
From DevOps to DevDataOps: Data
Management in DevOps processes

Antonio Capizzi1, Salvatore Distefano1,Manuel Mazzara2

1 University of Messina, Italy
2 Innopolis University, Innopolis, Respublika Tatarstan, Russian Federation.

Abstract. DevOps is a quite effective approach for managing software
development and operation, as confirmed by plenty of success stories in
real applications and case studies. DevOps is now becoming the main-
stream solution adopted by the software industry in development, able
to reduce the time to market and costs while improving quality and
ensuring evolvability and adaptability of the resulting software archi-
tecture. Among the aspects to take into account in a DevOps process,
data is assuming strategic importance, since it allows to gain insights
from the operation directly into the development, the main objective of
a DevOps approach. Data can be therefore considered as the fuel of the
DevOps process, requiring proper solutions for its management. Based
on the amount of data generated, its variety, velocity, variability, value
and other relevant features, DevOps data management can be mainly
framed into the BigData category. This allows exploiting BigData so-
lutions for the management of DevOps data generated throughout the
process, including artefacts, code, documentation, logs and so on. This
paper aims at investigating data management in DevOps processes, iden-
tifying related issues, challenges and potential solutions taken from the
BigData world as well as from new trends adopting and adapting DevOps
approaches in data management, i.e. DataOps.

1 Introduction

DevOps [1, 2] is an approach for software development and (IT) sys-
tem operation combining best practices from both such domains to im-
prove the overall quality of the software-system while reducing costs and
shortening time-to-market. Its effectiveness is demonstrated by the quite
widely adoption of DevOps approaches in business contexts, where there
is a big demand of specific professionals such as DevOps engineers as
well as data scientists, just partially, minimally covered by current offer.
The DevOps philosophy can be generalized as a way, a good practice
for improving a generic product or service development and operation,
by connecting these through a feedback from operation to development.
An important feature of DevOps is the automation of such a process:
continuous delivery (CD) enables organizations to deliver new features
quickly and incrementally by implementing a flow of changes into the
production via an automated “assembly line” - the continuous delivery
pipeline. This is coupled with continuous integration (CI) that aims at

ar
X

iv
:1

91
0.

03
06

6v
1 

 [
cs

.S
E

] 
 7

 O
ct

 2
01

9



2 Capizzi, Distefano, Mazzara

automating the software/product integration process of codes, modules
and parts, thus identifying a CI/CD pipeline.
The tools adopted to implement this high degree of automation in the
DevOps process identifies a toolchain. DevOps toolchain tools are usually
encapsulated into different, independent containers deployed into physi-
cal or virtual servers (typically on Cloud), and then managed by specific
scripts and/or tools (e.g. Jenkins), able to orchestrate and coordinate
them automatically.
Such DevOps principles have been therefore either specialized to some
specific software/application domains (security - SecOps, SecDevOps,
DevSecOps [3], system administration - SysOps [4], Web - WebOps or
WebDevOps [5]) or even adopted, rethought and adapted in other con-
texts such as artificial intelligence (AIOps [6]) and machine learning
(MLOps, DeepOps [7]), and data management (DataOps [8]). The lat-
ter, DataOps, aims at mainly organizing data management according to
DevOps principles and best practices. To this end, DataOps introduces
the concept of dataflow pipeline and toolchain, to be deployed in con-
tainerized (Cloud) environment providing feedback on performance and
QoS of the overall data management process, used to real-time tune the
pipeline to actual operational needs and requirements.
As discussed above, the DevOps pipeline automation involves in the
toolchain different tools, each continuosly generating messages, logs and
data including artifacts. To achieve DevOps aims and goals, such data
has to be properly managed, collected, processed and stored to provide
insights from operations to the development stages. DevOps data man-
agement could therefore be quite challenging, due to the large amount of
data to be considered as well as its variety, variability and similar metrics
usually identified as V properties in the BigData community, to which we
have to refer to. BigData approaches, indeed, could be a good solution
to consider in the management of a DevOps process and toolchain.
In light of these considerations, in this paper we focus on DevOps data
management, proposing to adopt BigData approaches and solutions.
More specifically, the main goal of this paper is to explore the con-
vergence between DevOps and DataOps approaches, defining a possible
(big)dataflow pipeline for DevOps processes and toolchains and orga-
nizing it following a DataOps process, towards DevDataOps. This way,
we investigate on the adoption of DataOps, mainly implementing a Big-
Data pipeline and toolchain, in DevOps contexts, i.e. for improving the
development and operation of a software architecture.
To this extent, Section 2 describes the DevOps and DataOps processes
and toolchains. Section 3 discusses about DevOps artifacts and data in
the BigData context. Then, Section 4 proposes a DevOps (big) dataflow
pipeline and related implementation in the DataOps philosophy. Section
5 summarises the key aspects of the proposed approach and future work.

