
1

Blockchain as a Service: A Decentralized and
Secure Computing Paradigm

Gihan J. Mendis∗, Yifu Wu∗, Jin Wei∗, Moein Sabounchi∗, and Rigoberto Roche’†
∗Department of Electrical and Computer Engineering

University of Akron, Akron, Ohio
†NASA Glenn Research Center, Cleveland, Ohio

Abstract—Thanks to the advances in machine learning, data-
driven analysis tools have become valuable solutions for various
applications. However there still remain essential challenges to
develop effective data-driven methods because of the need to
acquire a large amount of data and to have sufficient computing
power to handle the data. In many instances these challenges
are addressed by relying on a dominant cloud computing ven-
dor, but, although commercial cloud vendors provide valuable
platforms for data analytics, they can suffer from a lack of
transparency, security, and privacy-perservation. Furthermore,
reliance on cloud servers prevents applying big data analytics
in environments where the computing power is scattered. To
address these challenges, a decentralize, secure, and privacy-
preserving computing paradigm is proposed to enable an asyn-
chronized cooperative computing process amongst scattered and
untrustworthy computing nodes that may have limited computing
power and computing intelligence. This paradigm is designed
by exploring blockchain, decentralized learning, homomorphic
encryption, and software defined networking(SDN) techniques.
The performance of the proposed paradigm is evaluated via
different scenarios in the simulation section.

Index Terms—Blockchain, Decentralized and Secure Learning,
Machine Learning, Privacy, Security

I. INTRODUCTION

Due to the advances in sensing and computing, data-driven
methods, such as machine learning techniques [1], have be-
come very promising solutions for different applications [2]–
[4]. However, there are two essential challenges in imple-
menting these techniques: (1) acquisition of large amount of
data, and (2) requirement of enough computing power, which
enforces the reliance on a dominant cloud computing vendor.
Although the cloud servers provide valuable platforms for big
data analytics, there remain several essential challenges in
adopting the commercial cloud vendors: (1) transparency, (2)
security, and (3) privacy [5]. With the rise of awareness for
data privacy, end-users have become reluctant to share their
data. Also, in another perspective, user data are becoming a
valuable asset. In some domains, such as the healthcare sector,
federal and civil service offices, there is an abundance of
valuable data, however, due to privacy laws and regulations,
these data cannot be shared with the third party. Furthermore,
the reliance on cloud servers also limit the potentials of
applying big data analytics for the environment where the
computing power is scattered. Therefore, it is meaningful to
develop a reliable infrastructure in which end-users or data
creators are able to secure the ownership of data while being

able to contribute to machine learning tasks in a privacy-
preserving manner with reasonable financial incentivation. To
achieve this goal, in this paper we develop a decentralized and
secure computing infrastructure that enables an effective and
privacy-preserving collaboration between the available end-
users and data creators that are called computing nodes in this
paper. These computing nodes can have restricted computing
power and limited computing intelligence. Additionally, they
can be scattered and untrustworthy to each other.

In recent years, several techniques have been proposed
to achieve decentralized and privacy-preserving computing.
In [6], Shokri et al. proposed a privacy-preserving deep-
learning mechanism with secure multi-party computations to
update the single initial deep learning model. However, the
deep learning model is centralized while multiple parties
contribute to the model training in a manner that guaranties
the privacy-preservation. Federated learning introduced in [7]–
[10] is a distributed machine learning method that enables
model training on decentralized data. In this method, multiple
copies of the central model can be available in distributed
computing devices for training, which eliminates the sin-
gle point of failure. However, both of these two methods
must be managed by one centralized authoritative controlling
agent, which may raise security and privacy concerns. To
address these issues, in our work we develop a decentral-
ized and secure computing paradigm, which does not have
any centralized authoritative controlling agents, by exploiting
blockchain, machine learning, and homomorphic encryption
technologies. Blockchain is an emerging technology, which
can be considered as an immutable and decentralized digital
ledger [11], [12]. A blockchain is a growing list of records,
called blocks, which are linked via cryptography. Each block
contains the hash value of the previous block, the transaction
data, and the timestamp. Due to the inherent cryptographic
chaining, if a malicious party tries to manipulate certain
transaction data, it will causes the changes of the hash values
of the block containing the transaction and those of all the
subsequent blocks, which can be easily detected. Therefore,
generally speaking, blockchain technology provides a very
promising solution for integrity security. Amongst various
existing blockchain platforms, Ethereum and Bitcoin are two
of the most widely adopted ones [11]–[13]. Compared with
Bitcoin, Ethereum platform provides a trustful automation of
programs via smart contracts that run on virtual machines.
In our work, we exploit Ethereum blockchain to execute

ar
X

iv
:1

80
7.

02
51

5v
2

 [
cs

.C
R

]
 2

1
M

ay
 2

01
9

2

the secure and privacy-preserving decentralized computing
functionalities automatically.

Furthermore, our computing paradigm enables the effec-
tive decentralized and cooperative learning via an effective
learning-model fusion mechanism. Fusing multiple learning
models is an active area of research and fusion strategies in
literature can be divided into two main categories: (1) Late
fusion that comprise predicting the labels based on the labels
given by each learning model to be fused and (2) Early fusion
that takes the feature vectors given by the individual learning
models as the inputs and learns a classifier on top of them.
Although late fusion requires lower computational cost com-
pared with early fusion in many practical applications as stated
in [14]–[16], early fusion can achieve a more optimal way to
combine learned models compared with late fusion [17]. In
this work, our learning-model fusion mechanism belongs to
the type of early fusion, in which the feature vectors to be
fused present features with the highest level of abstraction.
Additionally, we consider two strategies for designing the
fusion mechanism: (1) using a fully connected structure with
a single hidden-layer to map concatenated features to labels
and (2) implementing gradual fusion to explore the uniqueness
of the individual learning models and the correlation amongst
the learning models.

To further enhance the security and achieve privacy-
preservation, we design a encryption interface with a zero-
knowledge proof protocol by exploiting homomorphic encryp-
tion (HE), which enables evaluating the performance of the
contributed learning models without revealing the sensitive
details of the learning models. HE technology is one form
of encryption that allows the computation operations to be
directly implemented in cipherspace and achieves an encrypted
results that, when decrypted, match the results of the opera-
tions as if they had been performed on the plainspace [18]. The
existing HE technologies can be generally classified into three
main groups: (1) fully HE schemes, (2) partially HE schemes,
and (3) somewhat HE schemes [19]–[25]. Considering the fact
that somewhat HE schemes support more operations compared
with partially HE schemes and require less computation power
compared with fully HE schemes, we exploit Integer-Vector
HE scheme [24], [25], which is a somewhat HE scheme, to
develop the encryption interface in our computing paradigm.
The authors would like to claim that the technologies presented
in this paper has been include in a provisional patent [26].

The next section describes the problem setting for our work.
Section III describes our proposed blockchain-powered decen-
tralized and secure computing paradigm mechanism followed
by the details of the implementation in Section IV. Simulation
results and the conclusions are shown in Sections V and VI,
repectively.

II. PROBLEM SETTING

Two of the main factors for the thriving of machine learning
are: (1) the availability of sizable data-sets with general-
ized distributions, commonly known as big data, and (2)
the availability of the computational power to process this
big data, mainly in the form of large-scale GPU clusters.

