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Abstract

Scrit (secure, confidential, reliable, instant transac-
tions) is a federated Chaumian ecash (see Chaum,
Fiat, and Naor 1990). Coins in Scrit are so-called dig-
ital bearer certificates (DBCs) issued by mints. Scrit
mitigates the issuer risk common in other DBC sys-
tems by employing n mints in parallel. The anonymity
set of a DBC normally equals all DBCs ever issued in
that denomination during the defined epoch. Trans-
actions are extremely cheap and fast, the settlement
is network latency bound leading to sub-second con-
firmation times.
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1 Introduction

A problem of previous Chaumiam ecash systems has
been their centralization in both a technical and a
governance sense, caused by employing a single mint.
This has exposed these systems to technical and legal
risks and presented a single point of failure.

Furthermore, Chaumian ecash systems focus on the
model of withdrawing ecash from accounts and de-
positing it into other accounts. This requires an un-
desirable setup phase for users.

Scrit removes the notion of accounts, it only has di-
rect DBC-to-DBC transactions. Users do not have
any standing relationship with the operators nor do
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they possess any identifying authentication creden-
tials. This both simplifies the system and removes a
potential lever for censorship.

A classical Chaumian ecash system encodes the at-
tributes of a DBC (for example, amount, denomina-
tion, and expiry) in the signed message of the DBCs
(see Chaum, Fiat, and Naor 1990). Since the client
controls the message, this poses a fraud risk that
requires complex mitigation, which usually involved
using either the user’s identity or the user’s holdings
in his account as a collateral. In Scrit this fraud risk is
removed by using the mint’s signing key as the signifier
of certificate attributes, similar to later implementa-
tions of ecash (see Schoenmakers 1998). That is, each
DBC signing key (from the mint) is associated to a
unique tuple comprised of amount, denomination, and
expiry. A successful verification of a signature yields
this tuple, the message contents are not authoritative
concerning the value of a DBC. Since this removes
the fraud risk in Scrit, no identification or account is
necessary.

Scrit enables technical and legal distribution of DBC
operations by parallel execution of transactions dis-
tributed over many separate mints. To accomplish
this, we modify the classical construction of a DBC,
which is composed of a message and a signature, and
replace it with the definition of a DBC as consisting
of a unique message and a set of signatures. Instead
of relying on a unique value certified by a single mint,
Scrit defines certification as consensus between mints
expressed by independent mint signatures. The con-
sensus is reached if a DBC carries enough signatures
by different mints to reach a predefined quorum. That
is, a DBC is valid, if it has at least m-of-n signatures,
where m is the quorum and n is the number of mints
(as described in detail further below).

Since Scrit operations are distributed over a set of
mints, the question of governance arises. Technically,
the solution of the governance question is outside the
scope of the payment system Scrit itself, but we pro-
pose a simple governance solution based on Codechain,
a system for secure multiparty code reviews, which is
described in detail in the section on Governance.

Transactions in Scrit are extremely cheap and fast, es-

pecially compared to blockchain based systems. Mints
do not have to synchronize at all to process transac-
tions, which means the communication to all mints
can be performed in parallel. This leads to network
latency bound settlement times with sub-second con-
firmations. See the section on Performance for details.

2 Overview

Scrit serves the purpose of transferring value between
users by employing a federation of third parties called
mints. Value in Scrit is represented as a digital bearer
certificate (DBC) which consists of a single-use unique
message that is digitally signed by the mints, see
section on DBCs.

To transact value the user sends a signed input DBC
and a new output DBC message to the mints who
record the signed input DBC as spent (in a database
called spendbook, see section on Spendbook entries),
sign the new output DBC message, and return it to
the user. See section on Transactions.

For a transaction to be successful it has to be executed
with a majority of all mints, see section on Quorum.

To control who can transact a DBC, Scrit employs dig-
ital signatures which public key is encoded in the DBC
message. Transactions have to be signed by these keys.
See section on Access Control Script (ACS).

Membership in the mint federation as well as autho-
rized mint signature keys are contained in a key list
that is coordinated by a governance layer. See sections
on Key list and Governance.

Keys are only valid during their signing epoch, see
section on Key rotation.

3 DBCs

DBCs are single-use digital coins in predefined denom-
inations. The denomination, expiry, and currency of
these coins are encoded by public signing keys em-
ployed by mints (the issuers of DBCs in Scrit). A
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signature done by a mint guarantees the authentic-
ity of a DBC. The spendbook of a mint guarantees
uniqueness (and thereby prevents double spends).

