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Abstract

We present a provably-secure blockchain protocol based on “proof of stake.” As far as we are
aware, this is the first proof of stake blockchain protocol which provides rigorous security guarantees.
The security properties of the system are analyzed in the model of [9] and are comparable to the ones
possessed by the bitcoin blockchain protocol which utilizes proof of work. Furthermore, an incentive
mechanism for the protocol is also proposed.

1 Introduction

A primary consideration regarding the operation of blockchain protocols that are based on proof of work
(PoW)—such as bitcoin [14]—is the energy that is required for executing the protocol. At the time of
this writing, generating a single block in the bitcoin blockchain requires a number of hashing operations
exceeding 260, which means that significant energy needs to be expended in order for the protocol to run.
Early calculations placed the energy requirements of the protocol in the order of magnitude of a country, see
e.g., [15].

This state of affairs has motivated the investigation of alternative blockchain protocols that would obviate
the need for proof of work by substituting it with another, more energy efficient, mechanism that can provide
similar guarantees. It is important to point out that the proof of work mechanism of bitcoin facilitates a type
of randomized “leader election” process that elects one of the miners to issue the next block. Furthermore,
this selection is performed in a randomized fashion proportionally to the computational power of each
miner, provided that all miners follow the protocol (we note that deviations from the protocol may hurt this
proportionality as exemplified by “selfish mining” strategies [7, 18]).

∗Work partly supported by H2020 Project #653497 PANORAMIX.
†Work partly supported by ERC project #259152 CODAMODA.
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A natural alternative mechanism is based on “proof of stake” (PoS). Rather than miners investing
computational resources in order to participate in the leader election process, they instead run a process that
randomly selects one of them proportionally to the stake that each possesses.

In effect, this generates a self-referential blockchain discipline: maintaining the blockchain relies on the
stakeholders themselves and assigns work to them (as well as rewards) based on the amount of stake that is
possessed by each one of them as reported in the ledger (without incurring any additional expenditures). In
some sense, this sounds ideal; however, realizing such a proof-of-stake protocol appears to involve a number
of definitional, technical, and analytic challenges.

Previous work. The concept of PoS has been discussed extensively in the bitcoin forum.1 Proof-of-stake
based blockchain design has been more formally studied by Bentov et al., both in cojunction with PoW [4] as
well as the sole mechanism for a blockchain protocol [3]. Although Bentov et al. showed that their protocols
are secure against some classes of attacks, they do not provide a formal model for analysing PoS based
protocols or any security definitions/proofs. Heuristic proof-of-stake based blockchain protocols have been
proposed (and implemented) in a number of cryptocurrencies.2 Being based on heuristic security arguments,
these cryptocurrencies have been frequently found to be deficient from a point of view of security. See [3]
for a discussion of various attacks.

It is also interesting to contrast a PoS-based blockchain protocol with a more classical consensus
blockchain that relies on a fixed set of authorities (such protocols have been proposed, see, e.g., [5]). What
distinguishes PoS-based blockchains compared to such protocols is the fact that stake changes over time and
hence the trust assumption evolves with the system.

Another alternative to PoW and PoS is the concept of proof of space [2, 6], which has been specifically
investigated in the context of blockchain protocols [16]. In a proof of space setting, a “prover” wishes to
demonstrate the utilization of space (storage / memory); as in the case of a PoW, this utilizes a physical
resource but can be less energy demanding over time. A related concept is proof of space-time (PoST) [13].
In all these cases,s, a physical resource (either storage or computational power) is necessary.

The PoS Design challenge. A fundamental problem for PoS-based blockchain protocols is to simulate the
leader election process. In order to achieve a randomized election among stakeholders, entropy has to be
introduced in the system, and mechanisms to introduce entropy may be manipulated by the adversary. For
instance, independently of the solution, an adversary controlling a set of stakeholders may choose to simulate
the protocol execution trying different sequences of stakeholder participants so that it finds a favorable chain
continuation that biases the leader election. To prevent this manipulation, honest stakeholders need to be
able to add sufficient entropy and counter any lookahead performed by the adversary.

Our Results. To the best of our knowledge, we present the first PoS-based blockchain protocol that has a
rigorous security analysis. In more detail, our results are as follows.

First, we provide a model and formalize the problem of realizing PoS-based blockchain protocols. The
model we introduce is in the spirit of [9], focusing on persistence and liveness, two formal properties of a

1See “Proof of stake instead of proof of work.” Bitcoin forum thread. Posts by user “QuantumMechanic” and others.
(https://bitcointalk.org/index.php?topic=27787.0.).

2A non-exhaustive list includes NXT, Neucoin, Blackcoin, Tendermint, Bitshares.
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robust transaction ledger. Persistence states that once a node of the system proclaims a certain transaction
as “stable,” the remaining nodes, if queried and respond honestly, will also report it as stable. Here, stability
is to be understood as a predicate that will be parameterized by some security parameter k that will affect
the certainty with which property holds. E.g., “more than k blocks deep,” etc. Second, liveness ensures that
once an honestly generated transaction has been made available for a sufficient amount of time to the network
nodes, say u time steps, it will become stable. The conjunction of liveness and persistence provides a robust
transaction ledger in the sense that honestly generated transactions are adopted and become immutable. Our
model is suitably amended to facilitate PoS-based solutions.

Second, we describe a novel protocol for a blockchain based on PoS. Our blockchain protocol assumes
that parties can freely create accounts and receive and make payments, and that stake shifts over time. We
utilize a secure multiparty implementation of a coin flipping protocol to produce the randomness for the
leader election process. This distinguishes the approach from other previous solutions that either defined
such values deterministically based on the current state of the blockchain or used collective coin flipping
as a way to introduce entropy [3]. Also, unique to our design approach is the fact that the system ignores
round-to-round stakemodifications. Instead, the set of stakeholders is taken in a snapshots in regular intervals
called epochs, and in each such interval a secure multiparty computation takes place utilizing the blockchain
itself as the broadcast channel. In each epoch a set of randomly selected stakeholders are responsible for
executing the coin flipping protocol. The outcome of the protocol determines the set of next stakeholders to
execute the protocol in the next epoch as well as the outcomes of all leader elections for the epoch.

Third, we provide a set of formal arguments establishing that no adversary can break persistence and
liveness. Our protocol is secure under a number of plausible assumptions: (1) the network is highly
synchronous, (2) the majority of the selected stakeholders is available as needed to participate in each epoch,
(3) the astakeholders do not remain offline for long periods of time. At the core of our security arguments
is a combinatorial probabilistic argument, regarding “forkable strings” which we formulate, prove and also
verify experimentally.

Fourth, given our model we explore the various attacks and how they can be addressed within our model.
Specifically, we discuss double spending attacks, transaction denial attacks, 51% attacks, desynchronization
attacks and others.

Finally, we comment on the incentive structure of the protocol and discuss how participation on ledger
maintainance can be incentivized by fees.

2 Model

Synchrony. We consider a setting where time is divided in discrete units called slots. Each slot can be
associated with a single block. Players are aware of the current slot for which a block is to be determined.
In general, each slot slr is indexed by an integer r ∈ {1, 2, . . .}. We assume that the real time window that
corresponds to each slot has the following properties.

• The current slot is determined by a publicly-known and monotonically increasing function of current
time.

• Each player has access to the current time. Any discrepancies between parties’ local time are insignif-
icant in comparison with the length of time represented by a slot.

3



• The length of the time window that corresponds to a slot is sufficient to guarantee that any message
transmitted by an honest party at the beginning of the time window will be received by any other
honest party by the end of that time window (even accounting for small inconsistencies in parties’
local clocks). In particular, while network delays may occur, they never exceed the slot time window.

Transaction Ledger Properties. A protocol Π implements a robust transaction ledger provided that
the ledger that Π maintains is divided in “blocks” that determine the order with which transactions are
incorporated in the ledger. It should also satisfy the following two properties.

• Persistence. Once a node of the system proclaims a certain transaction as stable, the remaining nodes,
in case they are queried and they respond honestly, will also report it as stable. Here the notion of
stability is a predicate that is parameterized by a security parameter k; specifically, a transaction is
declared stable if and only if it is in a block that is more than k blocks deep in the ledger.

• Liveness. If all honest nodes in the system attempt to include a certain transaction then, after the
passing of time corresponding to u slots (called the transaction confirmation time), there is a node
which, if queried and responding honestly, will report the transaction as stable.