Because of this, most profitable parties in the field of machine
learning are large organizations, which hold both valuable
big data and sufficient computational power to process it.
As illustrated in Fig. 1(a), these large organizations collect
data from data contributors to advance the capabilities of their
machine learning techniques. One of the essential challenges
for creating large-scale datasets via data acquisition, from mul-
tiple parties, is the issue of privacy and the related concerns.
Potential data providers may not get motivated to share the
data because of the high potential for data privacy violations.
Additionally, collecting tremendous raw data from multiple
parties results in a huge demand on communication bandwidth
and a dramatically increased attack surface. Furthermore, a
large amount of computational power is required by the central
server to process the collected big data.

One solution is the implementation of distributed learning
architectures [6]–[10]. As shown in Fig. 1(b), in distributed
learning, rather than collecting and processing data in a single
central server, data processing is distributed partially to the
individual data providers. By doing so, the distributed learning
is implemented in such a way, that the computing contribu-
tors process their local data by training the given machine
learning models or their own machine learning models and
then share the trained model with a central controlling agent.
Since the data are not shared, we can say that the data
privacy is preserved in this architecture. Additionally, the
machine learning models are trained in distributed locations
with smaller sets of data, and thus the computational power
required by the individual computing contributors is much
lower, compared with that of a central server. However, in this
solution, the machine learning architecture is fully controlled
by a authoritative agent in a centralized manner. It relies on
the central authority to coordinate the activities of each entity
in the system. Therefore, it is required that the computing
contributors trust the central controlling agent, which may
raise security and privacy concerns.

To mitigate this, we improve the distributed machine
learning architecture presented in Fig. 1(b) and achieve the
decentralized and cooperative machine learning architecture
shown in Fig. 1(c). In a decentralized system, each en-
tity is completely autonomous and responsible for its own
individual behavior. In this architecture, the untrustworthy
computing contributors have full control on their own deep
learning models and private data. Additionally, the individual
contributors are able to participate or leave the computing
architecture, without disturbing the functionality and efficiency
of the overall learning process. Also, the participation of the
computing contributors is motivated by financial compensation
that they will receive according to the value of their contri-
bution. To achieve these objectives, we exploit the Ethereum
blockchain and design the smart contract to secure the peer-
to-peer transactions between the multiple untrustworthy parties
to enable the autonomous decentralized and cooperative deep
learning.

3

Deep

Learning

Algorithms

Private

Data

Private

Model 2

Contributor 2
Private

Data

Private

Model 3

Contributor 3

Private

Data

Private

Model n

Contributor n

Data

Contributor 2

Large

Collections

of Data

Central

Location

Large Scale

Computation

Resources

Data

Contributor 1

Data

Contributor 3

Data

Contributor n

Private

Data

Private

Model 1

Contributor 1

Fusion of Shared Deep

Learning Models

Central Controlling Agent

Private

Data

Private

Model

Contributor 1

Decision

Interface

Private

Data

Private

Model

Contributor 2

Decision

Interface Private

Data

Private

Model

Contributor n

Decision

Interface

Deep

Learning

Task

Decision

Interface
Initiator

(a) (b) (c)

Fig. 1. (a) Centralized machine learning architecture where data are collected to centralized server with high processing and storage capability; (b) Distributed
machine learning architecture where partial of training is distributed to the data contributors and the training process is fully controlled by a central controlling
agent; (c) Autonomous cooperative and decentralized machine learning architecture with no central agents facilitated by blockchain service infrastructure.

Local/

shared

data

Private

Model 1

Computing

Contributor 1

Training and

testing dataset

submitted to DS

Application Initiator

Decision

interface

Decision

Interface

Local/

shared

data

Private

Model N

Decision

Interface

Testing data revealed

from decentralized

storage (DS)

Verification Contributor 1

Decision

Interface

Testing data

revealed

from DS

Quantitative

verification

Verification

Contributor M

Decision

Interface

Task-driven

functions defined

via blockchain

smart contract

MetaModel

Private

Model 1

Private

Model 2

Private

Model n

Encryption

Interface

Encryption

interface
Encryption

Interface
Objectives/constraints

published by Initiator

via blockchain smart

contract

Objectives/constraints

published by Initiator

via blockchain smart

contract

Computing

Contributor N

Quantitative

verification

Training data obtained

from DS

Training data obtained

from DS

Fig. 2. Overview of our blockchain-powered decentralized and secure
computing paradigm.

III. PROPOSED BLOCKCHAIN-EMPOWERED COOPERATIVE
MACHINE LEARNING PLATFORM

The overview of our proposed blockchain-powered decen-
tralized and decentralized computing paradigm is illustrated
in Fig. 2. As shown in Fig. 2, our proposed mechanism
is designed to enable the effective cooperation between the
available and possibly scattered computing nodes to accom-
plish data-driven task that may require high computing power
and intelligent and large dataset. The individual computing
nodes can participate the computing paradigm by playing one
of the three roles: (1) application initiators, (2) computing
contributors, or (3) verification contributors. As detailed in
Fig. 3(a), if the computing node act as an application initiator,
it announces the data-driven applications and is responsible
for defining the computing tasks, such as the objectives,
constraints, the suggestions on the computing model structure,
and the financial compensation commitments, via blockchain
smart contract. The application initiators also provide the

verification contributors with a sample set of data to evaluate
the performance of the learning models contributed by the
computing contributors. If it is necessary, the application
contributors also provide the computing contributors, which
have computing power and computing intelligence, with the
dataset to conduct the local training. The sharing of the
dataset is realized via the decentralized storage (DS) such
as The Interplanetary File System (IPFS) [27]. As shown
in Fig. 3(b), the computing contributors train the machine-
learning models locally for a given data-driven task by using
a certain local data asset or the data shared by the associated
application initiator. After training the local learning model
successfully according to the criteria defined by the application
initiator via smart contract, such as the accuracy is above
90 %, the computing contributors announce the completeness
of the training via the blockchain platform and share the
achieved the machine-learning model to the randomly selected
verification contributors via the DS such as IPFS. The available
verification contributors are passively and randomly selected
to provide the hardware resources and verify the contributions
of the locally trained learning models, which are claimed by
the computing contributors, in a random and decentralized
manner. As illustrated in Fig. 3(c), the verification is conducted
according to the criteria defined by the application initiator
via smart contract, such as whether the accuracy can be
improved after fusing the claimed model. The majority voting
amongst the verification contributors is used to determine the
contribution of the corresponding computing contributors. The
application initiator is informed about the majority voting
conclusion. If this conclusion is positive, the transaction of the
verified locally-trained machine-learning model, also called
private model, is established between the application initiator
and the associated computing contributor, in which the com-
puting contributor receives the financial compensation and the
application initiator obtains the access to the learning model
in IPFS. Additionally, the verification contributors involved in
the task also get compensated from initiators for their effort.
After the time window assigned to the data-driven task ends,

4

Start

Generate

Private/Public Key

Download Verified

Encrypted Private

Models from IPFS

Done

Decrypt Models using

Secret Key

Share Public Key

and Data (IPFS)

Publish Task via

Blockchain Smart

Contract

Fuse the Models and

Achieve MetaModel

Verified Models?

Yes

No

Start

Training

Model

Achieve

Accuracy(90%)

?

No Yes

Upload to

IPFS

Success?