2 DevOps and DataOps

2.1 The DevOps process and toolchain

DevOps [1] consists of a set of practices to promote collaboration be-
tween the developers, IT professionals (in particular sysadmin, i.e. who



From DevOps to DevDataOps: Data Management in DevOps processes 3

works on IT operations) and quality assurance personnel. DevOps is im-
plemented via a set of software tools [2] that enable the management
of an environment in which software can be built, tested and released
quickly, frequently, and a more reliable manner. In addition to contin-
uous delivery (CD), which aims at developing “small” software releases
in reasonably short cycles, continuous integration (CI) stands as a key
concept in DevOps approaches. A typical example of CI consists of con-
tinuously integrating changes made by developers into a repository, then
a project build is automatically executed, and if the build the modifi-
cations are integrated into the code through CD and published in the
production environment.

A DevOps process is usually composed of different stages and phases,
which can be periodically reiterated for proper development and oper-
ation of the software architecture, in an evolutionary fashion able to
caught new requirements, features and behaviors arising from operation.
This way, a DevOps process belogs to the category of agile process, not
plan driver, where the number of development cycle is unknown a-priori.
Consequently, the amount of data generated by a DevOps process is
usually unpredictable and could be really high. There is no standard
definition of a DevOps process, but several different versions and imple-
mentations have been provided by the related community. Among them,
main DevOps stages can be summarized below.

– Plan: activity planning and task scheduling for the current release.
This step is usually dealt with by project managers in collabora-
tion with the team and exploiting project management tools such as
Trello, Asana, Clarizen, Jira, Azure DevOps, to name a few.

– Code: code development and code review. Developers are the most
closely involved in this activity using IDE and tools for source code
management such as GitHub, Artfactory, CodeClimate, etc.

– Build : is when source code is converted into a stand-alone form that
can be run on a computer system. In this activity are involved vari-
ous professional figures, mainly developers and sysadmins. The tools
used in this phase are: CI tools (for example Jenkins, TravisCI),
build tools (for example Maven) etc.

– Test : in this phase the software is tested by the quality assurance
staff using tools for (automatic) testing and similar. Examples of
such kind of tools are JUnit, Jmeter, Selenium, etc.

– Release: triggered when a new version of software is ready to be
released to end users. In this activity, various professionals of the
development team are involved, primarily developers and sysadmins.
Release management tools (such as Spinnaker) or similar support
such an activity.

– Deploy : it deals with the installation and execution of the new soft-
ware release in the production environment and infrastructure. At
this stage, the collaboration between developers and syadmins is
mandatory. The tools used for deployment depend on the target in-
frastructure (physical or virtual nodes, Cloud, etc.) as well as on the
adopted system software (OS, virtualization, containerization, mid-
dleware, compilers, libraries), thus identifying a wide set of possible



4 Capizzi, Distefano, Mazzara

options for deployment management (VmWare, Virtualbox, Docker,
LXD, Kubertenes, AWS CodeDeploy, ElasticBox etc.).