DBCs consist of a message and a list of signatures.
The message contains information for looking up sig-
nature public keys as well as information to enforce
ownership and uniqueness. Values for key lookup are
start of the signing epoch, amount, currency, and
expiry, as well as signature algorithm. They refer to
an entry in the key list (see Key list below). Fur-
thermore, the ownership is encoded by the hash of
an access control script (ACS) with which the mint
verifies the user’s authority to execute a transaction.
The message also contains a random value for unique-
ness. The list of signatures consists of at most one
signature per mint in the network. Signatures contain
the mint ID in addition to the cryptographic values
of the signature itself.

Given the fields contained in the DBC (amount, cur-
rency, expiry, signature algorithm, and mint ID) the
signing public key can be looked up from the system-
wide published key list. Given the retrieved public
key, the signature can be verified. This ensures that
the values set in the message of the DBC match the
signing key of the mint (otherwise the signature would
be invalid).

3.1 Key list

Each mint publishes a list of its DBC signing keys. Per
signing key the list contains the following information:
amount, currency, signature algorithm, beginning and
end of the signing epoch, the end of the validation
epoch, and the corresponding unique public key.

All entries are signed as a unit by both the long-term
identity signature key and each unique DBC signing
key contained in the list. This ensures that the private
key corresponding to each public key contained in the
list is actually controlled by the mint identified by the
long-term identity signature key, which prevents the
creation of forged DBCs.

The association between certification values and the
DBC signing key must be globally unique (which has

to be verified by all clients and mints in the system).
Without unique DBC signing keys it becomes impos-
sible to count mint signatures. This can lead to faulty
signature sets that yield an invalid DBC (a key shared
between multiple mints) or to fraudulent certification
of DBC properties (a key used to certify more than one
set of properties). The self-signing with each unique
DBC signing key helps to enforce key uniqueness by
attributing the key to the corresponding mint.

4 Transactions

Scrit mints offer only three API calls to the Scrit
clients: Perform a transaction (also called a reis-
sue), a lookup in the spendbook (which records all
spent DBCs), and one for retrieving the number of
currently valid DBCs for a mint’s signature key (to
assess anonymity set sizes).

The spendbook writes entries in the order given below
and aborts transaction processing when encountering
a failure. All writes are successful if the value was not
contained in the spendbook before and fail if the value
is already known. A transaction works as follows:

1. Verify transaction: Verify ACS, verify mint sig-
natures on input DBCs.

2. Test if the transaction has already been added
to the spendbook, if yes return success and sign
output DBCs.

3. Write server parameters to spendbook in the
order contained in the transaction (if required
for signature algorithm). If any parameter is
known return failure and abort transaction (on
first known parameter).

4. Write input DBCs to spendbook in the order
contained in the transaction. If any input DBC
is known return failure and abort transaction (on
first known input DBC).

5. Write transaction hash to spendbook.
6. Sign output DBCs and return signature.

If a transaction contains any spent input DBCs af-
ter unspent input DBCs, the unspent DBCs will be
recorded as spent and the transaction will abort with-
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out returning DBC signatures. This can only happen,
if the client attempts to defraud the mint (or the
implementer screwed up).

Using a different approach would make spendbook
operations more complicated because they then need
two-phase commits in order to prevent race conditions
on the spendbook (for both blinding parameters and
DBCs, not for transaction hashes). This is rather
difficult when trying to do sharded storage backends
and multiple instances of a mint working on the same
spendbook. We consider the use of a simple commit
as being less risky overall, although more care has
to be taken to not loose DBCs by faulty client side
implementations.

4.1 Transaction format

All transactions in Scrit are reissue-transactions.
They take input DBCs and output DBC messages
as well as parameters as input, and return output
DBC signatures. Furthermore, transactions must ful-
fill conditions defined in the ACS referenced by the
input DBCs.

Transactions consist of three blocks: A global set of
input parameters, a global list of user signatures, and
a mint local set of input parameters.

The global set of input parameters is sent to all mints
and contains the following (see Figure 1):

• Start of the signing epoch, which refers to start
of the key rotation epoch and must be globally
coordinated between mints.

• Input DBCs: List of unblinded DBC messages,
not including mint signatures.

• Root of parameter tree (see section Parameter
tree below).