YesNo

Done

Output

Model Name & Hash

Encryption

Receive Data and

Public Key

Merge New

Training Model

Increase

Accuracy?

No

Done

Output

Verified Model Name

and Hash Value

Download Models from

IPFS

Success?

Yes

No

Yes

Start

Receive Data and

Public Key

(a) (b) (c)

Fig. 3. The schematic diagram showing workflows for (a) application
initiators, (b) computing contributors, and (c) verification contributors.

the application initiator fuses all the received verified private
models to achieve the MetaModel that will be applied to
address the data-driven task. The architecture of our proposed
computing paradigm is considered asynchronous and adaptive
since the computing and verification contributors can leave or
join the task at their convenience.

IV. IMPLEMENTATION OF PROPOSED COMPUTING
PARADIGM

In this section, we described the implementation of our pro-
posed blockchain-powered decentralized and secure comput-
ing paradigm in details. The implementation of our proposed
computing paradigm comprises of three layers: (1) application
layer to conduct decentralized and secure computing, also
called computing layer, (2) blockchain middleware to enable
the secure peer-to-peer communications between the comput-
ing nodes including the transactions of the private models and
the data sharing, and (3) software-defined networking (SDN)-
enabled networking layer.

A. Decentralized Storage System

As shown in Fig. 2, decentralized storage (DS) system is
one essential component of the computing layer to secure
the sharing of data and private machine-learning models. DS
system makes the access these data and learning models more
affordable, faster and safer. Firstly, expensive centralized data
servers are no longer needed in a DS system because every
peer can cache the data required by other peers. Secondly,

optimized downloading from multiple local peers provides
higher traffic throughput than that from a remote centralized
data server. In addition, as shown in Fig. 3, after the data
or private models are stored in the DS system, the unique
hashes characterizing the fingerprint of these cyber assets are
generated and shared, which ensures the integrity and the
authorization of the sharing process.

B. Blockchain Middleware

Ethereum Blockchain-based middleware is designed to
automatically control, manage and secure the system pro-
cesses. First of all, consensus protocol, such as Proof-of-Work
(PoW), Proof-of-Stake (PoS), and Proof-of-Authority (PoA)
of blockchain provides an unsupervised secure environment
where the authoritative agents are not necessary any more
for the decentralized computing. Additionally, the distributed
database of blockchain provides a shared, irremovable ledge
of any events happened in time order on the system. It is
convenient to trace the ins and outs of a event on blockchain
ledge. Furthermore, blockchain smart contract enables the
automation of system processes including the training, veri-
fication, transaction, and fusion processes of the decentralized
and cooperative learning.

C. Homomorphic Encryption Interface

As shown in Fig. 4, the encryption interface is designed to
enhance the security and enable the privacy-preservation of our
computing paradigm. In this work, the encryption interface is
developed by exploiting Integer Vector Homomorphic Encryp-
tion (HE) scheme. Figure 4 illustrates the overall mechanism
of the encryption interface, which mainly consist of eight
steps. Step 1: Encryption interface client of the application
initiator generates the public key M and the secret key S′

according to Integer Vector HE scheme, which is illustrated
in Fig. 3(a). Step 2: The generated public key M is shared
amongst the active computing and verification contributors,
which is illustrated in Figs. 3(a)-(c). Steps 3 and 4: Computing
contributors apply the received public key M to encrypt the
machine learning models achieved locally and share the en-
crypted private models with the passively selected verification
contributors for quantitative verification, which is illustrated
in Fig. 3(b). Step 5: After receiving the encrypted private
model, the verification contributors verify the performance of
the private models by conducting the quantitative verification
in cipherspace with the public key M. In the quantitative
verification, the verification contributor fuses the received
private model with the existing learning model in cipherspace
and concludes that the private model is valuable if the overall
accuracy increases after model fusion. Step 6: The majority
voting amongst all the associated verification contributors is
used to determine the contribution of the private model. The
application initiator is informed about the majority voting
conclusion. Step 7: If the majority conclusion is positive,
the transaction of the encrypted private model between the
associated computing contributor and the application initiator
is established. At last, the application initiator decrypts the
shared model with the secret key S′.

5

Application

Initiator

Computing

Contributors

Verification

Contributors

1. Generate public key

 and secret key !

2. Send

2. Send

3. Encrypt local training

model with

4. Send

encrypted

model

5. Verify the shared

encrypted model with

local data and

6. Inform decision

7. Transaction of the

encrypted model if

approved

8.

Decrypted

model with

 !

Fig. 4. The illustration of the mechanism of our encryption interface.

1) Integer-Vector Homomorphic Encryption: In our work,
the integer-vector homomorphic encryption scheme, which
supports three fundamental operations: addition, linear trans-
formation, and weighted inner products, is exploited to develop
the encryption interface. Letting x ∈ Zm be the plaintext
vector, S ∈ Zm×n be the secret key, and c ∈ Zn be the
ciphertext vector, the encryption can be formulated as:

Sc = wx+ e (1)

wheree is a randomization term introduced to enable the
encryption, which have elements smaller than w, and w is
a large integer that controls the appropriate ratio between the
plaintext and the introduced randomization.

Given the secret key S, the decryption can be performed
as:

x = dSc
w
c (2)

In this homomorphic encryption scheme, key switching
method was proposed to convert the ciphertext in one ci-
pherspace to another without decryption. This convert is
realized via a public key M that is calculated as follows:

M =

[
S∗ −TA + E

A

]
(3)

where S and c are the original secret key and ciphertext, re-
spectively, S∗ is an intermediate key satisfying S∗c∗ = Sc, c∗

is the representation of c with each digit of c, ci represented as
a l-bit binary number, and A and E are random and bounded
matrices, respectively. A scalar l is selected to be large enough
such that |c| < 2l, which determines the maximum value of c
represented with l bits. Let bi be the bit representation of the
value ci, we can obtain c∗ as follows,

c∗ = [bi,bi+1, ...,bn] (4)

where n is the length of vector c. Similarly, S∗ can be obtained
as follows:

Bij =
[
2l−1Sij , ..., 2Sij , Sij

]
(5)

where Bij is the sub-vector of S∗ that corresponds to the
element Sij .

Additionally, since the initial secret key S is a identity
matrix of the dimension n × n , the original ciphertext c is
actually the original plaintext x itself. Let S′ = [I,T], where I

is identity matrix and T, is a desired secret vector. By using the
public key M defined in Eq. (3), the ciphertext corresponding
to the desired secret key S′ can be calculated as:

c′ = Mc∗ (6)

where M is a (n+ 1)× nl dimension matrix. Therefore, the
resulting ciphertext c′ is a integer vector with length n+ 1.