In [12] it was shown that persistence and liveness can be derived from the following three elementary
properties provided that protocol Π derives the ledger from a data structure in the form of a blockchain.

• Common Prefix (CP); with parameters k, l ∈ N. The chains C1, C2 possessed by two external
observers at the onset of the slots sl1, sl2 with sl2 at most l slots ahead of sl1, are such that C dk1 � C2.

• Chain Quality (CQ); with parameters µ ∈ (0, 1] → R and k ∈ N. For any subset S of (possibly
malicious) stakeholders with relative stake α and any portion of length k in a chain possessed by an
honest party at the onset of a certain slot, the ratio of blocks originating from members of S can be at
most µ(α).

• Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the chains C1, C2 posssessed by
two honest parties at the onset of two slots sl1, sl2 with sl2 at most s slots ahead of sl1. Then it holds
that len(C2) − len(C1) ≥ τ · s. We call τ the speed coefficient.

Some remarks are in place. Regarding common prefix observe the importance of parameter l. In case
l = 0, it coincides with the common prefix as originally formulated in [9]. A stronger formulation of common
prefix would set l to be the lifetime of the system itself, see [12]. Restricting on a bound l smaller than the
system’s lifetime suggests that forks deeper than k blocks might be feasible in the chains of honest parties (or
even of the same party) if the parties are observed between two rounds that are more than l slots away. This
relaxation is necessary to be able to prove the common prefix property in the PoS setting. With foresight,
maintaining the implication from common prefix to persistence, we will need the additional assumption that
no honest stakeholder gets offline for more than k rounds, where k is a parameter.

Regarding chain quality, it will hold that the function µ that depends on α satisfies µ(α) ≥ α for protocols
of interest. An ideal setting of µwould be in fact the identity function and in this case, this would suggest that
the percentage of blocks in any chain segment is proportional to the cumulative stake of a set of stakeholders
(who potentially act maliciously).
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It is worth noting that for bitcoin it holds that µ(α) = α
1−α , and this bound is in fact tight, (see [9] who

argue this statement for chain quality using a variant of selfish mining [7]). The same will hold true for our
protocol construction.

Finally chain growth deals with how fast the chain of honest parties. In the case of bitcoin, but also in
our protocol, the power of the rule longest (hardest in the case of bitcoin) chain wins in each round provides
for an easy proof for chain growth.

Security Model. We adopt the model introduced by [9] for analysing security of blockchain protocols.
We denote by VIEWP

Π,A,Z (κ, z) the view of party P after the execution of protocol Π with adversary A,
environmentZ, security parameter κ and auxiliary information z. We will only consider executions without
auxiliary input z = ε .

Contrary to [9], our analysis is in the standard model, assuming a trusted setup without a random oracle.
The execution of the protocol is with respect to an adversary that corrupts a subset of the initial stakeholders.
Beyond the initial stakeholders, the environment is allowed to introduce additional parties and generate
transactions that are given as input to existing stakeholders. Each party has a private state that includes a
public/secret-key pair (pk, sk).

The adversary A may, at any point of the execution, issue a special command (Corrupt,U) which will
result in the the stakeholder U relinquishing its entire state to A; from this point on, the adversary will
be activated in place of the stakeholder U . The adversary can only corrupt a stakeholder if it is given
permission by the environment Z running the protocol execution. The permission is in the form of a
message (Corrupt,U) which is provided to the adversary by the environment.

• At each slot sl j , the environment Z is allowed to activate any subset of stakeholders it wishes. Each
one of them will possibly produce messages that are to be transmitted to other stakeholders.

• The adversary is activated last in each sl j , is allowed to read all messages sent by honest parties andmay
deliver them in the next slot to each stakeholder in any order it wishes, potentially including messages
of its own. Adversarial messages may be delivered only to a selected set of honest stakeholders.

• If a stakeholder is not activated in a certain slot then all the messages written to its communication
tape are lost.

It is easy to see that the model above confers such sweeping power on the adversary that one cannot
establish any significant guarantees on protocols of interest. It is thus important to restrict the environment
suitably (taking into account the details of the protocol) so that we may be able to argue security. With
foresight, the restrictions we will impose to the environment are as follows.

Restrictions imposed to the environment. The environment, which is responsible for activating the honest
parties in each round, will be subject to the following constraints.

• At each slot there will be an identified set of elected shareholders, and the adversary will be permitted
to corrupt only a minority of those.

5



• At each slot there will be a uniquely identified party that will be called the slot leader. If a stakeholder
is honest and is the slot leader at a certain slot, the environment will activate it in the slot before and
in the slot that it is the slot leader.

• In each round there will be at least one honest stakeholder that is activated (independently of whether
it is a slot leader or not).

• There will be a parameter k ∈ Z that will signify the maximum number slots that an honest shareholder
can be offline.

3 Our Protocol: Static State

3.1 Basic Concepts and Protocol Description

In the static stake case, we assume that a fixed collection of n stakeholdersU1, . . . ,Un interact throughout the
protocol. Stakeholder Ui possesses si stake before the protocol starts. For each stakeholder Ui a verification
and signing key pair (vki, ski ) for a signature scheme is generated and we assume without loss of generality
that each verification key vki is known by all stakeholders. Before describing the protocol, we establish basic
definitions following the notation of [9].

Definition 3.1 (Genesis Block) The genesis block B0 contains the list of stakeholders identified by their
public-keys and their respective stakes {(vk1, s1), . . . , (vkn, sn )} and auxiliary information ρ.

Definition 3.2 (Block) A block Bi generated at a slot sl ∈ {sl1, . . . , slR } contains the current state st ∈
{0, 1}λ , data d ∈ {0, 1}∗, the slot number sl and a signature σ = Signski (st, d, sl) computed under ski
corresponding to the stakeholder Ui generating the block. If no block is generated at slot i then Bi = ∅.

Definition 3.3 (State) A state is a string st ∈ {0, 1}λ .

Definition 3.4 (Blockchain) A blockchain (or chain) is a sequence of blocks B1, . . . , Bn for which it holds
that for each block Bi the state sti is equal to H (Bi−1), where H is a prescribed collision resistant hash
funcion.The length of a chain len(C) is its number of blocks. The rightmost block is the head of the chain,
denoted head(C). Note that the empty string ε is also a legal chain; by convention we set head(ε) = ε.

Let C be a chain of length n and k be any non-negative integer. We denote by C dk the chain resulting
from removal of the k rightmost blocks of C. Note that if k ≥ len(C) then C dk = ε. We let C1 � C2 indicate
that the chain C1 is a prefix of the chain C2.

Definition 3.5 (Epoch) An epoch is a set of R adjacent slots S = {sl1, . . . , slR }. (The value R is a parameter
of the protocol we analyze in this section.)

Definition 3.6 (Adversarial Stake Ratio) LetUA be the set of stakeholders controlled by the adversary, the
adversarial stake ratio is defined as

α =

∑
j ∈UA

s j∑n
i=1 si

where n is the total number of stakeholders and si is stakeholder Ui’s stake.
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Slot Leader Selection In the protocol described in this section, for 0 < j ≤ R and slot sl j , the slot leader
E j has the right to generate a block. For 1 ≤ i ≤ n, a stakeholder Ui is selected as the slot leader with
probability pi proportional to its stake registered in the genesis block B0. In the static stake case, the genesis
block as well as the procedure for selecting slot leaders are determined by the ideal functionality F D,F

LS
,

defined in Figure 1. This functionality is parameterized by the list {(vk1, s1), . . . , (vkn, sn )} assigning to each
stakeholder its respective stake, a distribution D that provides auxiliary information ρ and a leader selection
function F defined below.

Definition 3.7 (Leader Selection Process) A leader selection process (D, F) is a pair consisting of a distri-
bution and a deterministic function such that, when ρ← D it holds that for all sl j ∈ {sl1, . . . , slR }, F(ρ, sl j )
outputs Ui ∈ {U1, . . . ,Un } with probability

pi =
si∑n

k=1 sk

where si is the stake held by stakeholder Ui .

Functionality F D,F
LS

F
D,F
LS

is parameterized by the public keys and respective stakes of the stakeholders {(vk1, s1), . . . , (vkn, sn )}, a
distribution D and a function F so that (D, F) is a leader selection process. F D,F

LS
interacts with stakeholders

U1, . . . ,Un as follows:
• Upon receiving (genblock_req,Ui ) from stakeholder Ui , F D,F

LS
proceeds as follows. If B0 = ∅, F D,F

LS

samples ρ← D and sets B0 = {(vk1, s1), . . . , (vkn, sn ), ρ}. Finally, F D,F
LS

sends (genblock, B0, F) to Ui .