• List of access control scripts in the order of input
DBCs.

The global list of user signatures contains one entry
per input DBC that consists of all signatures that are
required to fulfill the corresponding ACS. Each signa-
ture signs the corresponding hash of the input DBC
and the hash of the global set of input parameters.

The mint local set of input parameters that is sent
to a single mint contains only a list of lists of mint
signatures and the corresponding path of the param-
eter tree (including the leaf), see section Parameter
tree below. The list of lists has the same order as
the input DBCs and contains the lists of the input
DBC mint signatures. Usually such a list contains
only the mint’s own signature. Except in cases of
mint recovery, see the section on Distribution below.

This transaction format limits the amount of signa-
tures a client has to make, so that it does not depend
on the number n of mints in the system. Furthermore,
it simplifies the implementation of verification func-
tions, because it only requires the parallel verification
of list elements while limiting the impact of n on the
required memory.

epoch InDBC1,...,InDBCx parameter tree root sig1,...,sigx ACS1,...ACSx

hash hash

mint ID 1 mint ID 2 mint ID n

.

.

.

| |
{outDBC1,blinding params 1.1,sig algo} {outDBC1, blinding params n.1,sig algo}
{outDBC2,blinding params 1.2,sig algo} {outDBC2, blinding params n.2,sig algo}

. .

. .

. .
{outDBCy,blinding params 1.y,sig algo} {outDBCy, blinding params n.y,sig algo}

Figure 1: Transaction format (global set).

4.2 Parameter tree

The parameter tree contains per mint specific defi-
nitions of output. Each leaf is assigned to one mint
and contains the mint ID and a list of tuples. A tuple
contains a potentially blinded output DBC message,
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encrypted server blinding parameters (see section on
Signatures below), and the signing algorithm to use.
Furthermore, it contains values required for DBC
signing key lookup (amount and denomination).

For non-blind signing algorithms the server blinding
parameters are empty. If only non-blind signing al-
gorithms are used in the outputs, the same leaf is
revealed to all mints and the mint ID is set to a global
constant referring to all mints.

The tree is encoded as a Merkle tree. During transac-
tions leaf and path are revealed to the corresponding
mint and are verified by it.

4.3 Spendbook entries

To enforce the uniqueness of DBCs (preventing double
spend) each mint records the message of every spent
DBC within one key verification epoch (that is, signing
plus validation epoch). Furthermore, server blinding
parameters have to be unique as well, which requires
them to be recorded in the spendbook. In addition,
recording the transaction itself allows for idempotent
operations.

For the spendbook Scrit uses a key-value store in
which the following is recorded (‘||’ denotes the con-
catenation of values, ‘a→ b’, the mapping of key a to
value b):

• Transaction: T ||Hash(Tx)→ true
• Parameters: P ||Hash(Param)→ true
• DBC: D||Hash(DBC msg)→ user sig||OOB

OOB refers to out-of-band data that can be generated
by an Access Control Script (ACS).

The spendbook also records DBC messages in a hash
chain for cryptographically secure ordering. The hash
chain consists of:

CEn+1 = n + 1||Date||Hash(CEn)||Hash(DBC msg)

Clients can access all of these records through an open
API.

4.4 Access Control Script (ACS)

Scrit mints enforce access control for DBCs through
a parameter encoded in the DBCs which is called the
access control script (ACS). Such an ACS can enforce
that transactions using a certain DBC have to be
signed by a user-controlled key. We define multiple
access control languages which can be extended in the
future to incorporate additional features.

Herein we define just two access control functions:

• 0x00: No access control.
• 0x01||Date||PubKeya||PubKeyb: This ACS en-

forces that before Date the transaction must
be signed by PubKeya and after and includ-
ing Date the transaction must be signed by
PubKeyb. The special value 0 for Date enforces
that PubKeya must always sign the transaction.

• 0x02–0xff: Reserved for future use.

The standard transaction from recipient to sender
constructs the ACS as follows:

1. Given: Elliptic curve, generator G.
2. Sender knows from recipient:

PubKeyr : aG

3. Recipient knows corresponding:

PrivKeyr : a

4. Sender generates temporary key pair:

b = random,PubKeyb = bG

5. Sender calculates shared secret:

s = Hash(scalarMult(b,aG))

6. Sender calculates transaction signing key:

PubKeya = scalarMult(s,aG)

7. Sender constructs ACS as:

0x01||Date||PubKeya||PubKeyb

8. Recipient calculates shared secret:

s = Hash(scalarMult(a,bG))
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9. Recipient calculates signing key:

PrivKeya = as

10. Recipient signs transaction.

If the recipient doesn’t sign a valid transaction before
Date expires, the sender can recover the DBC by
signing a transaction with b (which he has to store).