– Operate: is the activity that maintains and adapts the infrastruc-
ture in which the software is running. This activity is mainly driven
by sysadmins, supported by configuration management tools (such
as Ansible, Puppet, Chef), security tools (such as Sonarqube, For-
tify SCA, Veracode), database management tools (such as Flyway,
MongoDB), recovery tools (PowerShell, Ravello), etc.

– Monitor : in this activity the software in production is monitored by
mainly sysadmins, operators and others managing the project. The
tools used are: tools that monitor the performance of the service,
tools that analyze the logs (for example Logstash, Nagios, Zabbix),
tools that analyze the end user experience (Zenoss).

One of the main objectives of DevOps is to mitigate issues in produc-
tion, which is done by reducing the gap among development and testing
environments to the production one. To this purpose, several tools as the
one mentioned above are usually used and combined into a set identified
as the “DevOps Toolchain”, which can be considered as a scaffold built
around the development project. To compose a Toolchain, in general,
there are no fixed rules, it is necessary to follow the DevOps principles
and best practices to choose the tools according to the project charac-
teristics. For a small project 3 or 4 tools might be enough, while in a
larger project 10 or more tools might be necessary. A minimal (CI/CD)
DevOps toolchain might include, at least, some version control tool (e.g.
Git), automation tools (e.g. Jenkins), package managers (e.g. NPM) and
test tools (e.g. JUnit). DevOps infrastructures are typically fully imple-
mented on Cloud platforms. It is a good practice in DevOps to build the
entire infrastructure using containers to minimize portability issues. For
that, containerization technologies such as Docker, LXD or similar are
adopted, sometimes coupled by tools for containers orchestration (e.g.
Kubernetes or Swarm).

2.2 DataOps

DataOps is a new approach that aims to improve quality and respon-
siveness of data analytics life-cycle [8–10]. This approach is based on
DevOps rules, in particular DataOps aims to bring DevOps benefits to
data analytics, adopting Agile rules and Lean concepts. When the vol-
ume of data is larger and larger, the purpose of DataOps is to improve
the life cycle of analytics by taking advantage of DevOps principles such
as communication between teams (data scientists, ETL, analysts, etc.),
cooperation, automation, integration, etc. To achieve this it is necessary
to apply a set of human practices and dedicated tools. With DataOps a
new professional figure called “DataOps Engineer” was born, to deal with
the automation and orchestration of the process. A large DataOps com-
munity issued a Manifesto1 that contains 18 rules, the mission and best
practices to apply DataOps. However, this is the most concrete activity
behind DataOps, that is still mainly a set of rules, concepts and ideas

1 https://www.dataopsmanifesto.org/



From DevOps to DevDataOps: Data Management in DevOps processes 5

to be applied to data management. There is, indeed, a lack of examples,
dataflow pipelines, toolchians and standard process for DataOps.
However, despite the DataOps approach is still mainly abstract, it can
be mostly summarized with the DataOps principles detailed in the Mani-
festo, some implementations of the DataOps idea start to be defined and
fixed. For example, a DataOps process can be broadly organized into
three steps 2:
– Build - In this step, the data is taken from a source point (e.g.

a database, a log file, etc.), transformed by applying one or more
actions, and then written to a destination point. The flow executed
by these actions is called “dataflow or DataOps pipeline”. In the
Build phase you can also have multiple pipelines connected to each
other.

– Execute - at this stage the build pipelines are put into production
in a running environment e.g. clusters, datacenters, Clouds. It is
important, for a company adopting DataOps, to be able to use the
existing infrastructure to run the pipeline, in order to avoid incurring
in additional costs.

– Operate - When this step is reached, the system is running on an
environment, it is necessary to monitor it and react to any change
(for example when larger volumes of data arrive and it is required
to scale the infrastructure to cope with burst). One approach used
in DataOps (borrowed from Agile) is to start with small instances
and increase their resources when the demand grows.