2) Implementation of Artificial Neural Networks-based Ma-
chine Learning Model in Cipherspace: As shown in Fig. 4,
the essential component of our homomorphic encryption is to
implement the artificial neural network (ANN)-based machine
learning model in cipherspace by using integer-vector ho-
momorphic encryption (IVHE) scheme. ANN implementation
mainly comprises of summation, vector addition, vector mul-
tiplication with scalar, vector dot product, pooling operations,
convolution operations, and nonlinear activation functions.
Most of these operations are supported by the IVHE scheme,
except pooling operations, convolution operations, and non-
linear activation function realizations. To enable the imple-
mentation of pooling operations in cipherspace, we currently
assume the computing contributors adopt the average pooling
or summation pooling for training their machine learning
model locally. Under this assumption, the pool operations can
be realized via the summation followed by a division by a
integer, which is supported by the IVHE. The convolution
operations can be implemented in cipherspace by calculating
the vector multiplication operations. Additionally, we mainly
consider two types of activation functions in the current work:
sigmoid function, σ(x) = 1/(1 + e−x), and ReLU function,
ReLU(x) = max(0, x). To implement the sigmoid func-
tions in cipherspace, we leverage the Taylor series expansion
to achieve the k-th order polynomial approximation of the
sigmoid function. For example, if k = 3, the polynomial

approximation is σ̄ =
1

2
+
x

4
− x3

348
that is supported by the

IVHE scheme. To enable the implementation of ReLU func-
tion, which is a piecewise linear operation with discontinuity
at x = 0, in cipherspace, we currently constrain the secret
and public keys to contain the non-negative elements only. By
doing so, there is no sign changes while encrypting. The ReLU
function is executed in cipherspace via the random dropout.

There still remain two challenges of implementing the
ANN-based machine learning model in cipherspace. First,
most weight values and input data for ANNs are floating-point
values that cannot directly be supported by our adopted homo-
morphic encryption scheme. Additionally, implementing the
average pooling and calculating the polynomial approximation
of sigmoid function require the multiplications with floating-
point numbers, which is also not supported by our adopted
homomorphic encryption scheme. To address this issue, we
introduce predetermined and unified scaling factors to convert
the floating-poitn values to integers. A final propagated scaling
factor is used to scale down the output values of the ANNs
to the original values. Second, as discussed in Section IV-C1,
inter-vector homomorphic encryption increases the length of
ciphertext vector by 1 compared with that of the plaintext
vector. This difference between the dimensions of the cipher-
text and plaintext raises challenges in implementing the ANN

6

operations that requires consistency in dimensions such as
feed-forward operations. To address this issue, we develop two
encryption strategies as follows:

a) Element-wise Encryption Strategy: The essential idea
of our element-wise encryption strategy is to encrypt the
matrices and vectors in a manner of element by element. By
doing so, the additional components introduced by the homo-
morphic encryption can be addressed in the third dimension,
which ensures the consistency on the original dimensions. To
illustrate our strategy, we use a fully-connected neural network
(NN) as an example shown in Fig. 5(a). The details of the
implementation of the fully-connected NN in cipherspace are
illustrated in Fig. 5(b).

As shown in Fig 5(a), the fully-connected ANN has an input
vectors with length of n, a weight matrix, Weight Matrix 1,
with the dimension of n × m resulting in a hidden layer of
size m adopting sigmoid function as the activation function,
a weight matrix, Weight Matrix 2, with dimension m × k,
and a output vector of length k. To enable the implantation
of our element-wise encryption strategy, Weight Matrices
1 and 2 are represented with dimensions n × m × 1 and
n × k × 1, respectively, and multiplied with a scaling factor
p to ensure all the matrix elements to be integer. Another
scaling factor q is introduced to convert the input elements
to be integer. Considering the fact that, if Weight Matrix
is encrypted, the following structure of the fully-connected
NN is meaningless for a malicious party, it is reasonable
to focus on encrypting Weight Matrix 1 only to achieve a
tradeoff between the high security and low computational
complexity. As shown in Figs. 5(a) and (b), we consider
each element of Weight Matrix 1 as a vector with length 1
in the 3rd dimension, and apply the element-wise encryption
strategy, which results in a weight matrix with the dimension
of n×m×2 in cipherspace. The dot product operation between
the scaled and encrypted Weight Matrix 1 and the scaled input
vectors is executed by using IVHE, which results in a pair of
weighted inputs in cipherspace. By achieving a polynomial
approximation of the sigmoid activation function, the hidden
layer with the approximated sigmoid functions is encrypted
via the homomorphic encryption resulting in a hidden layer
pair in cipherspace. For each of the encrypted hidden layer
in the pair, a dot product operation is performed with the
scaled Weight Matrix 2, which results in an output pair in
cipherspace. Additionally, as shown in Fig 5(b), a scaling-
down operation is required during the decryption conducted
in the encryption interface in application initiator.

Figure 5(c) illustrates the implementation of our element-
wise encryption strategy to execute a convolutional neural net-
work (CNN). Similar to the previous example, the convolution
filter is converted to a pair of scaled and encrypted filters
having the dimension of m × r. A dot product operation is
performed on each encrypted convolution filter of the pair
with the scaled input vector. Then a pair of hidden layers
in cipherspace is achieved by implementing ReLU operations,
sum-pooling, and reshaping. Another dot product operation
is executed on each of the hidden layer in the pair with the
scaled Weight Matrix 2, which results in an output pair in
cipherspace. Since, in this example structure, the encrypted

ReLU activation function is realized via random dropout and
the operations of sum-pooling and reshaping are executed in
cipherspace using IVHE scheme, no additional scaling is in-
troduced through these operations. Therefore, the final output
scaling factor remains lower compared to the previous example
fully-connected NN using sigmoid activation function.

b) Matrix-Pair-wise Encryption Strategy: Our matrix-
pair-wise encryption strategy is performed on a pair of neigh-
boring weight matrices. To illustrate our strategy, we use a
CNN as an example shown in Fig. 6. As illustrated in Fig. 6,
this CNN has two convolution layers having the dimensions
of m×1×r and m×r×l, respectively, where r is the number
of convolution filters in the first convolutional layer and l is
the number of convolution filters in the second convolutional
layer.

In our encryption strategy, the dimension of encryption is
carefully selected such that there is no dimension mismatch
while executing the CNN-based machine learning model in
cipherspace. Additionally, the first convolution layer is en-
crypted via IVHE scheme by leveraging the 3rd dimension,
which results in a scaled and encrypted convolutional filter
with dimension m × 1 × (r + 1). Similarly, the second
convolution layer is encrypted on the 2nd dimension, which
results in a scaled and encrypted convolutional filter with
dimension m × (r + 1) × l. By doing so, the convolution
operation can be performed as a pair without any dimension
mismatch.

D. Learning-Model Fusion Mechanism

As illustrated in Fig. 2, the success of our decentralized
and secure computing paradigm requires an efficient learning-
model fusion mechanism, with which the application initiator
is able to integrate the verified private models and achieve
an effective MetaModal for the targeted data-driven task.
For designing the learning-model fusion mechanism, it is
necessary to treat the computing models, provided by the
computing contributors, as separate entities, to ensure the
fused structure is dynamic.

Figure 7 illustrates the structure of our proposed fusion
mechanism. In our mechanism, the upper-layer feature vectors
fi from individual verified private models are concatenated to
form a concatenated feature layer fc. As shown in 7, the upper-
layer feature vector fi can be the input of the output layer for
the private model i. One fully-connected neural network (NN)
is designed to fuse the features characterized by the individual
private models. This fully-connected NN uses the concatenated
feature layer fc as its input layer and has a hidden layer h with
the length of

∑n
i=1 | li |, where | li | is the number of the

labeled classes in the ith private model. TO design the fully-
connected NN, it is essential to design its weight matrices A
and B. Currently, we consider two strategies for learning the
optimum values for weight matrices A and B and designing
the learning-model fusion mechanism.

1) Strategy I: In this strategy, the weight matrices A and B
are initialized randomly without any additional constraints and
are optimized via the backpropagation algorithm [28] in which

7

Input !