The above construction prevents the mints from rec-
ognizing the recipient over multiple transactions and
thus preserves the anonymity of both sender and re-
cipient. That is, the recipient PubKeyr can be a
published constant without sacrificing anonymity.

Referenced state in an ACS refers to the mint’s local
state. In the case of Date this is the system time of
the mint in UTC.

4.5 Evidence of payment

The combination of a publicly accessible spendbook
that contains the user signatures of spent DBCs and
the access control script allows for a sender to pub-
licly demonstrate that he made a payment that was
accepted by the recipient. Neither the sender nor the
mint are able to forge this signature. This also allows
the owner of a DBC to demonstrate if a mint has
falsely claimed a DBC to be spent.

4.6 Protocol flow

Let’s assume the sender has a DBC A for a given
recipient constructed according to an ACS type 0x01
as described above.

In order to perform a payment the protocol flow is as
follows. The sender gives the DBC A to the recipient.
The recipient reissues the DBC A to a DBC B, either
immediately or before the ACS Date expires:

1. The recipient constructs a transaction with DBC
A as input DBC, DBC B as output DBC, and
signs it with the derived PrivKeya.

2. The recipient talks to all n mints in parallel,
sending each mint the same global set of input
parameters of the constructed transaction, but
sending each mint a different mint local set of in-
put parameters (as described in the Transactions
section above).

3. Each mint verifies the transaction independently
of all other mints, signs the output DBC, and
returns its signature.

4. The recipient collects the signatures from all
mints over the output DBC B, combines them
into a validly signed DBC B (given he received
at least m valid signatures), and saves it in his
wallet.

The protocol protocol flow for an ACS type 0x00 is
similar, but simpler, as shown in Figure 2.

mint 1

mint 2

sender recipient mint 3

wal A wal B mint n

Tx(A,B,sigA1)

sigB1

Tx(A,B,sigA2)

sigB2

Tx(A,B,sigA3)

DBC A sigB3

.

.
DBC A DBC B .

Tx(A,B,sigAn)

sigBn

Figure 2: Protocol flow of a Scrit transaction with
an ACS type 0x00. Scrit clients talk to all mints in
parallel.

5 Signatures

Scrit employs both blind and unlinkable as well as
non-blind signature schemes.

The non-blind signature schemes are used for user
signatures to fulfill access control scripts as well as
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for DBC signatures in scenarios where unlinkability
of transactions is not a requirement.

For anonymous blind signatures that allow anonymous
and untraceable transactions we use a ECC based
blind signature scheme published by Singh and Das
(2014). This scheme is based on ECDSA and employs
user-generated blinding parameters as well as a single-
use server-generated blinding parameter set consisting
of Q and K. The server blinding parameters serve to
protect the private key of the signer against attacks by
the user. For the security of this scheme to hold these
parameters may not be reused. This complicates the
mint operation in the sense that blinding parameters
have to be recorded in the spendbook and have to be
exchanged partially with the user. Scrit solves this
issue by the mint encrypting K to its own temporary
symmetric key and sending the encrypted K and the
unencrypted Q to the user. During the transaction Q
and the encrypted K are send back to the mint and
the mint decrypts K, verifies it against the spendbook,
and on success generates one signature.

While the non-blind signature scheme provides
anonymity to the users of the system it still allows
the creation of a history of DBC transaction. Only by
using the blind and unlinkable signature scheme does
it become possible to preserve untraceability and thus
increase the anonymity set of all DBCs to at most the
DBCs issued during one signing epoch.

Normally the anonymity set of all DBCs equals all
the DBCs issued during one signing epoch. However,
offline mints which lead to DBCs with incomplete
signature sets can degrade the anonymity set. To
somewhat mitigate this degradation two extra mea-
sures should be introduced:

1. For recovery transactions only m randomly sam-
pled signatures should be included to conceal
leaking information about which mints have been
offline during the transaction.