3 DevOps data

An outcome from the complex pipeline involved in a DevOps project is
the generation of a large amount of data, considering the process arte-
facts and the log files generated in each stage. Examples of activities that
generate considerable data on the project cycle include changes made by
developers; the application building and its corresponding entries on the
compilation and dependencies of the project; the execution of automatic
tests; software usage by end-users after release into the production. Fur-
thermore, the number of cycle of a DevOps process is usually unknown,
and typically lasting years, so reaching hundreds, or even thousands of
releases each generating a considerable amount of data that should be
adequately preserved and managed for gaining insights and the process.
Artifacts and data produced in a DevOps process are quite large and
widely different. These can include software artifacts (code, documenta-
tion, test, executable, prototypes) and other information generated by
the DevOps toolchain (logs, configuration files, traces, ...). More specifi-
cally, based on the above DevOps reference process, the data associated
to each stage is reported below.

– Plan: planning artifacts and data are software design blueprint, re-
quirement documentations (UML or similar, if any), project envi-
ronment information including user stories, tasks, activities, backlog,
and statistics.

2 https://dzone.com/articles/dataops-applying-devops-to-data-continuous-dataflo



6 Capizzi, Distefano, Mazzara

– Code: development artifacts include codes, versions, prototypes and
related info such as lines of code, version differences and relevant
parameters.

– Build : mainly executable files, packages, logs and metrics that con-
tain information about builds and may indicate compilation errors,
warnings, successes, failures etc.

– Test : code for automatic tests, logs from automatic test tools that
indicates unit tests failed or passed, system tests results, or docu-
mentation written by Quality Assurance staff about verification on
software in development.

– Release: documentation about releases (for example new features
introduced), new final version of executable files or packages, logs
and metrics from release orchestration tools.

– Deploy : configuration files, scripts and logs originating from Deploy
tools that may contain errors or warnings.

– Operate: data generated by the software, logs from the tools involved
in this stage and system logs from (physical or virtual) servers.

– Monitor : logs, metrics and other information from monitoring tools,
the data retrieved in this phase is important to obtain a feedback
from users.

It could be worth to invest in a data management system for a DevOps
process, where the high volume of generated data is not only properly
collected and stored but also managed, filtered, aggregated and possi-
bly made available for further processing, to gain insights on the over-
all process to achieve essential DevOps aims and goals. This calls for
proper data management techniques, providing mechanisms for collec-
tion, aggregation, storage filtering, aggregation, fusion, archival, mining
and feature extraction, local and global analytics preferably in an auto-
mated manner [11], to improve the DevOps pipeline [12]. For example,
historical data can be analyzed to estimate a probabilistic measure of
the success of a new release, or for identifying potential source of bugs
(root-cause analysis) or even to prevent them.
From a data/information-oriented perspective therefore, a DevOps pro-
cess can be considered as a data-intensive process, in the sense that
it could generate large amount of data. To this purpose, DevOps data
management issues and challenges can be framed into the BigData con-
text. Considering the reference DevOps process and toolchain described
in Section 2.1, it could be interesting to characterize such a process in
BigData terms. To this purpose, we refer to well-known and widely used
Bigdata metrics: the “Vs”. BigData V properties are usually used in the
community to categorize an application, and range in number from orig-
inal 3 (Volume, Velocity, Variety) to 10 or even more. Shortly, volume
is probably the best known characteristic of big data, quantifying the
amount of data generated; velocity refers to the speed at which data is
being generated, produced, created, or refreshed; variety is related to
the “structuredness” of data: we don’t only have to handle structured
data (logs, traces, DB) but also semistructured and mostly unstructured
data (images, multimedia files, social media updates) as well; variability
refers to inconsistencies in the data, to the multitude of data dimen-
sions resulting from multiple disparate data types and sources and to