Figure 1: Functionality F D,F
LS

.

A Protocol in the F D,F
LS

-hybrid model. We start by describing a simple PoS based blockchain protocol
considering static stake in the F D,F

LS
-hybrid model, i.e., where the genesis block B0 (and consequently the

slot leaders) are determined by the ideal functionality F D,F
LS

. The stakeholders U1, . . . ,Un interact among
themselves and with F D,F

LS
through Protocol πSPOS described in Figure 2.

The protocol relies on a maxvalid(C,C) function that chooses a chain given the current chain C and a set
of valid C that are available in the network. This function is parameterized by k ∈ N, (a security parameter),
and is defined as follows.

Function maxvalid(C,C). Returns the longest chain from C ∪ {C} that does not fork from C
more than k blocks. If multiple exist it returns C, if this is one of them, or it returns the one that
is listed first in C.
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Protocol πSPOS

πSPOS is a protocol run by stakeholders U1, . . . ,Un interacting among themselves and with F D,F
LS

over a sequence
of slots S = {sl1, . . . , slR }. πSPOS proceeds as follows:

1. Initialization When πSPOS starts, each stakeholder Ui ∈ {U1, . . . ,Un } sends (genblock_req,Ui ) to F D,F
LS

,
receiving (genblock, B0, F) as answer. Ui sets an internal blockchain C = B0 and a initial internal state
st = H (B0).

2. Chain Extension For every slot sl j ∈ S, every online stakeholder Ui performs the following steps:
(a) Collect all valid chains received via broadcast into a set C, verifying that for every chain C′ ∈ C

and every block B′ = (st ′, d ′, sl ′, σ′) ∈ C′ it holds that Vrfvk′ (σ′, (st ′, d ′, sl ′)) = 1, where vk′ is the
verification key of the stakeholder U ′ ← F(r, sl ′). Ui calls the function maxvalid(C,C) to select a
new internal chain C ∈ C and sets state st = H (head(C)).

(b) If Ui is the slot leader determined by F(r, sl j ), it generates a new block B = (st, d, sl j, σ) where st
is its current state, d ∈ {0, 1}∗ is the transaction data and σ = Signski (st, d, sl j ) is a signature on
(st, d, sl j ). Ui extends C by appending B, obtains C = C|B and broadcasts the new C.

Figure 2: Protocol πSPOS.

3.2 Forkable Strings

In our security arguments, we will treat strings over {0, 1}∗ as an abstraction for (sub-)sequences of slots. If
w ∈ {0, 1}∗, we say that the the slot i is an adversarial slot if and only if wi = 1. In this case, the string w will
be the characteristic string of the sequence of adversarial slots. We start with some intuition on our approach
to analyze the protocol.

Let w ∈ {0, 1}n be a characteristic string of some sequence of slots S with |S | = n. Consider two
observers that go offline immediately prior to the commencement of S. The two observers have the same
view of the current chain which they believe it as correct; we denote it by C0. The two observers come back
online at the last slot of S and request an update of their chain. These two observers will have a diverging
view over S if it is possible for the adversary to force the two observers to adopt two different chains C1, C2
whose common prefix is C0.

We observe that not all characteristic strings permit this. For instance the string 0n ensures that the
two observers will adopt the same chain C which will have n new blocks on top of the joint state of the
two observers C0 prior to the commencement of the rounds in S. On the other hand, other strings do not
guarantee this; in the case of 1n , it is possible for the adversary to produce two completely different histories
during the sequence of slots S and thus furnish to the two observers two distinct chains C1, C2 that only share
the common prefix C0.

Definition 3.8 (Characteristic String) Fix an execution with genesis block B0, adversary A, environment
Z. Let S = {sli, . . . , sl j } where i < j is a sequence of slots of length |S | = `. The characteristic string
w ∈ {0, 1}` of S is such that wk = 1 if and only if the adversary controls the slot leader of slot slk (i.e., upon
receiving (leader_req, slk ), F D,F

LS
answers with (leader_ans, slk, Ek ) such that Ek identifies a stakeholder

controlled by the adversary).
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Forkable strings. Let w = w1, . . . ,wn ∈ {0, 1}n be the characteristic string for a sequence of slots. A fork
for the sequence w is a pair of increasing sequences,

f = (α; β) = (α1, . . . , αk ; β1, . . . , β`)

so that each αi and βi is an index of w (that is, an element of {1, . . . , n}),

• k ≥ `, and

• each honest index (for which wi = 0) appears in exactly one of the two sequences.

We call the two sequences tines. Note that malicious indices may appear in neither, one, or both of the tines.
We introduce some terminology for forks that captures the fact that honest indices “may only be added to
the longer tine of a fork”:

• We say that a fork for w is incrementally legal if either wn = 1 or wn = 0 and αk = n (so that the
longer tine of the fork contains this final honest index). That is, wn = 0⇒ αk = n.

• If w is a prefix of the string w′ ∈ {0, 1}∗, f = (α, β) is a fork of w, and f ′ = (α′, β′) is a fork of w′,
we say that f is a prefix of f ′, written f v f ′, if each tine of f is a prefix of one of the tines of f ′.

• In many cases, it is convenient to work with tines that do not “commit” anything beyond the last honest
index. Specifically, we say that a fork is closed if wαk

= wβ` = 0, so both tines end with honest
indices.

• We say that a fork f = (α, β) for w is legal if there is a sequence

f0 = (ε, ε ) v f1 v · · · v fn v f

of forks so that for each i ∈ {1, . . . , n} the fork f i corresponds to the stringw1 . . .wi and is incrementally
legal and closed. (Note that both fn and f are forks for the string w; we permit the possibility that
they are actually different forks because we insist that fn be closed—thus, in general f is obtained by
adding further malicious indices to the end of the tines of f .) We call such a sequence a transcript (or
a transcript for f , if we wish to emphasize the target fork in the sequence).
(Note that the set of forks defined by these requirements would be unchanged if we removed the
demand that the f i are closed, but it is convenient for our purposes to adopt this extra assumption.)

• Finally, for a fork f we define the gap of f , denoted gap( f ), to be k − `. We say that a fork is flat if
gap( f ) = 0.

Definition 3.9 Let w ∈ {0, 1}n . The string w is called forkable if there is a flat legal fork f for w.

We define the reserve of a closed fork, denoted reserve( f ), to be the number of malicious indices larger
than β`, so

reserve( f ) = |{i | wi = 1 and i ≥ β` }| .
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Figure 3: A fork for the string w. gap( f ) indicates the difference in length between the two tines; in this case
gap( f ) = 2. reserve( f ) = |{i | β` < i ≤ n and wi = M }| indicates the number of “uncommitted” malicious
indices, i.e., those appearing after β`; in this case reserve( f ) = 3.

We remark that this quantity, as with many of the other structural features discussed above, depends both on
f and the specific string w associated with f .

We can treat the addition of a new symbol to the end of a string w as effecting a (non-deterministic)
transition on the state space of all closed and incrementally legal forks. To approach this idea, we initially
focus on the set of “0-terminating” strings (those which end with the symbol 0). Specifically, consider a
closed fork f for a string w ending with a 0; extending w by the string 1s0 results in another 0-terminalting
string. We explore what possible (closed, incrementally legal) forks f ′ exist for w′ = w1s0 for which f v f ′.
Indeed, there are two natural families of forks for w′, depending on which tine is augmented with the new
honest index:

Extend. It is always possible to add the new honest index to the longer tine (along with some of the s
malicious indices of 1s0); thus the longer tine is transformed from γ to γ1t0 for some t ≤ s. Note in
this case that t + 1 is added to the gap and s is added to the reserve. (We remark that since f is closed,
the last index corresponding to 0 appearing on the longer tine is indeed the last symbol of w.)

Crossover. If s + reserve( f ) ≥ gap( f ) (or, equivalently, s + (reserve( f ) − gap( f )) ≥ 0), the new honest
index may be added to the shorter tine, creating a “crossover.” In this case, the new gap is 1 + t for
some 0 ≤ t ≤ s + reserve( f ) − gap( f ) and the reserve is s.

In general, a forkable string w may have many different (legal) forks. We can significantly simplify
our reasoning about these dynamics by observing that for any forkable sequence w, there is an (essentially)
unique canonical forking, which is produced by maximizing margin( f ) = reserve( f ) − gap( f ) at each step.