2. Clients should also perform random recovery
transactions for DBCs where all signatures could
be collected.

6 Key rotation

To be able to prune the spendbook and not having
to keep signing keys secret forever, Scrit employs key
rotation with disjunct signing epochs. The signing
epoch determines which signing key is used at a cer-
tain point in time. After the end of a signing epoch
follows a validation epoch in which DBCs can still be
spent. Together the combination of signing and vali-
dation epoch comprise the verification epoch. Figure
3. visualizes the key rotation process.

All mints have their own singing keys, but the epochs
are the same for all and have to be synchronized (see
section on Governance).

Employing key rotation has two important implica-
tion:

1. Clients must go online before the verification
epoch of the DBCs they hold ends and reissue
them. Otherwise they will loose these DBCs.

2. After a validation epoch ended the total number
of DBCs in circulation can be calculated with
a spendbook audit and compared between the
mints.

signing validation

signing validation

signing validation

signing validation

time

key 1

key 2

key 3

key 4

. .

. .

. .

Figure 3: Key rotation with disjunct signing epochs.

7 Distribution

Scrit defines a valid DBC as a message signed by at
least m-of-n mints that is not recorded in the mints’
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spendbook.

From this follows that a mint shall reissue a DBC if
any of the following two rules is satisfied:

1. A DBC message is not found in the spendbook
and the DBC message is signed by the mint itself.

2. A DBC message is not found in the spendbook
and the DBC message is signed by at least m-of-n
other mints.

For these rules to be sufficient the signing public keys
for case 2. must belong to the same epoch and the
signing keys must be globally unique. Furthermore,
this requires that only one signing key per mint and
per epoch exists.

m and n can therefore only change at the start of
a signing epoch. However, n, the total number of
mints, can be decreased at any time as long as it stays
equal or greater than m. Signing epoch lengths can
be changed, but must stay disjunct, meaning signing
epochs may never overlap.

The signing epoch for output DBCs is enforced by the
epoch field in the transaction so that no decisional
ambiguity exists at signing epoch boundaries.

During normal operations a user only has to fulfill
rule 1. by sending one signature to the corresponding
mint per reissue transaction. Only if not all signa-
tures of all mints can be collected for a DBC it may
become necessary to employ rule 2. in a subsequent
transaction. Users’ clients should always try to com-
plete the set of signatures, otherwise failures of mints
can cascade and invalidate DBCs due to a lack of
signatures.

Transactions employing rule 2. are called recovery
transactions. Accordingly, transactions employing
rule 1., which is the normal case, are also called non-
recovery transactions.

To prevent rogue mints from stealing DBCs of ACS
type 0x00 at least m transactions employing rule
1. must be performed before executing any recovery
transactions employing rule 2., otherwise a rogue mint
could learn the signatures of the other mints which
are necessary to steal the DBCs.

Temporary or permanent unavailability of single mints,
as long as the quorum remains fulfilled, does not
undermine the ability of Scrit to perform transactions.
The later addition of new mints and the ability to
add them to the quorum allows enough dynamism for
a Scrit network to heal.

New mints do not have to know any spendbook of
other mints in order to participate in the network.
Only knowledge of the public signing keys is required.

Scrit is based on a quorum of mints certifying the
validity of DBCs to users and other mints. This
allows mints without prior knowledge of a DBC to
accept it as valid as long as it is signed by enough
other mints. However, this only holds as long as
there is an upper bound of mints that are changed
during the verification epoch of a DBC: No more than
x = 2m − n − 1 mints may be replaced, added, or
removed during that epoch to prevent a user from
forging a DBC.

To simplify corner cases of verification in actual imple-
mentations we set the rule that a verification period
may not be longer than the next signing period.

Changes to m are unproblematic because in trans-
actions the m refers to input DBCs of the same or
previous epoch while the m in the output DBCS al-
ways refers to the current signing epoch. However
m must always be larger than n/2, as explained in
section Quorum.

Given these constraints it is advisable that m is signif-
icantly larger than n/2 to have more flexibility with
changes of n.

7.1 Change of monetary supply

Increasing the monetary supply consists in issuing new
DBCs without spending existing DBCs. For this to be
possible mints have to coordinate the DBC message to
be signed. This prevents lower than quorum colluding
mints from increasing the monetary supply.

Reducing the monetary supply requires the spending
of DBCs without issuing new ones. For this DBCs
can simply be reissued to an ACS that is provably
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unusable. These DBCs fall out of the circulation at
the end of their verification epoch, effectively reducing
the monetary supply.