From DevOps to DevDataOps: Data Management in DevOps processes 7

the inconsistent speed at which big data is loaded into DB; veracity is
the confidence or trust in the data, mainly referring to the provenance
or reliability of the data source, its context, and how meaningful it is
to the analysis based on it; validity refers to how accurate and correct
the data is for its intended use; vulnerability is concerned with big data
security, privacy and confidentiality; volatility refers to data “lifetime”,
i.e. the amount of time needed for data to be considered irrelevant, his-
toric, or not useful any longer; visualization faces technical challenges
due to limitations of in-memory technology and poor scalability, func-
tionality, and response time to represent big data (billion data points)
such as data clustering or using tree maps, sunbursts, parallel coordi-
nates, circular network diagrams, or cone trees; value is the property
to be derived from the data through processing and analytics. In the
DevOps context, the process data value is exploited to support decision
making in development. This way, Table 1 reports the characterization
of a DevOps pipeline from a BigData perspective, expressed in terms of
V metric values ranges for a “mid-size” DevOps reference process.

Stage/Vs Volume Velocity Variety Variability Veracity Validity Vulnerability Volatility Visualization Value

Plan 10KB-1GB Week UnStr. Medium/High High Low Low Week/Days Poor High

Code 1-100MB Hours SemiStr. High High High Medium Hours Poor High

Build 1-10GB Hours SemiStr Medium Low Low Medium Hours High High

Test 10KB-1GB Minutes Str Medium High High Medium Days High Medium

Release 1-10GB Week UnStr High Medium Medium Medium Week/Month Medium High

Deploy 1-100MB Week UnStr High Medium Medium Medium Week/Month Medium High

Operate 10KB-1GB Hours SemiStr High High High Medium Hours Medium High

Monitor 10KB-1GB Seconds/Minutes SemiStr High High High High Hours High High

Table 1. DevOps Project Bigdata Vs.

4 DevDataOps

4.1 DevOps Dataflow Pipeline

The data generated by a DevOps pipeline is therefore quite complex
and heterogeneous, and consequently quite hard to manage and main-
tain [13]. The DevOps data life-cycle and workflow can be decomposed
into different stages and steps identifying the dataflow pipeline shown
in Fig. 1. This could be considered as a quite generic DataOps pipeline
that can be generally applied to any DevOps process, after adaptation,
represented in Fig. 1 by the conditional diamonds modeling the presence
or absence of a specific step in the DevOps dataflow-DataOps pipeline.

– Generation: Each module of the DevOps pipeline generates a log
stream reporting its operation through a specific monitoring process.

– Collection: The generated logs are collected, reordered according
to their timestamps, and grouped altogether to provide a snapshot
of the whole DevOps process for each time interval.

– Filtering: Logs are then filtered to remove outliers, replicas, or ob-
servations that may contain errors or are undesirable for analysis.



8 Capizzi, Distefano, Mazzara

Generation

Collection

Filter

Stream 
Processing/

Analysis

Alert

Aggregation

Delivery

Preprocessing 
Ordering Grouping 
Fusion Cleansing

Storage Update 
Archive

Batch 
Processing/

Analytics

Alert

Fig. 1. DevOps dataflow pipeline

Logs filters are usually based on temporal statistics, i.e. based on
previously logs average or similar statistical moments.

– Stream processing, analysis and alerting: The processing of
single logs streams is locally performed in nearly real-time to iden-
tify potential flaws, defects or errors in a particular DevOps pipeline
stage. In such cases, warning, error messages or activities are trig-
gered by the alerting tool.

– Aggregation: The logs are aggregated and expressed in a summary
form for statistical analysis. The main goal of the aggregation is to
compress the volume of data.

– Delivery: The logs are made available to end-users and applications.
This data is typically transmitted through networks using related
protocols to physical and virtual servers.