Weight Matrix 1

 ! !

Aprx. Sigmoid

Weight Matrix 2

! " !

Output " !

Hidden Layer ! !

Input !

Scaled Cipherspace

Weight Matrix 1

 ! "

Cipher Aprx. Sigmoid

Scaled

Weight Matrix 2

! " !

Output " "

Hidden Layer ! "

Scaling

Scaling

Scaling

Encryption

Plainspace Model Cipherspace Model
Model

Encryption

Input !

Scaled Cipher

Weight Matrix 1

 ! !

g 1 g 2

Cipher Aprx. Sigmoid

Weighted

Input Pair

Hidden

Layer Pair

Scaled

Weight Matrix 2

! " "

Output 1 Output 2

Output Pair

Decryption and Scaling

SF= 1/(p4q3102)

SF = q

SF = p

SF = pq

SF = p3q3102

SF = p4q3102

Plaintext Output

Scaled

Weight Matrix 2

! " "

h 1 h 2

Output	Pair SF	=	2p2q

Scaled	Cipher
Filter	
m × r

Scaled	Weight	Matrix	2
× k

nr

2

Output	1

h1

1D	Convolution	

Dense	Neural	Layer

1D	Convolution	

Average	Pooling

h2

SF	=	q

SF	=	pSF	=	p

Hidden	
Layer	Pair

Scaled	Weight	Matrix	2
× k

nr

2

Output	2

Dense	Neural	Layer

Decryption	and	Scaling
SF=	1/(2p2q)

Plaintext	Output	k × 1

Reshaping

Cipher	ReLU

Scaled	Cipher
Filter	
m × r

Input	n × 1

SF	=	2pq

(a) (b) (c)

Fig. 5. The illustration of our element-wise encryption strategy: (a) using a fully-connected NN as an example, (b) detailing the execution of the fully-connected
NN in cipherspace, and (c) using a CNN as an example.

Input	n × 1

Average	Pooling

Output	k × 1

1D	Convolution	

ReLU

Dense	Neural	Layer

× 1nl

2

× k
nl

2

m × 1 × r

1D	Convolution	

ReLU

m × r × l

× r
n

2

Input	n × 1

Scaled	Cipher	Filter	1

Average	Pooling

Cipher	Output	
k × 2

1D	Convolution	

ReLU

Dense	Neural	Layer

× 2nl

2

× k
nl

2

m × 1 × (r + 1)

1D	Convolution	

ReLU

m × (r + 1) × l

× (r + 1)n

2

Weight	Matrix

Hidden	Layer	2	

Filter	2	

Hidden	Layer	1	

Filter	1	

Hidden	Layer	1	

Scaled	Cipher	Filter	2

Hidden	Layer	2	

Scaled	Weight
Matrix

× k
nl

2

Scaled	Weight
Matrix

(a) (b)

Fig. 6. Illustration of our matrix-pair-wise encryption strategy: (a) a CNN-
based machine learning model in plainspace and (b) the corresponding CNN-
based machine learning model in ciperspace.

the ith element in the hidden layer h and the jth element in
the output layer y are calculated as follows:

hj =

|fc|∑
i=1

AT
ij · fci (7)

yj =
exp(

∑|h|
i=1B

T
ij · hi)∑d

k=1 exp(
∑|h|

i=1B
T
ik · hi)

(8)

2) Strategy II: This strategy is developed to achieve to
goals: (1)learning the uniqueness of the features characterized
by the individual verified private models, and (2) exploring the
correlation amongst the features presented by the individual
private models. To achieve this goal, a gradual fusion is
designed, in which the weight matrix A is initialized as a

concatenated matrix formulated in Eq. (9) and the weight
matrix B is initialized with the concatenation of the identity
matrices, as formulated in Eq. (10).

Ainit =

W1 0 0 . . . 0
0 W2 0 . . . 0
0 0 W3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Wn

 (9)

where a diagonal weight matrix Wi, which has the dimension
of (| fi |, | li |), is initialized randomly.

Binit =

w111 = 1 0 0 . . . 0
0 w122 = 1 0 . . . 0
0 0 w133 = 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . w1dd = 1
w211 = 1 0 0 . . . 0

0 w222 = 1 0 . . . 0
0 0 w233 = 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . w2dd = 1
...

...
...

. . .
...

wn11 = 1 0 0 . . . 0
0 wn22 = 1 0 . . . 0
0 0 wn33 = 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . wndd = 1

(10)

where n is the number of the verified private models to be
fused and d denotes the number of class labels.

The elements of the weight matrices A and B are optimized
by using our gradual fusion method that consists of two stages.
In the initial stage, only the diagonal non-zeros weights of
matrix A by using backpropagation algorithm, which targets
at learning the uniqueness of the features characterized by
the individual private models. In the second stage, all of the
weights in A are updated by using backpropagation algorithm,
which targets at exploring the correlations between the features

8

Verified

Local

Learning

Model 1

Verified

Local

Learning

Model 2

Verified

Local

Learning

Model n

f1

f2

fn

l1

l2

ln

fc

Weight

Matrix

A

h

Weight

Matrix

B

y

Concatenated

 Features

Hidden

Layer

Data

Analysis

Results

Private/

Shared

Data 1

Private/

Shared

Data 2

Private/

Shared

Data n

Fig. 7. Illustration of our proposed learning-model fusion mechanism.

characterized by the individual private models. Accordingly,
the ith element in the hidden layer h and the jth element in
the output layer y are calculated as follows:

hj =

|fc|∑
i=1,Aij∈W̄

AT
ij · fci + γ

|fc|∑
i=1,Aij /∈W̄

AT
ij · fci (11)

where the parameter γ is set as 0 in the intial stage and as 1
in the final stage, W̄ = Wp ←

∑p−1
k=1 | lk |< i ≤

∑p
k=1 | lk |.

yj =
exp(

∑|h|
i=1,Bij=wjpp

BT
ij · hi + γ

∑|h|
i=1,Bij 6=wjpp

BT
ij · hi))∑d

k=1 exp(
∑|h|

i=1,Bik=wipp
BT

ik · hi + γ
∑|h|

i=1,Bik 6=wipp
BT

ik · hi)
(12)

where p ∈ {1, 2, 3 . . . , d}, and d is the number of labeled
classes.

V. SIMULATION RESULTS

In this section, the performance of our proposed blockchain-
powered decentralized and secure computing paradigm is
evaluated by considering three case studies. To achieve this
goal, we develop a Blockchain-powered Software-defined net-
working (SDN)-based testbed as detailed in Section V-A.

A. Blockchain-Powered SDN-Based Testbed

Fig. 8 (a) shows a picture of our Blockchain-powered
SDN-based testbed, in which the computing nodes, including
one application initiators, three computing contributors, and
three verification contributors, are simulated by using two
popular embedded systems, Raspberry PI and NVIDIA Jetson.
The communications and cooperative computing amongst the
computing nodes are supported by the blockchain middleware
and the SDN-based peer-to-peer networking layer. The integra-
tion of the computing layer, blockchain middleware, and the
SDN-enabled networking layer in our computing testbed are
illustrated in Fig. 9. Each computing node, which is simulated
via Raspberry PI or NVIDIA Jetson, has (1) one or multiple
blockchain clients to interact with the blockchain middleware,
(2) multiple ethernet ports to interact with the SDN-enabled

networking layer, and (3) one or more decentralized storage
(DS) clients to enable the decentralized storage systems.

