing Techniques & Applications

 ISBN: 1-60132-508-8 | Copyright © 2019 CSREA Press | United States of America

[15] “Designing MQTT Topics for AWS IoT Core”, published in

Amazon Web Services, Inc, 2018

https://csce.ucmss.com/cr/books/2019/AuthorsReport?ConferenceKey=PDP