7.2 Quorum

As mentioned above DBCs in Scrit contain multiple
signatures and are valid if the number of signatures
is equal to or greater than the quorum. The quorum
has to be larger than n/2, since any quorum lower
than the majority of mints would allow the user to
multiply DBCs. The upper bound of the quorum is
only limited by the resilience against mint failure that
is acceptable. The higher the quorum, the more mints
would have to collude in order to to allow dishonest
behavior. The lower the quorum, the more mints can
fail during operation without interrupting the system.

We suggest a minimum of n = 10 mints combined
with a m = 8 quorum.

8 Governance

As mentioned before, the mints do not have to talk
to each other to perform normal transactions (which
are reissue = spend + issue operations). Either an
unspent input DBC is presented to them with their
own signature or an input DBC with enough signa-
tures of other mints, such that the signatures reach
quorum. The former is the normal case. The latter
can happen when a mint wasn’t reachable during an
earlier reissue operation or simply didn’t exist yet.

However, this still leaves a few questions open: How
is new money introduced into the system and the (op-
tional) backing (a pure issue operation of new DBCs)?
How is money removed from the system and the (op-
tional) backing (a pure spend operation of DBCs)?
How are new mints introduced into the system or
existing ones removed from it? Under what rules do
the mints operate? How does a client get to know
which mints belong to the system and which changes
are made, ideally in an automatic and cryptographi-
cally secure fashion? In short: How do we solve the

problem of governance?

Scrit uses Codechain1 as its governance layer.
Codechain is a system for secure multiparty code
reviews which establishes code trust via multi-party
reviews recorded in unmodifiable hash chains. This
makes it impossible for a single developer to add
changes to the Scrit code base. Using Codechain tends
to be a good idea for sensitive code like the Scrit client
or the Scrit mint, but it is probably less clear how it
could solve the governance problem. For the client
and the mint the signers of the Scrit Codechain are
the trusted Scrit developers.

To understand how Codechain can solve the gover-
nance problem three points are important:

1. A Codechain “repository” doesn’t have to contain
source code, although that is the most common
use case. It could also just contain configuration
data and text files.

2. The set of signers of a Codechain doesn’t have
to be the group of developers. It could also be
another group, such as all the mints.

3. Codechain contains a mechanism called secure
dependencies (see the specification2 of secure
packages for details) that allows to embed one
Codechain into another, with potentially different
sets of signers.

We can combine these three points into a governance
solution for Codechain:

• We have a “normal” Codechain for the Scrit client
and mint, signed by multiple Scrit developers.

• We have a “governance” Codechain which con-
tains configuration files and text files, comprising
the governance layer of Codechain. The set of
signers are all the mints (the number n of sign-
ers in Codechain) in the system and they “vote”
on changes in the governance layer by signing
changes to the “governance” Codechain. The
necessary quorum (the minimum number of sig-
natures m in Codechain) can be the same as the

1https://github.com/frankbraun/codechain
2https://godoc.org/github.com/frankbraun/codechain/

secpkg
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quorum for transactions or higher. Of course, the
transaction quorum is also set in the governance
Codechain. The configuration files contain all the
mints which comprise the system, how they can
be reached, what their signature keys are, and
what the monetary supply is. Decisions to add
miners, remove them, or change the monetary
supply are recorded in the governance Codechain
and are voted on by mints signing. The entire
process is described in a “constitution” text file
which is also part of the governance Codechain
and is changed by the same mechanism.

• The “normal” Codechain for the Scrit client and
the mint contains the “governance” Codechain
as a secure dependency. That way the client and
the mint can automatically and securely update
the mint configuration, allowing to transparently
add and remove mints from the system.

The whole design gives us a simple solution to the
governance problem in Scrit:

• For normal operations (that is, transactions) the
mints do not have to talk to each other at all,
everything is done automatically by the clients
talking to all mints separately (but in parallel).

• Governance change are decided on manually by
the mint operator via signing changes to their gov-
ernance Codechain, but are then automatically
distributed to the corresponding Scrit clients and
mints via secure dependency updates, as they are
happening during regular secure package updates
of the client or mint code.

The governance Codechain contains a definition file
that includes start and lengths of epochs, the mint
identity keys, the key lists, and a commitment of
future DBC creation or destruction.

9 Wallets

Scrit wallets work differently than other cryptocur-
rency wallets, because they mostly revolve around
transfer and reissuing of DBCs, and they don’t neces-
sarily have to sign anything. In the following we give

some details on how mobile and hardware wallets for
Scrit could work.