In our testbed, the blockchain middleware is developed by
exploiting a decentralized application (DApp) on the Ethereum
platform in which the engine and language of smart contract
were Ethereum Virtual Machine (EVM) and Solidity. The
consensus protocol is set to be Proof-of-Authority (PoA). The
block interval is set to 15 s and all sealers are initialized with
a small number of tokens. Additionally, the smart contract in
Ethereum is written by Solidity and the blockchain event lis-
tener client is leveraged to provide the interface of the logging
facilities of the Ethereum virtual machine. Every computing
node, which is willing to participate in a certain decentralized
computing task via the blockchain smart contract, is required
to send a transaction through Ethereum blockchain to contract
with a considerate amount of security deposit of tokens. By
doing so, the smart contract is able to record the identities of
all the participants and forward the tasks such as training and
verification to the participants appropriately. The deployment
of smart contract is considered as a transaction as well, which
provides the other nodes with the address necessary to access
the smart contract. As shown in Fig 9, the DS system in
our testbed is realized by using Interplanetary File System
(IPFS) that utilizes the peer-to-peer network to share and
store hypermedia on the Internet. Since the whole simulation
was running on a private network, a shared swarm key was
used to authorize reliable nodes to join IPFS. Furthermore,
our computing layer is developed in Python because most
frameworks of machine learning are realized there. Web3.py
and ipfs-api.py provide access to Ethereum blockchain and
IPFS clients to realize the transactions and file sharing, respec-
tively. Tensorflow is a deep learning framework with Python
bindings, which is adopted for the task of machine learning
in our testbed.

To further demonstrate our testbed, the screenshot of the
terminals for a computing initiator, a computing contributor,
and a verification contributor during one experiment are shown
in Figs. 8(b)-(d), respectively. As shown in Fig. 8(b), the ap-
plication initiator’s operation comprises three main processes
that are identified with three red rectangular boxes: (1) being

9

initialized to publish one data-driven task, characterize the
objectives and constraints of the task via smart contract, upload
the data to be shared to IPFS, and share the public key
generated via homomorphic encryption interface, (2) receiving
the verified models that are concluded according to the ma-
jority votes of all the active verification contributors, and (3)
implementing decryption and fusion on the received verified
models. As shown in Fig. 8(c), the computing contributor’s
operation mainly consists of four processes: (1) participating
the data-driven task, (2) terminating the training task when the
accuracy meets the given/self-defined criterion, (3) encrypting
the achieved private model via homomorphic encryption inter-
face and uploading the encrypted private model to IPFS, and
(4) announcing the encrypted private model for assessment. As
shown in Fig. 8(d), the verification contributor’s operation in-
cludes three main processes: (1) being passively and randomly
selected and initialized for the given data-driven task, (2)
receiving the all announced private models, and (3) verifying
the received private models according to the criterion defined
in smart contract and publishing the verification results.

B. Case Study I

In this case study, we focus on evaluating the performance
of our proposed blockchain-powered decentralized and secure
computing paradigm in a secure environment. In other words,
the functionality of the homomorphic encryption interface is
not considered. We assume one application initiator publishes
a data-driven task on classifying the 10 image classes provided
by the MNIST handwritten digit database [29] and three
computing contributors, and three verification contributors,
which are considered to be randomly selected, participate in
the task. We consider that each computing contributor develops
its own CNN-based machine learning model whose structure
parameters are summarized in Table I. As shown in Table II,
the local data available to each computing contributor only
present a partial view of the whole dataset. The accuracy
of the CNN models developed by the individual computing
contributors for classifying their local verification data is
shown in Fig. 10, all of which are above 90 %. In this sce-
nario, the criterion of determining whether the local learning
model is trained successfully is achieving the accuracy of
90 %. Therefore, all of the three private CNN models are
encrypted and published to the three verification contributors
for assessment. After receiving the verified private models
according to the majority voting amongst the verification
contributors, the application initiator fuses the models by using
the two strategies introduced in Section IV-D to achieve the
MetaModal. Assume that the application initiator decrypts
and fuses the private models as soon as receiving them, the
classification accuracy achieved by the MetaModal is shown in
Fig. 11. From Fig. 11, it is clear that the classification accuracy
increases as more private models are fused. This is reasonable
since the individual private models are achieved using the local
data that only characterize the partial features of the whole
dataset. Furthermore, it can also see from Fig. 11 that Fusion
Strategy II slightly outperforms the Fusion Strategy I when
fusing multiple private models.

C. Case Study II

In this case study, we focus on evaluating the performance
of homomorphic encryption interface in our proposed decen-
tralized and secure computing paradigm by using the testbed
shown in Figs. 8 (a) and 9. The local data that can be accessed
by the individual computing contributors are detailed in Ta-
ble III, which show that the individual computing contributors
only have partial view of the entire dataset. Additionally, we
assume that each computing contributor locally trains a CNN
private learning model with a similar structure as illustrated in
Table IV. To perform our homomorphic encryption interface,
the floating-point input data and weight parameters of the
CNN-based learning models are converted to be integer by
introducing appropriate scaling factors p and q as shown in
Fig 5. In this simulation, we evaluate the performance of the
final MetaModal when the computing contributors select the
scaling factors p = 25 or 27 and q = 1000. Furthermore,
we assume that in the encryption interface of the comput-
ing contributors, the private CNN-based learning models are
encrypted via the first convolution layers. In the encryption
interface of the application initiators, the verified private
models are decrypted and fused to achieve MetaModals via
Fusion Strategy II. The accuracy of the MetaModal achieved
with and without homomorphic encryption interface are shown
in Table V, respectively. From Table V, we can see the
MetaModal achieved by using the encryption interface with
the scaling factor p = 27 outperforms that with the scaling
factor p = 25 and achieves comparable accuracy as the original
MetaModal. This is reasonable because that the errors caused
by rounding the parameters of the CNN-based private models
to integers increases when the scaling factor is lower.

D. Case Study III

In this case study, we compare our proposed computing
paradigm to a widely recognized distributed machine learning
paradigm, federated learning [30] in a data-driven task on
classifying the 10 image classes provided by the MNIST
handwritten digit database [29]. In federated learning, the local
contributors initialize their model by referring the global ini-
tialized weights and then update their own models for a certain
numbers of local epochs. The weights of the local models
are averaged as the new global weights, which completes the
first round of model update. The updated global weights are
distributed to local computation contributors for a next round
of model updating procedure. This process is called Federated
Averaging (FedAvg).

To achieve a fair comparison, we assume the decentralized
computing is conducted in a secure environment. Therefore,
in our computing paradigm, the functionality of our homo-
morphic encryption interface is not considered and only one
verification contributor is needed. For federated learning, we
assume that the global average process ignores the random
selection of local weights and collect all the weights achieved
by the available local models. In addition, we assume that each
computing contributor adopts a three-layer CNN model in both
of the computing paradigms. In our computing paradigm, there
are three computing contributors, each of which conducts up to

10

(a)

[1]

[2]

[3]

(c)

(b)

(d)

[1]

[2]

[3]

[4]

[1]

[3]

[2]

Fig. 8. (a) A picture of the testbed, and the terminals of (b) Application Initiator, (c) Computing Contributor, and (d) Verification Contributor.