– Preprocessing, ordering, grouping, cleansing, and fusion:
The logs are reordered according to their timestamp and grouped
to provide a snapshot of the DevOps process at each time inter-
val. Next, the logs have to be cleaned, that is, having redundancies
removed and being integrated with different sources into a unified
schema before storage. The schema integration has to provide an
abstract definition of a consistent way to access the logs without
having to customize access for each log source format. Still during
the preprocessing stage, logs undergo through a fusion process aim-



From DevOps to DevDataOps: Data Management in DevOps processes 9

ing to integrate multiple sources to produce a more consistent and
accurate information.

– Storage, update and archiving: This phase aims the efficient
storage and organization as well as a continuous update of logs as
they become available. Archiving refers to the long-term offline stor-
age of logs. The core of the centralized storage is the deployment of
structures that adapt to the various data types and the frequency of
the capture (e.g. relational database management systems).

– Processing and analytics: Ongoing retrieval and analysis oper-
ations on stored and archived logs, mainly offline for root cause
analysis, to identify any correlation among stages, predict behaviors
and support decisions. Analytics is the discovery, interpretation, and
communication of meaningful patterns in data in the logs and can
be performed at different levels with different objectives: descriptive
(what happened), diagnostic (why something happened), predictive
(what is likely to happen) and prescriptive (what action to take).

4.2 DataOps implementation

The DevOps dataflow pipeline should be then implemented according to
a DataOps approach, as reported below

Build - To implement the DevOps dataflow pipeline of Fig. 1 in a
DataOps fashion, following the process described in Section 2.2, we have
to start with building the toolchain, thus identifying the tools associated
with each of the pipeline step. In this case, the real benefit of adopt-
ing BigData solutions in DataOps is clearly manifested: this way, the
DevOps dataflow pipeline of Fig. 1 can be just considered as a BigData
workflow to be deployed exploiting a tool among the plethora available to
manage BigData workflow (Hadoop, Spark, Storm, Flink, Samza, NiFi,
Kafka, NodRed, Crosser.io, to name but a few). Mainly belonging to the
Apache (big) family, they allows to define and manage BigData work-
flows composed of different tasks or processes, highly customizable and
configurable, then linked through specific mechanisms and tools able to
enforce the workflow topology, or even to further parallelize and optimize
it.

Execute Once built as a BigData workflow, the DataOps toolchain needs
to be deployed and executed. At this stage, therefore, automation tools
such as Jenkins and deployment tools such as Docker or Jupiter could be
used to support and further automate the BigData one, by for example
containerising tasks or connecting them with tools (monitoring) external
to the BigData workflow. Usually, the target deployment infrastructure
for a DataOps toolchain is the Cloud, public as Microsoft Azure and
Amazon EC2, or private such as those managed locally by OpenStack or
similar middleware.

Operate The operation stage is mainly tasked at providing a feedback
on the DataOps toolchain to the DataOps engineers that have to tune it



10 Capizzi, Distefano, Mazzara

based on this feedback. Both the process and the underlying infrastruc-
ture running the toolchains have to be monitored. Metric of interest to
be benchmarked in this case could be system parameters (CPU, memory,
storage utilization), process non functional properties (response time, re-
liability, availability, energy consumption), or even specific V properties
(volume, velocity, variety, etc, see Section 3) In this step, tools for moni-
toring such as Prometheus or Nagios, and for managing the infrastructure
such as Chef, Puppet etc. can be exploited.