Lemma 3.10 Let w = xy for two strings x and y, where x is 0-terminating, and consider a legal fork h for
w. Let f be the fork associated with the prefix x by the transcript for h and let f̂ be a closed, legal fork for
x for which margin( f̂ ) ≥ margin( f ). Then there is a legal fork ĥ for w with a transcript that associates f̂
with x.

Proof. The proof proceeds by induction on the number of 0’s in the string y. Note that if y has no honest
indices, then any closed fork f for x is also a closed fork for w and can be completed to a flat fork h (for w)
if and only if the margin is non-negative. As margin( f̂ ) ≥ margin( f ), it follows that f̂ can be completed to
a flat fork as well.
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Otherwise, we write y = 1s0y′ and consider the closed fork g assigned to x ′ = x1s0 by the transcript
for h. If g is obtained from f by extending, it holds that margin(g) ≤ margin( f ) + s − 1 by the discussion
above. Consider the fork ĝ (for x ′) obtained by extending f̂ and setting t = 0 in the extension process.
Then, margin(ĝ) = margin( f̂ ) + s − 1 ≥ margin(g), and the lemma follows by induction (as y′ has one less
0). Otherwise, g is obtained from f by a crossover, in which case margin(g) ≤ s − 1 by the discussion
above. Note that a crossover can only occur if margin( f ) + s ≥ 0 and, as margin( f̂ ) ≥ margin( f ), we have
margin( f̂ ) + s ≥ margin( f ) + s ≥ 0 and a crossover is also possible from the fork f̂ . Let ĝ be the fork for
x ′ obtained (from f̂ ) by the crossover rule with t = 0. Then margin(ĝ) = s − 1 ≥ margin g, and the lemma
follows by induction. �

Given the above observe that if a string w is forkable, there is an (essentially) canonical strategy for the
adversary: maximize margin at each step. (Where the notion of “step” here really refers to the addition of a
suffix of the form 1s0 to the end of the current string.) Specifically, the transformation rules above can be
simplified so that they are deterministic. As above, consider a closed fork f for the 0-terminating string w

and an extension of w by the string 1s0. We explore the margin-maximizing (closed, incrementally legal)
forks f ′ that exist for w′ = w1s0 for which f v f ′:

• If margin( f ) + s < 0, the only option is extension and margin is maximized by choosing t = 0. The
resulting margin is margin( f ) + s − 1.

• If margin( f ) > 0, either of the transformations above are possible but margin is maximized by
extending with t = 0. The resulting margin is margin( f ) + s − 1.

• If −s ≤ margin( f ) ≤ 0, either of the transformations above are possible, but margin is maximized by
crossing over with t = 0. The resulting margin is exactly s − 1 (regardless of previous margin).

(When margin( f ) = 0, margin can be maximized in multiple ways, and we assume a crossover for concrete-
ness.)

These deterministic transformation rules determine maximum margin as a function of the 0-terminating
string w. Specifically, write w = 1s101s20 · · · 1sk0 for some k, s1, . . . , sk ∈ N. We define margin(w) by the
recursive rule

margin(ε ) = 0 ,

margin(w′1s0) =



s − 1 if −s ≤ margin(w′) ≤ 0,
margin(w′) + s − 1 otherwise.

Note, additionally, that any 0-terminating string w is forkable if and only if margin(w) ≥ 0.
For convenience, we extend this notion of margin to the set of all strings {0, 1}∗. For a string w ∈ {0, 1}∗,

let tail(w) denote the number of trailing 1’s in the string (that is, max{k | w = w′1k for some w′}); then
define margin(w) by the rule

margin(ε ) = 0 ,
margin(w0) = margin(w) − 1 ,

margin(w1) =



margin(w) + 1 if margin(w) + 1 , 0,
tail(w1) if margin(w) + 1 = 0.
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Note that these two definitions of margin agree on 0-terminating strings.
We place a probability distribution on {0, 1}n by independently selecting each wi ∈ {0, 1} so that

Pr[wi = 0] =
1 + ε
2
= 1 − Pr[wi = 1]

and consider the random variables Xt = margin(w1 . . .wt ). Note that if it were not for the “exotic” behavior
“around zero” (that is, the case that margin(w) + 1 = 0), these random variables would simply describe
a biased random walk. In particular, they would arise from the familiar Markov chain of Figure 4 where

0−1· · · 1 · · ·

p

qq

p p

q

p

q

Figure 4: The simple biased walk.

p = (1 + ε )/2 and q = 1 − p.
With the exotic transition margin(w1) = tail(w1) (when margin(w) = −1), we note that this process is no

longer strictly “Markovian,” as this transition depends on number of “recent” 1 symbols in the sequence. We
can reflect this with a richer Markov chain over the state space Z×Z, which we think of as a Markov chain on
the state space Z (reflecting the current margin) which additionally remembers a “counter” corresponding to
the position of the last 0 that was visited. This permits the chain to correctly handle the exotic rule associated
with margin() = −1; the chain is described in Figure 5.

The basic event we wish to analyze is the event that after n steps on this Markov chain, the resulting
margin is negative; in that case the corresponding string in {0, 1}∗ is not forkable.

Theorem 3.11 Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}n independently assigning each wi = 0
with probability (1 + ε )/2. Then Pr[w is forkable] = 2−θ (

√
n).

Proof. Write w = w(1) · · ·w(
√
n) where b

√
nc ≤ |w(i) | ≤ d

√
ne for each i. Fix δ < ε to be a small constant.

Let L(i) denote the event that there is a contiguous sequence of “1” symbols of length exceeding δ
√

n in the
string w(i). Then Pr[L(i)] ≤

√
n2−δ

√
n = 2−θ (

√
n). We remark that these events are independent for distinct

values of i, as they involve non-overlapping sets of symbols of w.
Let mt = margin(w(1) · · ·w(t−1)). We define three events based on this margin:

Hot We let Hott denote the event that mt ≥ 2δ
√

n or L(t−1) occurred.

Volatile We let Volt denote the event that −2δ
√

n ≤ mt < 2δ
√

n and L(t−1) did not occur.

Cold We let Coldt denote the event that mt < −2δ
√

n.

(We assume, by convention, that L(−1) does not occur.) Note that for each t, exactly one of these events
occurs—they partition the probability space. Then we will establish that

Pr[Coldt+1 | Coldt ] ≥ 1 − 2−θ (
√
n) , (1)

Pr[Coldt+1 | Volt ] ≥ θ(ε ) , (2)

Pr[Hott+1 | Volt ] ≤ 2−θ (
√
n) . (3)
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h

k − 1
k − 1

k + 1
h

0

1

(a) The dynamics at nodes with k , −1.

−1
−h

...

h
h

−2
−2

1

0

(b) The dynamics at k = −1.

Figure 5: Diagram of the lifted Markov chain. The first coordinate, k, maintains the current margin; the
second coordinate, h, maintains the position of the last appearance of the symbol 0.

Note that the event Vol1 occurs by definition. We wish to show that the system is very likely to eventually
become cold, and stay that way. Note that the probability that the system ever transitions from volatile to hot
is no more than 2−θ (

√
n) (as transition from Vol to Hot is bounded above by 2−θ (

√
n), and there are no more

than
√

n possible transition opportunities). Note, also, that while the system is volatile, it transitions to cold
with constant probability during each period. In particular, the probability that the system is volatile for the
entire process is no more that 2−θ (

√
n). Finally, note that the probability that the system ever transitions out

of the cold state is no more than 2−θ (
√
n) (again, there are at most

√
n possible times when this could happen,

and any individual transition occurs with probability 2−θ (
√
n)). It follows that the system is cold at the end of

the process with probability 1 − 2−θ (
√
n).

In preparation for establishing the three inequalities (1), (2), and (3), we note two facts about the simple
biased walk (of Figure 4 above) with p = (1 + ε )/2 and ε > 0.

Constant escape probability. As ε > 0, the probability that an infinite walk beginning at state 0 ever visits
the state 0 again is a constant less than 1 (depending only on ε). (See, e.g., [10, Chapter 12].)

Concentration. Consider s steps of the Markov chain beginning at state 0; then the resulting value is tightly
concentrated around −ε s. Specifically, let Z1, . . . , ZS be i.i.d. {±1}-valued random variables with
Pr[Zs = 1] = (1 − ε )/2, in which case the expected value E[

∑S
s=1 Zs] = −εS. Then

Pr


∑
s

Zs > −
εS
2


= 2−θ (S) . (4)
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Cold

Vol

Hot≈ 1

θ(1)

θ(1) ≈ 0

Figure 6: An illustration of the transitions between Cold, Vol, and Hot.