100 training epoches locally, one verification contributor, and
one application initiator. In federated learning, there are four
local contributors training the local models, each of which
involves in five rounds of model updating and conducts 20
training epoches locally in each round.

Furthermore, in this case study, we consider two scenarios.
In the first scenario, we consider a diverse set of local training
samples of the MNIST data available to the local contributors.

Each of these local training samples includes the data associ-
ated with all of the 10 image class labels, and the distribution
of the local training samples are not identical amongst these
contributors. In the second scenario, we consider that data are
distributed amongst contributors in a way that only part of the
10 image classes are available to most of the contributors. The
data distribution used in this scenario is similar to Table II.

The comparison result is shown in Fig. 12, from which

11

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3

RYU Controller

Linux Bridge

50 ms

5 ms

Physical Data Link
Physical Control Link

Logical Link of Blockchain

Logical Link of IPFS

5 ms

Raspberry Pi 3

RYU Controller

Linux Bridge

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3

Open vSwitch

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

Raspberry Pi 3/

Nvidia Jetson

TX2Blockchain

Client

IPFS Client

Ethernet

50 ms

5 ms

5 ms
10 ms

5 ms 5 ms 5 ms

10 ms

Fig. 9. (a) Illustration of implementing our blockchain-powered and SDN-based decentralized and secure computing testbed.

TABLE I
PARAMETERS OF THE LOCAL LEARNING MODELS CONSIDERED IN CASE STUDY I

CNN parameters
Computing Computing Computing

Contributor 1 Contributor 2 Contributor 3
Inputs 28x28 images

Convolution layer l 32 5x5 kernels 64 5x5 kernels 32 5x5 kernels

Pooling layer 1 2x2
maximum pooling

2x2
maximum pooling

2x2
maximum pooling

Convolution layer 2 16 5x5 kernels 32 5x5 kernels 32 10x10 kernels

Pooling layer 2 2x2
maximum pooling

2x2
maximum pooling

2x2
maximum pooling

Convolution layer 3 8 2x2 kernels 16 2x2 kernels 16 4x4 kernels
Reshaped vector

(Convolution layer 3 output
are flatten as a vector of size)

7x7x8=392 7x7x16=784 7x7x16=784

hidden layer Fully connected hidden layer with size 500
Output 10 labels with softmax activation

Training method Adam Optimizer
Batch size 50

Learning rate 0.0001
Maximum number of epochs 100

it can be seen that both computing paradigms achieve a
comparable classification accuracy. In the first scenario where
all the contributors have a good view of the entire dataset,
federated learning slightly outperforms our framework. In the
second scenario, where most contributors only have partial
views of the entire dataset, our computing solution is slightly
better than the federated learning. Furthermore, our computing
solution provides higher integrity security via removing the

authoritative controlling agent and introducing the verification
contributors. The main functionality of verification contribu-
tors is for security purpose rather than for increasing the final
accuracy, which also results in the relatively lower accuracy
achieved by our solution in the first scenario shown in Fig. 12.
Furthermore, the communication cost required by federated
learning is higher than that required by our solution. This
is caused by the centralized management and the repeated

12

TABLE II
SUMMARY OF THE DATASET AVAILABLE TO THE INDIVIDUAL

CONTRIBUTORS IN CASE STUDY I

Contributor Set of
Labels

No.
Training

Data

No.
Verification

Data

Verifiers {0, 1, 2, 3, 4,
5, 6, 7, 8, 9} 1000 1000

Computing
Contributor 1 {0, 1, 2, 3, 4} 1000 1000

Computing
Contributor 2 {0, 6, 7, 8, 9} 1000 1000

Computing
Contributor 3 {5, 6, 7, 8, 9} 1000 1000

1 2 3
Index of the Computing Contributor

90

92

94

96

98

100

C
la

ss
if

ic
at

io
n

A
cc

cu
ra

cy
 o

n
Pr

iv
at

e
V

er
if

ic
at

io
n

D
at

a
(%

)

Fig. 10. Accuracy obtained by each computing contributor by using their
local verification data.

{1} {1, 2} {1, 2, 3}
Indices of the Computing Contributors Contributing for the MetaModal

80

85

90

95

100

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
O

bt
ai

ne
d

by
 M

et
aM

od
al

 (
%

)

Strategy I
Strategy II

Fig. 11. Comparison of average classification accuracy obtained by Meta-
Modal using strategies I and II versus the indices of the computing contributors
contributing to the MetalModal.

collection of the local weights during the process FedAvg.

E. Case Study IV

In this case study, we evaluate the performance of our
decentralized and secure computing paradigm with the func-
tionality of the homomorphic encryption interface in a data-

TABLE III
SUMMARY OF THE LOCAL DATA AVAILABLE TO THE INDIVIDUAL

CONTRIBUTORS IN CASE STUDY II

Contributor Set of
Labels

No.
Training

Data

No.
Verification

Data
Computing

Contributor 1 {0, 1, 2, 3, 4, 5, 6} 1000 1000

Computing
Contributor 2 {0, 1, 2, 3, 4, 8, 9} 1000 1000

Computing
Contributor 3 {0, 1, 2, 6, 7, 8, 9} 1000 1000

TABLE IV
PARAMETERS OF THE CNN-BASED PRIVATE MODELS IN CASE STUDY II

CNN parameters
Inputs 28x28 images

Convolution layer l 32 5x5 kernels

Pooling layer 1 2x2
average pooling

Convolution layer 2 16 5x5 kernels

Pooling layer 2 2x2
average pooling

Reshaped vector
(Pooling layer 2 output

are flatten as a vector of size)
7x7x16=784

Output 10 labels with softmax activation
Training method Adam Optimizer

Batch size 50
Learning rate 0.0001

Maximum number of epochs 100

TABLE V
COMPARISON OF THE ACCURACY ACHIEVED BY METAMODALS IN

DIFFERENT SITUATIONS IN CASE STUDY II

Indices of
Fused Models

Classification Accuracy for Fused Models (%)

Original
Encrypted
(p = 27)

Encrypted
(p = 25)

{1} 91.5 91.5 89.6
{1, 2} 94.8 94.7 93.0
{1, 2, 3} 95.8 95.8 93.8

driven task of detecting a fading channel by using link power
data. The confidential data used in this task are from Link
Power database provided by NASA Glenn Research Center.
In the simulation, we assume that one application initiator
publishes this data-driven task and there are three computing
contributors and three randomly selected verification con-
tributors participating in the task. The link power data are
randomly divided into 4 sets each of which contains 10000
training data and 1000 testing data. Of these four sets, three
sets are used as the local data, each of which is available
to one of the three computing contributors. The other set
is considered accessible by assigned to the three randomly
selected verification contributors in the testbed. Additionally,
we assume that each computing contributor participating in
the task adopts a CNN model with 2 convolution layers and
ReLU activation function. In this case study we consider both

Scenario I Scenario II
Two Different Scenarios

90

92

94

96

98

100

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)
 Federated Learning Proposed Solution

Fig. 12. Performance comparison between our computing paradigm and
federated learning in two different scenarios

13

Element-wise and Matrix-Pair-wise homomorphic encryption
strategies.