There are four connectivity scenarios to consider:

1. Sender and recipient are both online.
2. Sender is online and recipient is offline.
3. Sender is offline and recipient is online.
4. Sender and recipient are both offline.

9.1 Mobile wallets

We consider having a mobile wallet as a sender and a
mobile wallet or POS terminal as recipient.

In scenario 1. (both online) the sender scans a QR
code from the recipient containing the payment sum,
the DBC public key of the recipient, and a URL
where to upload the payment DBCs. The sender
reissues the necessary DBC to reach the payment
sum for the recipient’s public key, creating assigned
DBCs. He then posts these to the URL. The recipient
checks locally that he hasn’t seen these DBCs before
(to prevent double spends) and reissues them again
(possibly later). This gives the sender Evidence of
payment, as described above.

In scenario 2. (only sender online) the sender scans a
QR code from the recipient containing the payment
sum, the DBC public key of the recipient, and config-
uration data for a local Bluetooth or WiFi connection
to the recipient. The sender reissues the necessary
DBC to reach the payment sum for the recipient’s
public key, creating assigned DBCs. He then opens
up a local Bluetooth or WiFi connection to transfer
them to the recipient. The recipient checks locally
that he hasn’t seen these DBCs before (to prevent
double spends) and later reissues them. This gives
the sender Evidence of payment, as described above.

In scenario 3. (only recipient online) the sender scans
a QR code from the recipient containing the pay-
ment sum, the DBC public key of the recipient, and
configuration data for a local Bluetooth or WiFi con-
nection to the recipient. The sender opens up a local
Bluetooth or WiFi connection to transfer unassigned
DBCs to the recipient. The recipient immediately
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reissues them to prevent double spends. The recipient
confirms the payment, however this does not give the
sender Evidence of payment.

In scenario 4. (both offline) the sender scans a QR
code from the recipient containing the payment sum,
the DBC public key of the recipient, and configuration
data for a local Bluetooth or WiFi connection to the
recipient. The sender opens up a local Bluetooth or
WiFi connection to transfer previously assigned
DBCs to the recipient. The recipient checks locally
that he hasn’t seen these DBCs before (to prevent
a double spends) and confirms the payments. This
gives the sender evidence of payment, as described
above, but only after the recipient reissued the DBC
at a later stage.

In theory the transfer from the sender to the recipient
could also be done via QR codes. But with a larger
number of DBCs and/or mints this quickly reaches
the size limitations of QR codes and is therefore not
realistic in practice.

However, QR codes might be a good way to transfer a
bunch of assigned DBCs to a recipient on paper, with
the recipient scanning one DBC QR code after another.
This gives us offline anonymous untraceable digital
cash in paper form (assigned to a single recipient).

9.2 Hardware wallets

A simple hardware wallet would consist of a mass
storage device, a display, and a single button. It basi-
cally handles scenario 3. (only recipient online) or 4.
(both offline) above. The mass storage device contains
DBCs in different denominations. When connecting
the hardware wallet to the POS terminal (via USB,
NFC, or other means) the POS terminal requests a
certain sum. The hardware wallet shows the requested
sum on the display and waits for confirmation via a
button press. Upon confirmation the hardware wallet
would select the corresponding DBCs, transfer them
to the recipient, and delete them. Depending on the
scenario, the recipient would either reissue immedi-
ately (for unassigned DBCs) or later (for assigned
ones).

Since a very simple hardware wallet cannot check the
validity of DBCs we do not deal with change. When
loading up hardware wallets the denominations are
selected in a way to err on the side of smaller denom-
inations and we can live with small overpayments in
almost all real world payment situations (consider it
a tip).

Such simple hardware wallets would be loaded with a
trusted device. For example, an ATM that we trust
(just as we trust cash ATMs) or with a desktop client
running on a trusted computer.

10 Communication

Scrit does not define the means of communication
between users. Sets of DBCs are simple strings that
can be transferred between users by email, instant
messaging, or any other means. They can also be
printed as QR codes and used by the sender without
a digital device present.

Communication for transactions between users and
mints can be very efficient if the signature set required
is small. For non-recovery transactions a single UDP
package can usually contain the whole transaction.
Since the system is idempotent no communication
guarantees are required. On communication failure
the transaction is simply repeated with the failing
mint. To conceal the content of transactions against
third parties the transaction package is encrypted to
the mint’s long-term and short-term public encryption
keys.