(The constant hidden in the θ() notation depends only on ε . See, e.g., [1, Cor. A.1.14].)

Inequality (1) follows directly from the concentration statement above: Note that unless the Markov
chain visits a state for which k = −1, it behaves like the simple unbiased walk. Let D(i) denote the event that
there is a contiguous sequence of symbols x in w(i) for which #1(x) − #0(x) ≥ δ

√
n. By the same Chernoff

bound of (4) above, Pr[D(i)] ≤ 2−θ (
√
n). (Observe that such an event can only happen if the sequence of

symbols has length at least δ
√

n, in which case the Chernoff bound can be applied.) As the chain starts
with mt < 2δ

√
n, unless Dt occurs, the Markov chain cannot possibly visit the state −1. It follows, again

from (4), that the probability that mt+1 ≥ 2δ
√

n is 2−θ (
√
n). (In fact, the Chernoff bound shows that with high

probability, the value of mt+1 has significantly decreased.) Finally, the probability of Lt is 2−θ (
√
n). Thus the

probability of Coldt+1 is 2−θ (
√
n), as desired.

As for inequality (2), note that if the system starts with mt ≤ −1 then with constant probability it will
never visit −1 during (the rest of) m(t ) and, conditioned on that, will end with a margin < −2δ

√
n with

probability 1 − 2−θ (
√
n) (by (4)). If, on the other hand, the system starts with mt > −1 (but less than 2δ

√
n),

again by a Chernoff bound it will visit the node (−1,−1) with probability 1 − 2−θ (
√
n) during the first half of

the string w(t ). As in the other case, the probability that it never returns to margin −1 and ends up below
−2δ
√

n is a constant. The result follows.
Finally, consider inequality (3). Note that, first of all, by the union bound, L(t ) occurs with probability

no more than
√

n2−θ (
√
n) = 2−θ (

√
n). The other way for the event Hott+1 to occur is that the margin, initially

smaller than 2δ
√

n, “escapes” to a value exceeding this. We separate this analysis into two cases: if the initial
margin is positive (or zero), note with probability at least 1 − 2−θ (

√
n), the margin will return to 0 during

w(t ) by (4). After this, note that assuming that neither L(t ) or D(t ) occur, the maximum possible margin that
can appear in the remainder of w(t ) is 2δ

√
n, as desired. (The factor of 2 arises due to the possibility that a

transition through zero induces a tail() of size δ
√

n.) On the other hand, if the initial margin is negative, as
L(t−1) did not occur, the same argument concludes that the maximum final margin is no more than 2δ

√
n. �
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Figure 7: Ratio of forkable strings as the length n grows vs. the ratio of slots assigned to the adversary.

Experiments. In order to gain further insight regarding the density of forkable strings we performed
exhaustive search experiments. For each string, an exhaustive search algorithm searches the space of
possible forks. The experiments were run on a cluster of 4 servers equipped with Hexa-core Intel Xeon
E5-2420 @ 1.90GHz, 16GB RAM, and one 1TB SATA disk, running CentOS 7 Linux.

Our results are presented in Figure 7. As one can observe, as n grows the ratio of forkable strings decays
(for ε > 0).

3.3 Common Prefix

The common prefix theorem is proven using the following approach. We observe that in order for a fork of
length k to be created it should be the case that the characteristic string should have a substring of length k
that is forkable. Given that the assignment of slots to stakeholders is a random procedure the number of slots
assigned to the adversary follows the Binomial distribution with success probability equal to the adversarial
stake. By assuming a bound on the number of forkable strings of a certain Hamming weight we obtain the
following statement.

Theorem 3.12 Let k, R ∈ N and ε ∈ (0, 1). The πSPOS protocol satisfies the common prefix property with
parameters k, R throughout a period of R slots with probability exp(−c

√
k + ln R) against an adversary
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holding an 1−ε
2 portion of the total stake; the constant c depends only on ε .

Proof. Given the initialization of the protocol we call Bad the event that in any of the R rounds of execution,
there exist the necessary conditions for the adversary to break the k-common-prefix property.

We observe the following:
Bad ⊆

⋃
a∈[1,R−k+1]

Bada

where Bada is defined as the event that the characteristic string that corresponds to the slots [a, a + k − 1] is
forkable.

To see why this is the case consider the event ∧a¬Bada . This means that no characteristic string starting
at slot sla of length k is forkable.

For the sake of contradiction we will assume that the common prefix property is violated. Take two slots
sl1 ≤ sl2. Suppose that two honest players U1,U2 active at these two respective slots have chains for which
it holds that C dk1 � C2. This means that C2 forks from C1 more than k blocks deep. Moreover, given that
sl1 ≤ sl2, it holds that C2 is at least as long as C1. Let a − 1 be the slot that corresponds to the last common
block between C1, C2 (equal to 0 if that is the genesis block). Observe that sla + k − 1 < sl1 ≤ sl2 since both
C1 and C2 have more than k blocks added after sla−1.

Wewill show that the characteristic stringw of length k defined over the sequence of slots {sla, . . . , sla+k−1}
is forkable. To achieve this we have to construct a flat legal fork. Consider the execution at slot sl2 when the
violation of the common prefix is observed. We construct a sequence of forks f1, . . . , fk , f i = (α(i)

1 , α
(i)
2 ),

so that f i v f i+1 for i = 1, . . . , k − 1. Let f0 = (ε, ε ). Consider the rank i ∈ {1, . . . , k − 1} of some slot in
the sequence {sla, . . . , sla+k−1}. We have the following cases.

• In case i is a malicious slot set f i = f i−1.

• In case i is an honest slot and the honest party leader of the slot extended some prefix of the chains
C1, C2, say Cu , with u ∈ {1, 2}, define the tine α(i)

u by appending to α(i−1)
u all the malicious slots that

correspond to the blocks in Cu , starting from the block that corresponds to the earliest slot not included
in α(i−1)

u and going up to i− 1; finally append also i. The other tine is simply defined as α(i)
3−u = α

(i−1)
3−u .

• In case i is an honest slot and the honest party leader of the slot extended some other chain C which
is not a prefix of of C1, C2, perform the same steps as in the case above, picking u ∈ {1, 2} to be the
shortest tine (favoring u = 1 in case both tines are equal).

Observe that the fork f i constructed in this way is incrementally legal and closed. Finally we pad the two
tines of fk with sufficient number of remaining adversarial slots from {sla, . . . , sla+k−1} to obtain a flat fork
f such that fk v f . The fork f is flat and legal and thus the string w is forkable, which is a contradiction on
¬Bada .

We proceed now to provide a bound on Bad. By the union bound we have that, Pr[Bad] ≤ R · ε where
ε is density of forkable strings of length k from which we obtain immediately the statement of the theorem
using Theorem 3.11. �
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3.4 Chain Growth and Chain Quality

We will start with the chain growth property.

Theorem 3.13 The πSPOS protocol satisfies the chain growth property with parameters τ = 1 − α, s ∈ N
throughout an epoch of R slots with probability 1− exp(−ε2s + ln R) against an adversary holding an α − ε
portion of the total stake.

Proof. Define Hama (α) to be the event that the Hamming weight ratio of the characteristic string that
corresponds to the slots [a, a + s − 1] is up to α. Given that the adversarial stake is α − ε , each of the k slots
has probability α − ε being assigned to the adversary and thus the probability that the Hamming weight is
more than αs drops exponentially in s. Specifically, using the additive version of the Chernoff bound, we
have that Pr[¬Hama (α)] ≤ exp(−2ε2s). It follows that,

Pr[Hamα] ≥ 1 − exp(−2ε2s).

Given the above we know that when Hamα happens there will be at least (1 − α)s honest slots in the period
of s rounds. Given that each honest slot enables an honest party to produce a block, all honest parties will
advance by at least that many blocks. Using a union bound, it follows that the speed coefficient can be set to
τ = (1 − α) and it is satisfied with probability 1 − exp(−2ε2s + ln(R)). �

Having established the chain growth property we now turn our attention to the chain quality property.
Recall that the chain-quality property parameterized with k and it states that every k blocks in a chain
observed at a certain slot the blocks corresponding to a set of stakeholders that hold cumulative stake ratio
β are τ β. In the next theorem we establish bounds for the parameter τ.