To demonstrate the operation of our homomorphic encryp-
tion interface, Table VI summarizes the accuracies obtained
by each computing contributor with its private model and
local testing data with and without the encryption interface.
From these results, it is clear that implementing the encryption
interface slighted reduces the classification accuracies, which
is the cost to achieve higher security and privacy preserva-
tion. Additionally, Table VII shows the classification accuracy
achieved by the MetaModal of the application initiator, which
is obtained by fusing the individual verified private model
via fusion strategy II. From the results in Table VII, which
is obtained considering the functionality of homomorphic
encryption interface, it is clear that although the final result is
satisfactory the encryption interface slightly reduces the accu-
racy due to the introduction of randomization as explained in
Section IV-C and rounding error as discussed in Section V-C.

Furthermore, we study the impact of the homomorphic
encryption interface on the execution time. Tables VIII sum-
marizes the overhead for encryption and the time consumed to
achieve a local private model by each computing contributor
with and without encryption interface. Homomorphic encryp-
tion interface is based on Element-wise Encryption. The results
are obtained on a Corei5 CPU for 1000 testing data. ML
models are executed on TensorFlow graphs. Encryptions and
decryptions are performed using Python Numpy API. It can
be seen that the execution time with encryption interface is
only 2 times higher compared with that without encryption
interface.

VI. CONCLUSIONS

Availability of computation power and data are two of the
main reasons for the success of machine learning in a variety
of application areas. However, both acquisition of processing
power and data can be expensive. In many instances these
challenges are addressed by relying on an outsourced cloud-
computing vendor. However, although these commercial cloud
vendors provide valuable platforms for data analytics, they
can suffer from a lack of transparency, security, and privacy-
preservation. Furthermore, reliance on cloud servers prevents
applying big data analytics in environments where the comput-
ing power is scattered. Therefore, more effective computing
paradigms are required to process private and/or scattered
data in suitable decentralized ways for machine learning. To
pave the way to achieve this goal, a decentralize, secure,
and privacy-preserving computing paradigm is proposed in
this paper to enable an asynchronized cooperative computing
process amongst scattered and untrustworthy computing nodes
that may have limited computing power and computing intel-
ligence. This paradigm is designed by exploring blockchain,
decentralized learning, homomorphic encryption, and software
defined networking(SDN) techniques. The performance of
the proposed paradigm is evaluated by considering different
scenarios and comparing to a widely recognized distributed
machine learning paradigm, federated learning, in the simula-
tion section.

ACKNOWLEDGMENT

This research work was supported by NASA under Grant
80NSSC17K0530. The authors would like to thank Praveen
Fernando for assistance with the preliminary work.

REFERENCES

[1] M. van Gerven and S. Bohte, Artificial neural networks as models of
neural information processing. Frontiers Media SA, 2018.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016, vol. 1.
[4] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural networks, vol. 61, pp. 85–117, 2015.
[5] S. Pandiri, A. Al-Refai, and L. Lundberg, Cloud Computing - Trends

and Performance Issues: Major Cloud Providers, Challenges of Cloud
Computing, Load balancing in Clouds. LAP LAMBERT Academic
Publishing, 2012.

[6] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security. ACM, 2015, pp. 1310–1321.

[7] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[8] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[9] B. McMahan and D. Ramage, “Federated learning,”
https://research.googleblog.com/2017/04/federated-learning-
collaborative.html.

[10] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. McMahan,
T. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards feder-
ated learning at scale: System design,” arXiv preprint arXiv:1902.01046,
2019.

[11] V. Buterin, “Ethereum: A next generation smart contract & decentralized
application platform,” Ethereum White Paper, 2013.

[12] H. Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts,
Decentralized Autonomous Organizations. CreateSpace Independent
Publishing Platform, September 2016.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Septem-
ber 2009.

[14] V. Vielzeuf, S. Pateux, and F. Jurie, “Temporal multimodal fusion for
video emotion classification in the wild,” in Proceedings of the 19th
ACM International Conference on Multimodal Interaction. ACM, 2017,
pp. 569–576.

[15] S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre,
R. Memisevic, P. Vincent, A. Courville, Y. Bengio, R. C. Ferrari
et al., “Combining modality specific deep neural networks for emotion
recognition in video,” in Proceedings of the 15th ACM on International
conference on multimodal interaction. ACM, 2013, pp. 543–550.

[16] G. Ye, D. Liu, I.-H. Jhuo, and S.-F. Chang, “Robust late fusion with rank
minimization,” in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012, pp. 3021–3028.

[17] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “Moddrop: adaptive
multi-modal gesture recognition,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 38, no. 8, pp. 1692–1706, 2016.

[18] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[20] X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption and Ap-
plications. Springer, SpringerBriefs in Computer Science, November
2014.

[21] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University Stanford, 2009, vol. 20, no. 09.

[22] Y. Masahiro, Fully Homomorphic Encryption without bootstrapping.
LAP Lambert Academic Publishing, March 2015.

[23] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

14

TABLE VI
THE ACCURACY OF FADING CHANNEL DETECTION ACCURACY USING THE PRIVATE CNN-BASED LEARNING MODELS

Model Detection Accuracy (%)
Without Encryption Element-wise Encryption Matrix-Pair-wise Encryption

Computing Contributor 1 93 91.6 91.7
Computing Contributor 2 93.1 92.4 92.0
Computing Contributor 3 93.2 92.3 92.1

TABLE VII
DETECTION ACCURACY ACHIEVED BY USING METALMODAL

Model Detection Accuracy (%)
Element-wise Encryption Matrix-Pair-wise Encryption

{1, 2} 94.5 94.5
{1, 2, 3} 95.5 95.0

TABLE VIII
THE IMPACT OF THE ELEMENT-WISE ENCRYPTION INTERFACE ON EXECUTION TIME

Model Execution Time (ms)
Overhead for
Encryption

Execution without
Encryption

Execution with
Encryption

Computing
Contributor 1 7.7 60 126

Computing
Contributor 2 7.6 57 123

Computing
Contributor 3 7.6 59 125

[24] H. Zhou and G. Wornell, “Efficient homomorphic encryption on integer
vectors and its applications,” in 2014 Information Theory and Applica-
tions Workshop (ITA). IEEE, 2014, pp. 1–9.

[25] A. Yu, W. Lai, and J. Payor, “Efficient integer vector homomorphic
encryption,” May 2015.

[26] USA Patent provisional 62/663,287, 2018.
[27] Agorise, “c-ipfs: IPFS implementation in C. Why C? Think Bitshares’

Stealth backups, OpenWrt routers (decentralize the internet/meshnet!),
Android TV, decentralized Media, decentralized websites, decent.”
Github.com, October 2017.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[29] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[30] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

http://www.deeplearningbook.org

	I Introduction
	II Problem Setting
	III Proposed Blockchain-Empowered Cooperative Machine Learning Platform
	IV Implementation of Proposed Computing Paradigm
	IV-A Decentralized Storage System
	IV-B Blockchain Middleware
	IV-C Homomorphic Encryption Interface
	IV-C1 Integer-Vector Homomorphic Encryption
	IV-C2 Implementation of Artificial Neural Networks-based Machine Learning Model in Cipherspace

	IV-D Learning-Model Fusion Mechanism
	IV-D1 Strategy I
	IV-D2 Strategy II

	V Simulation Results
	V-A Blockchain-Powered SDN-Based Testbed
	V-B Case Study I
	V-C Case Study II
	V-D Case Study III
	V-E Case Study IV

	VI Conclusions
	References