Using single packet UDP requests and responses with
encrypted payloads allows the development of censor-
ship resilient mint networks.

For recovery or large transactions communication to
the mint the client uses TLS over TCP.

Furthermore, the transaction format allows the relay-
ing of transactions through active trustless proxies
that efficiently distribute the transactions over all
mints.
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11 Performance

A usual transaction consists of the following opera-
tions:

1. Signature verification by the sender.
2. Signature generation by the recipient.
3. Two signature verifications by the mint.
4. Three spendbook operations by the mint.
5. One signature by the mint.
6. Signature verification by the recipient.

Hence the performance of Scrit is limited by two
signature verifications, one signature creation, and
three spendbook operations performed by the mint.
These operations are easily distributable over multiple
processors and hosts. Sharding of the spendbook
can easily happen without complex commitment and
synchronization schemes since spendbook operations
are designed as failure on first known entry.

Current server-grade hardware can perform several
thousand signing and verification operations and sev-
eral hundred thousand spendbook operations per sec-
ond.

Since single mints can easily be distributed over clus-
ters of hardware and mints do not have to synchronize
during transactions this system is linearly scalable as
long as mints scale equally.

This allows for the creation of mints which have an
upper transaction volume bound by connection band-
width.

12 Backing

While Scrit does not define a backing layer, a potential
one is a backing of mint payment infrastructure by Bit-
coin as soon as efficient multi-signature algorithms (for
example, Schnorr signatures) are implemented. This
would allow to extend the control quorum from Scrit
mints to their backing. At this point in time a Bit-
coin backing is already possible with multi-signature
addresses, but this would limit n to 15, because that

is the current maximum for m-of-n multi-signature
addresses in Bitcoin.

It is also reasonable to envision backing by fiat money,
precious metals, or any other valuables. Enforcing
sound backing operations is outside the scope of Scrit
itself. It is also possible to operate a Scrit mint net-
work without any backing at all.

12.1 Cartel theory

Cartels are colluding groups of system participants
that conspire and coordinate to undermine the rules
of the system. Cartels do not come into existence
completely formed, but require communication and
negotiation before they can become effective. During
this time a cartel does not pose a threat to the system
yet. Both during formation and operation a cartel is
vulnerable to members that commit treason against
it.

The lesson drawn from this has been to incentivize
traitors against the cartel in order to make cartels
more brittle and potentially undermine their forma-
tion.

One method to do this is to reward the traitor with
collected penalties from other cartel members. It is
conceivable that Scrit mint operators have to deposit
a security which would be transferred to the traitor if
he can provide evidence of the formation of a cartel.

In such a system, the n mints are divided into groups
of size g = n−m and each mint distributes its security
equally over all of these groups. The funds of each
of these groups is controlled by a (g − 1)-of-g multi-
signature address. As soon as a mint can present
evidence of another mint’s attempt to form a cartel,
that mint’s security is distributed to the witness while
the cartel forming mint is excluded from n. The g
mints of every group judge the evidence.

This method would allow to create an pseudonymous
mint network. The only way to create a cartel in such
a pseudonymous mint network is to sign the relevant
communication which also creates proof of cartel form-
ing activity. Unauthenticated communication towards
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this goal is indistinguishable from a member being
tested towards his inclination for cartel membership.
However, this method does not prevent Sybil attacks.

13 Conclusion

Scrit is a very fast, extremely cheap, and linearly
scalable distributed untraceable electronic cash sys-
tem with a flexible backing and governance structure.
Employing a blind and unlinkable signature scheme
for its DBCs makes Scrit censorship resistant against
rogue mints. Its network communication protocol,
with very short encrypted packages that is proxy ca-
pable, makes it censorship resistant against network
filters.

It is not permissionless for mint operators (a new
mint requires the permission of the quorum m of the
existing mints to join), but it can be combined with
permissionless backing like Bitcoin, creating a second-
layer solution with very interesting properties, that
make it a good fit for user-to-machine and machine-
to-machine (micro-)payments.

Its trust model makes Scrit very suitable as a value
transfer system, but it should not be viewed as a
long-term store of value.

Scrit revives the concept of Chaumian ecash and adds
federation to it, mitigating issuer risk. It allows to
perform simple offline payments, a feature that to
the best of our knowledge no other digital payment
system has.
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