Theorem 3.14 The πSPOS protocol satisfies the chain quality property with parameters µ = α/(1 − α),
k ∈ N throughout an epoch of R slots with probability

1 − exp
(
−ε2(1 − α)−1k + ln R

)
where α − ε is the ratio of the cumulative stake of the set of malicious stakeholders.

Proof. First, using a similar argumentation as in the chain growth Theorem 3.13, we know that in a segment
of s rounds the honest parties would advance by at least (1 − α)s blocks. Furthermore the adversary can
produce at most αs blocks in the same period. It follows that in the chain of any honest party one would find
at most α/(1 − α) ratio of blocks originating from the adversary with probability 1−exp(−ε2s+ ln R) among
the blocks produced in the period that corresponds to that segment. It suffices to choose s ≥ (1 − α)−1k. In
this case we know that there will be at least k blocks produced in any segment of s rounds. This concludes
the proof. �

17



4 Our Protocol: Dynamic Stake

4.1 Using a Trusted Beacon

In the previous protocol we assumed that stake was static during the whole execution (i.e., one epoch),
meaning that stake changing hands inside a given epoch does not affect leader election. Now we consider
a modification of Protocol πSPOS that can be executed over multiple epochs in such a way that each epoch’s
leader election process is parameterized by the stake distribution at a certain designated point of the previous
epoch, allowing for change in the stake distribution across epochs to affect the leader election process. Once
again, we will construct the protocol in the F D,F

LS
-hybrid model, assuming that the F D,F

LS
ideal functionality

provides randomness and auxiliary information for the leader election process at each epoch.
Before describing the protocol for the case of dynamic stake, we need to provide a modification of F D,F

LS

that considers multiple epochs. We call such functionality F D,F
DLS

and allow stakeholders to query it for
the leader selection process information specific to each epoch. F D,F

DLS
is parameterized by the initial stake

of each stakeholder before the first epoch e1 starts but in further epochs takes into consideration the stake
distribution after the previous epoch’s first R − k slots, where k is the number of slots needed to achieve
common prefix. Notice that it is necessary to consider the stake distribution of previous epochs only in the
slots where it is guaranteed that common prefix is achieved, since an adversary who can force a fork would
put the ideal functionality in an inconsistent (actually undefined) state.

We denote by {(vk1, s
j
1), . . . , (vkn, s

j
n )} the set of pairs of stakeholder verification keys vki and respective

stakeholder’s stake s ji after the first R − k rounds of epoch e j , where k is the number of slots necessary to
ensure common prefix, for 1 ≤ i ≤ n. We abuse notation in defining as {(vk1, s01), . . . , (vkn, s0n )} the stake
associated to each stakeholder (represented by its verification key) before protocol execution (and epoch e1)
starts. F D,F

DLS
is defined in Figure 8.

Functionality F D,F
DLS

F
D,F
DLS

is parameterized by the public keys and respective stakes of the stakeholders {(vk1, s01), . . . , (vkn, s0n )} before
epoch e1 starts, a distribution D and a leader selection function F. F D,F

DLS
interacts with stakeholders U1, . . . ,Un

as follows:
• Upon receiving (genblock_req,Ui, e j ) from stakeholder Ui , if j is a valid epoch (within the current
total number of epochs), F D,F

DLS
proceeds as follows. If B j

0 = ∅, F
D,F
DLS

samples ρ j ← D and sets
B j
0 = {(vk1, s

j−1
1 ), . . . , (vkn, s

j−1
n ), ρ j }a. Finally, F D,F

DLS
sends (genblock, B j

0, F) to Ui .

aNotice that here {(vk1, s
j
1), . . . , (vkn, s

j
n )} refers to the stake associated to each stakeholder in the epoch previous to the

epoch for which the query was issued.

Figure 8: Functionality F D,F
DLS

.

For the case of dynamic stake we construct Protocol πDPOS, which is a modified version of πSPOS that
updates its genesis block B0 (and thus the leader selection process) for every new epoch. Protocol πDPOS is
described in Figure 9 and functions in the F D,F

DLS
-hybrid model.
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Protocol πDPOS

πDPOS is a protocol run by stakeholders U1, . . . ,Un interacting among themselves and with F D,F
LS

over a sequence
of L slots S = {sl1, . . . , slL }. πDPOS proceeds as follows:

1. Initialization When πSPOS starts, each stakeholder Ui ∈ {U1, . . . ,Un } sends (genblock_req,Ui ) to F D,F
LS

,
receiving (genblock, B0, F) as answer. Ui sets an internal blockchain C = B0 and a initial internal state
st = H (B0).

2. Chain Extension For every slot sl j ∈ S, every online stakeholder Ui performs the following steps:
(a) If a new epoch ek has started, Ui sends (genblock_req,Ui, e j ) to F D,F

LS
, receiving (genblock, B j

0, F)

as answer. Ui extends its internal blockchain with B j
0 and sets it as the new epoch’s genesis block,

storing ρk−1 and parameterizing the leader selection function F with ρk contained in the new Bk
0 . If

more than one epoch has passed, Ui repeats this procedure for each new epoch.
(b) Collect all valid chains received via broadcast into a set C, verifying that for every chain C′ ∈ C

and every block B′ = (st ′, d ′, sl ′, σ′) ∈ C′ it holds that Vrfvk′ (σ′, (st ′, d ′, sl ′)) = 1, where vk′ is the
verification key of the stakeholder U ′ ← F(ρk, sl ′) with F parameterized by ρk corresponding to the
slot to which B′ belongs (as determined by sl ′). Ui calls the function maxvalid(C,C) to select a new
internal chain C ∈ C and sets state st = H (Bh ), where Bh = head(C).

(c) If Ui is the slot leader determined by F(ρk, sl j ), it generates a new block B = (st, d, sl j, σ) where
st is its current state, d ∈ {0, 1}∗ is data and σ = Signski (st, d, sl j ) is a signature on (st, d, sl j ). Ui

extends C by appending B, obtains C = C|B and broadcasts the new C.

Figure 9: Protocol πDPOS

4.2 Simulating a Trusted Beacon

While protocol πDPOS handles multiple epochs and takes into consideration changes in the stake distribution,
it still relies on F D,F

DLS
to perform the leader selection process. In this section, we show how to implement

F
D,F
DLS

through Protocol πDLS, which allows the stakeholders to compute the randomness and auxiliary
information necessary in the leader election.

Our starting point is the follow-the-satoshi algorithm, which takes as input uniform randomness and
outputs a stakeholder Ui randomly selected with probability pi =

si∑n
k=1 sk

, where si is the stake held by
stakeholder Ui . Intuitively, the leader selection process will be such that F is follow-the-satoshi and D is
the uniform distribution. Protocol πDLS will use a coin tossing protocol to generate unbiased randomness
that can be used to run follow-the-satoshi given an honest majority of stakeholders. However, notice that
the adversary could cause a simple coin tossing protocol to fail by aborting. Thus, we build a coin tossing
scheme with guaranteed output delivery.

Leader Selection Process. Follow-the-satoshi is parameterized by the total amount of satoshis (i.e.,
smallest fractions of coins) τ in the system and we will denote it by F (ρ, sl j ); ρ is auxiliary infor-
mation and sl j ∈ {sl1, . . . , slR }. In our concrete case, ρ = (ρ1, ρ2), where ρ1 ← {0, 1}R logτ and
ρ2 = {(vk1, s

j
1), . . . , (vkn, s

j
n )} (i.e., the distribution of stake in an epoch e j ). Let each satoshi be uniquely

identified by a label ς ∈ {0, 1}log′ τ . The output of F (ρ, sl j ) is computed by selecting the satoshi identified by
label ς = ς(1− j ) logτ, . . . , ς j logτ of ρ and then outputting the stakeholder Ui who currently owns that satoshi
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(i.e., the stakeholder whose address was that last one to receive that satoshi as output in a transaction accord-
ing to the distribution of stake ρ2 = {(vk1, s

j
1), . . . , (vkn, s

j
n )}). Notice that, since ρ1 is a uniformly random

string, each satoshi is selected at random. Hence, given that a stakeholderUi has a number si of satoshis, one
of its satoshis is selected by follow-the-satoshi (causing it to be selected as the final output) with probability
pi =

si∑n
k=1 sk

. The leader selection process is defined as (D, F), where D is the joint distribution of uniformly

random binary strings of length R log τ and stake distributions of the form {(vk1, s
j
1), . . . , (vkn, s

j
n )}, and F is

the follow-the-satoshi function. Notice that an easy way to reduce the amount of initial uniform randomness
necessary to run F (i.e., reduce the size of ρ) is to start with a smaller uniformly random string s ∈ {0, 1}κ
and use it to seed a pseudorandom number generator PRG(s) in order to obtain r ∈ {0, 1}R logτ , where κ is
a security parameter of PRG.