5 Conclusions

DevOps is a modern approach to software development aiming at accel-
erating the build lifecycle via automation. Google, Amazon and many
other companies can now release software multiple times per day mak-
ing the old concept of “release” obsolete. Data is at the centre of all the
DevOps process and requires BigData solutions to be managed. Despite
of the growing importance of DevOps practices in software development,
management of the data generated by the toolchain is still undervalued,
if not entirely neglected.
In this paper we investigated this cutting-edge aspect of software de-
velopment identifying related issues, challenges and potential solutions.
Solutions do not need to be entirely new since large literature has been
already published in the field of BigData. This emerging field of research
is often referred to as DataOps. While DevOps was created to serve the
needs of software developers, DataOps users are often data scientists or
analysts.
The current work has just started scratching the surface of such a com-
plex subject, and in the limited space could not explore all the detailed
aspects of analytics. One of the project on which our team is working at
the moment is the analysis of data generated by the DevOps toolchain
in order to identify anomalies in the incoming releases [14]. The same
idea can be applied to Microservices monitoring, and this is exactly our
next goal towards NoOps.

References

1. L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional, 1st ed., 2015.

2. M. Kersten, “A cambrian explosion of devops tools,” IEEE Software,
vol. 35, pp. 14–17, mar 2018.

3. V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing
buzzword?-mapping research on security in devops,” in 2016 11th
International Conference on Availability, Reliability and Security
(ARES), pp. 542–547, IEEE, 2016.

4. M. Burgess, E. Garduno, S. P. Kavulay, J. Tan, R. Gandhi,
P. Narasimhan, R. Farrow, D. Lang, M. K. McKusick, J. Springer,
et al., “Is devops the future of sysadmin?,” Usenix.org login:, vol. 38,
no. 2, 2013.



From DevOps to DevDataOps: Data Management in DevOps processes 11

5. M. Sacks, “Devops principles for successful web sites,” in Pro Website
Development and Operations, pp. 1–14, Springer, 2012.

6. J. Hoffman, “How AIOps Supports a DevOps World.” https://

thenewstack.io/how-aiops-supports-a-devops-world/.

7. J. Lim, H. Lee, Y. Won, and H. Yeon, “Mlop lifecycle scheme
for vision-based inspection process in manufacturing,” in 2019
{USENIX} Conference on Operational Machine Learning (OpML
19), pp. 9–11, 2019.

8. H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He,
“A survey of current end-user data analytics tool support,” in
2018 IEEE International Congress on Big Data (BigData Congress),
pp. 41–48, IEEE, 2018.

9. J. Ereth, “Dataops - towards a definition,” 09 2018.
10. V. Kale, Big data computing: a guide for business and technology

managers. Chapman and Hall/CRC, 2016.
11. S. Protasov, A. M. Khan, K. Sozykin, and M. Ahmad, “Using deep

features for video scene detection and annotation,” Signal, Image
and Video Processing, vol. 12, pp. 991–999, Jul 2018.

12. K. Kontogiannis, C. Brealey, A. Giammaria, B. Countryman,
M. Grigoriou, M. Jimenez, M. Fokaefs, F. Kassam, and F. Borde-
leau, “2nd workshop on devops and software analytics for continu-
ous engineering and improvement,” in Proceedings of the 28th An-
nual International Conference on Computer Science and Software
Engineering, CASCON ’18, (Riverton, NJ, USA), pp. 369–370, IBM
Corp., 2018.

13. B. Chen, “Improving the software logging practices in devops,” in
2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pp. 194–197,
May 2019.

14. A. Capizzi, S. Distefano, E. Bobrov, L. J.P. Arajo, M. Mazzara,
and M. Ahmad, “Anomaly detection in devops toolchain,” in TO
APPEAR IN Software Engineering Aspects of Continuous Develop-
ment and New Paradigms of Software Production and Deployment
- Second International Workshop, DEVOPS 2019, Revised Selected
Papers, Springer, 2019.

https://thenewstack.io/how-aiops-supports-a-devops-world/.
https://thenewstack.io/how-aiops-supports-a-devops-world/.

	Lecture Notes in Computer Science
	1 Introduction
	2 DevOps and DataOps
	2.1 The DevOps process and toolchain
	2.2 DataOps

	3 DevOps data
	4 DevDataOps
	4.1 DevOps Dataflow Pipeline
	4.2 DataOps implementation

	5 Conclusions