Commitments and Coin Tossing. A coin tossing protocol allows two or more parties to obtain a uniformly
random string. A classic approach to construct such a protocol is by using commitment schemes. In a
commitment scheme, a committer carries out a commitment phase, which sends evidence of a given value
to a receiver without revealing it; later on, in an opening phase, the committer can send that value to the
receiver and convince it that the value is identical to the value committed to in the commitment phase. Such
as scheme is called binding if it is hard for the committer to convince the receiver that he was committed
to any value other than the one for which he sent evidence in the commitment phase, and it is called hiding
if it is hard for the receiver to learn anything about the value before the opening phase. We denote the
commitment phase with randomness r and message m by Com(r,m) and the opening as Open(r,m).

In a standard two-party coin tossing protocol, one party starts by sampling a uniformly random string u1
and sending Com(r, u1). Next, the other party sends another uniformly random string u2 in the clear. Finally,
the first party opens u1 by sending Open(r, u1) and both parties compute output u = u1 ⊕ u2.

Verifiable Secret Sharing (VSS). A secret sharing scheme allows a dealer PD to split a secret σ into n
shares distributed to parties P1, . . . , Pn , such that no adversary corrupting up to t parties can recover σ. In
a Verifiable Secret Sharing scheme [8], there is the additional guarantee that the honest parties can recover
σ even if the adversary corrupts the shares held by the parties that it controls and even if the dealer itself
is malicious. We define a VSS scheme as a pair of efficient dealing and reconstruction algorithms (D,R).
The dealing algorithmD (n, σ) takes as input the number of shares to be generated n along with the secret σ
and outputs shares σ1, . . . , σn . The reconstruction algorithm R takes as input shares σ1, . . . , σn and outputs
the secret σ as long as no more than t shares are corrupted (unavailable shares are set to ⊥ and considered
corrupted). A simple VSS construction based on discrete logarithms that can be used is by Schoenmakers,
[19].

Constructing Protocol πDLS. The main problem to be solved when realizing F D,F
DLS

with a protocol run by
the stakeholders is that of generating uniform randomness for the leader selection process while tolerating
adversaries that may try to interfere by aborting or feeding incorrect information to parties. In order to
generate uniform randomness ρ1 for follow-the-satoshi F we will employ a coin tossing scheme for which
all honest parties are guaranteed to receive output as long as there’s an honest majority. In the first round,
for 1 ≤ i ≤ n, stakeholder Ui samples a uniformly random string ui ∈ {0, 1}R logτ and randomness ri for the
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Figure 10: The two stages of the protocol πDPOS that use the blockchain as a broadcast channel.

underlying commitment scheme, generates shares σi
1, . . . , σ

i
n , posts Com(ri, ui ) to the blockchain together

with the encryptions of the all the shares under the public-key of each respective shareholder. After k
slots, when common prefix is reached, if commitments from a majority of stakeholders are posted on the
blockchain and if shares from a majority of stakeholders have been received, for 1 ≤ i ≤ n, stakeholder Ui

posts Open(ri, ui ) to the blockchain. If a stakeholder Ua does not post an opening to its commitment, the
honest parties can use shares σa

1 , . . . , σ
a
n and R (σa

1 , . . . , σ
a
n ) to reconstruct ua . Given that all the values

should be revealed, the shareholders can post the openings of the commitments independently of whether
Ui posts the correct opening value or not. Next, each stakeholder uses the values ui obtained in the second
round to compute ρ1 =

∑
i ui . Finally, in the next epoch, each honest stakeholder sets ρ = (ρ1, ρ2), where

ρ2 = {(vk1, s
j−1
1 ), . . . , (vkn, s

j−1
n )}. Protocol πDLS is described in figure Figure 11.

The two stages of the protocol are presented in Figure 10.

Protocol πDLS

πDLS is a protocol run by stakeholders U1, . . . ,Un interacting among themselves over a sequence of L slots
S = {sl1, . . . , slL } and proceeds as follows for every epoch e j that lasts R = 3k slots:

1. Commitment Phase (2k slots) When epoch e j starts, for 1 ≤ i ≤ n, stakeholder Ui samples a uniformly
random string ui ∈ {0, 1}R logτ and randomness ri for the underlying commitment scheme, generates shares
σi
1, . . . , σ

i
n ← D(n, ui ), posts Com(ri, ui ) to the blockchain and encrypts each share σi

k
under stakeholder

Uk public-key.
2. Reveal Phase (2k slots) After slot R − k, (when it is guaranteed that common prefix was achieved for

the blocks containing the commitments), for 1 ≤ i ≤ n, stakeholder Ui opens its commitment by posting
Open(ri, ui ) to the blockchain.
(Recovery) For any stakeholder Ua , for 1 ≤ i ≤ n, Ui submits its share σa

i for insertion to the blockchain.
When all shares σa

1 , . . . , σ
a
n are available, each stakeholder Ui can compute R (σa

1 , . . . , σ
a
n ) to reconstruct

ua (independently of whether Ua opens the commitment or not).
3. Leader Selection Parameters Generation Let L = {l1, . . . , lh } be the set of indexes for which a value ul

was successfully obtained or recovered. For 1 ≤ i ≤ n, Ui uses the values computes ρ1 =
∑

l ∈L ul . Finally,
in the next epoch, each honest stakeholder sets ρ = (ρ1, ρ2), where ρ2 = {(vk1, s

j−1
1 ), . . . , (vkn, s

j−1
n )} and

run F(ρ, ·) to determine the leader of slots in epoch e j .

Figure 11: Protocol πDLS.

Security Proof Sketch. Notice that, if a majority of the stakeholders are honest, they either obtain enough
values ul to compute a uniformly random string ρ1 by the end of the reveal phase or manage to recover such
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values if the respective stakeholders do not open their commitments. Given that ρ1 is a uniformly random
string and ρ2 is represents the stake distribution from last epoch, F(ρ, ·) behaves as the leader selection
process described before, thus selecting a leader with the same probability of F D,F

DLS
.

4.3 Robust Transaction Ledger

Recall that in the dynamic stake case, we would have to conceive a way to prevent deep forks. To see this
formally consider a player who is offline and joins the system after a number of epochs have passed. Even
if in the system execution the current set of stakeholders satisfies honest majority, it could be the case that
honest majority is violated in one of the previous epochs by this time and hence the adversary may produce
an alternative history consistent with the view of honest party. In order to capture the interaction between
security and the modification of stake we introduce the following property.

Definition 4.1 Consider two slots sl1, sl2, an honest player U and an execution E. The stake shift w.r.t. U
between sl1, sl2 is the statistical distance of the two follow-the-satoshi distributions that are defined using
the stake reflected in the chain C of U in the most recent blocks before sl1 and sl2 respectively as reflected
in the execution E.

Taking into account the definition above we can now express the following theorem about the common
prefix property.

Theorem 4.2 Fix parameters k, R, L ∈ N, ε, σ ∈ (0, 1). Let R be the epoch length and L the total lifetime of
the system. Assume the adversary is restricted to 1−ε

2 − σ relative stake and that the πSPOS protocol satisfies
the common prefix property with parameters R, k and probability of error εCP, the chain quality property
with parameters µ ≥ 1/k, k and probability of error εCQ and the chain growth property with parameters
τ ≥ 1/2, k and probability of error εCG.

Then, the πDPOS protocol satisfies the persistence with parameters k and liveness with parameters u = 2k
throughout a period of L slots with probability 1 − R(εCQ + εCG + εCG), assuming that σ is the maximum
stake shift over 2k slots and no honest player is offline for more than k slots.

Proof. (sketch) Observe that with probability of error εCQ + εCG + εCG the πSPOS protocol executed in the
first epoch, given the assumptions imposed to the environment, will enable the parties to use the blockchain
as a broadcast channel to simulate the trusted beacon and produce the randomness required to seed the leader
election in the next round (this combines Theorems 3.12, 3.14, 3.13). This can be seen as follows: given that
chain growth holds with coefficient 1/2, the chain of all honest parties will grow for at least k blocks during
the commitment phase. Moreover, given chain quality there will at least one block that will be inserted by an
honest party. This will contain the commitments and the VSS sharings of all honest parties. With a similar
argument in the reveal phase there will be at least one block included in the chain by an honest party that will
contain all the openings for the commitments that were made in the first stage. Observe that this would be
the case independently of small forks occurring during the stages (as long as no deeper than k forks occur).

Note that as shown in Figure 10 a delay in calculating the stake for the next epoch will result in a bias in
the proper calculation of the leader election for the next epoch. This is accounted for by the further restriction
that is imposed on the adversarial stake in the statement of the theorem.

22



It follows that with probability 1 − (L/R)(εCQ + εCG + εCG) all epochs in the lifetime of the system will
be seeded correctly and the πSPOS protocol can be bootstrapped and will continue to operate properly in each
next epoch. Persistence and liveness with the stated parameters follow. �

4.4 Input Endorsers

We next present an extension of our basic protocol that assigns two different roles to stakeholders. As before
in each epoch there is a set of elected stakeholders that runs the secure multiparty coin flipping protocol and
are the slot leaders of the epoch. Together with those there is a (not necessarily disjoint) set of stakeholders
called the endorsers. Now each slot has two types of stakeholders associated with it; the slot leader who
will issue the block as before and the slot endorser who will endorse the input to be included in the block.
Moreover, contrary to slot leaders, we can elect multiple slot endorsers for each slot. While this seems like
an insignificant modification it gives us a room for improvement because of the following reason: endorsers’
contributions will be acceptable even if they are 2k slots late.

Note that in case no valid endorser input is available when the slot leader is about to issue the block, the
leader will go ahead and issue an empty block, i.e., a block without any actual inputs (e.g., transactions in the
case of a transaction ledger). Note that slot endorsers just like slot leaders are selected by follow-the-satoshi
and thus they are a representative sample of the stakeholder population. In the case of a transaction ledger
the same transaction might be included by many input endorsers simultaneously. In case that a transaction
is multiply present in the blockchain its first occurrence only will be its “canonical” position in the legder.

The enhanced protocol, πDPOSwE, can be easily seen to have the same persistence and liveness behaviour
as πDPOS: the modification with endorsers does not provide any possibility for the adversary to prevent the
chain from growing, accepting inputs, or being consistent. However, if we measure chain quality in terms
of number of endorsed inputs included this produces a much more favorable result: it is easy to see that
the number of endorsed inputs originating from a set of stakeholders S in any k-long portion of the chain is
proportional to the relative stake of S with high probability. This stems from the fact that it is sufficient that
a single honest block is created for all the endorsed inputs of the last 2k slots to be included in it. Given that
any set of stakeholders S will be an endorser in a subset of the 2k slots with probability proportional to its
cumulative stake the result follows.

5 Attacks Discussion

We next discuss a number of practical attacks and indicate how they are reflected by our modeling.

Double spending attacks. In a double spending attack, the adversary wishes to revert a transaction that
is confirmed by the network. The objective of the attack is to issue a transaction, e.g., a payment from an
adversarial account holder to a victim recipient, have the transaction confirmed and then revert the transaction
by, e.g., including in the ledger a second conflicting transaction. Such an attack is not feasible under the
conditions of Theorem 4.2. Indeed, persistence ensures that once the transaction is confirmed by an honest
player, all other honest players from that point on will also confirm it. Thus it will be impossible to bring the
system to a state where the confirmed transaction is invalidated (assuming all preconditions of the theorem
hold).
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Transaction denial attacks. In a transaction denial attack, the adversary wishes to prevent a certain
transaction from becoming confirmed. For instance, the adversary may want to target a specific account and
prevent the account holder from issuing an outgoing transaction. Such an attack is not feasible under the
conditions of Theorem 4.2. Indeed, liveness ensures that, provided the transaction is attempted to be inserted
for a sufficient number of slots by the network, it will be eventually confirmed by an honest party.

Desynchronization attacks. In a desynchronization attack, a shareholder behaves honestly but is nev-
ertheless incapable of synchronizing correctly with the rest of the network. This leads to ill-timed issuing
of blocks and being offline during periods when the shareholder is supposed to participate. Such an attack
can be mounted by preventing the party’s access to a time server or any other mechanism that allows syn-
chronization between parties. Moreover, a desynchronization may also occur due to exceedingly long delays
in message delivery. Our model allows parties to become desynchronized by incorporating them into the
adversary. No guarantees of liveness and persistence are provided for desynchronized parties.

Eclipse attacks. In an eclipse attack, message delivery to a shareholder is violated due to a subversion
in the peer-to-peer message delivery mechanism. As in the case of desynchronization attacks, our model
allows parties to be eclipse attacked by incorporating them into the adversary. No guarantees of liveness or
persistence are provided for such parties.

51% attacks. A 51% attack occurs whenever the adversary controls more than the majority of the stake in
the system. It is easy to see that any sequence of slots in such a case is with very high probability forkable
and thus once the system finds itself in such setting the honest stakeholders may be placed in different forks
for long periods of time. Both persistence and liveness can be violated.

Nothing at stake and past majority attacks. As stake moves our assumption is that only the current
majority of stakeholders is honest. This means that past account keys (which potentially do not hold any
stake at present) may be compromised. This leads to a serious vulnerability for any PoS system since a set
of malicious shareholders from the past can build an alternative blockchain exploiting such old accounts and
the fact that it is effortless to build such a blockchain. In light of Theorem 4.2 such attack can only occur
against shareholders who are not frequently online to observe the evolution of the system or in case the stake
shifts are higher than what is anticipated by the preconditions of the theorem. This is a special instance
of the “nothing at stake” problem which refers in general to attacks against PoS blockchain systems that
are facilitated by shareholders continuing simultaneously multiple blockchains exploiting the fact that little
computational effort is needed to build a PoS blockchain. With respect to nothing at stake it is worth noting
that, contrary to PoW-based blockchains, in our protocol it is infeasible to have a fork generated in earnest
by two shareholders. This is because slots are uniquely assigned and thus at any given moment there is a
single uniquely identified shareholder that is elected to advance the blockchain. Players following the longest
chain rule will adopt the newly minted block (unless the adversary presents at that moment an alternative
blockchain using older blocks).
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6 Incentive Structure

While the analysis we perform is in the cryptographic setting of [9], we include in this section a discussion
regarding the incentive structure of our system. Note that game theoretic analysis is also very important,
see [11] for a recent analysis of bitcoin. We focus our analysis in the variant of our system with endorsers
described in Section 4.4.

As in bitcoin, shareholders that issue blocks are incentivized to participate in the protocol by collecting
transaction fees. Contrary to bitcoin of course, one does not need to incentivize shareholders to invest
computational resources. Rather, availability is incentivized. Any shareholder, at minimum, must be online
in the following circumstances.

• In the slot prior to a slot she is the elected shareholder so that she queries the network and obtains the
currently longest blockchain.

• In the slot during which she is the elected shareholder so that she issues the block.

• In a slot during the commit stage of an epoch where she is supposed to issue the VSS commitment of
her random string.

• In a slot during the reveal stage of an epoch where she is supposed to issue the required opening shares
as well as the opening to her commitment.

• In general, in sufficient frequency, to check whether she is an elected shareholder for the next or current
epoch.

• In a slot during which she is the elected input endorser so that she issues the endorsed input (e.g., the
set of transactions).

In order to incentivize the above actions in the setting of a transaction ledger, fees can collected from
those that issue transactions to be included in the ledger which can then be transfered to the block issuers.
In bitcoin for instance fees can be collected by the miner that produces a block of transactions as a reward.
In our setting, similarly, a reward can be given to the parties that are issuing blocks and endorsing inputs.
The reward mechanism does not have to be immediate as advocated in [17]. For instance it is possible to
collect all fees of transactions included in a sequence of k blocks in a pool and then distribute that pool to
all shareholders that participated during these k slots. For instance all input endorsers that were active may
receive proportionally to the number of inputs they endorsed during the period of k rounds (independently
of the actual number of transactions they endorsed).

Other ways to distribute transaction fees are also feasible (including the one that is used by bitcoin itself
- even though the bitcoin method is known to be vulnerable to attacks, e.g., the selfing-mining attack). It is
beyond the scope of the current exposition to provide a formal analysis of the incentive structure discussed
above. This analysis should be performed in a game theoretic setting that also takes into account costs of
being online vs. expected rewards from participating in the protocol.
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