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Abstract

The blockchain technology started as the innovation that powered the
cryptocurrency Bitcoin. But in recent years, leaders in finance, banking,
and many more companies has given this new innovation more attention
than ever before. They seek a new technology to replace their system
which are often inefficient and costly to operate. However, one of the
reasons why it not possible to use a blockchain right away is because
of the poor performance. Public blockchains, where anyone can partici-
pate, can only process a couple of transaction per second and is therefore
far from usable in the world of finance. Permissioned blockchains is an-
other type of blockchain where only a restricted set of users have the
rights to decide what will be recorded in the blockchain. This allows
permissioned blockchains to have a number of advantages over public
blockchains. Most notably is the ability to split the network into seg-
ments where only a subset of nodes needs to validate transactions to a
particular application, allowing the use of parallel computing and better
scaling. Moreover, the validating nodes can be trusted, allowing the use
of consensus algorithm which offer much more throughput.

In this paper, we compare public blockchain with permissioned blockchain
and address the notable trade-offs: decentralization, scalability and se-
curity, in the different blockchain networks. Furthermore, we examine
the potential of using a permissioned blockchain to replace the old sys-
tems used in financial institutes and banks by launching a Hyperledger
Fabric network and run stress tests.

It is apparent that with less decentralization, the performance and scal-
ability of Hyperledger Fabric network is improved and it is feasible that
permissioned blockchain can be used in finance.
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1 Introduction

1.1 Background

Although still very much in an early stage, blockchain and distributed ledger solutions are
said to be able to transform the current financial infrastructure, especially the post-trade
side. Most notable of all applications of blockchain technology is Bitcoin, which is an open
decentralized network with an effectively immutable database of transactions, shared by all
full nodes in the network. The internal currency, bitcoins, is provided to miners who help
secure the network by participating in a computational-expensive consensus algorithm.

Since the beginning of Bitcoin, other similar solutions have appeared. Some are modified
forks of Bitcoin while some are built from scratch using the same ideas. Ethereum is a
network that expands the Bitcoin scripting language to be Turing complete with the hope of
enabling more complex applications to be run and verified by the nodes in the network[1].
These applications are commonly known as Smart Contracts and the increased flexibility
of the scripting language is expected to enable a large number of uses in finance. The Hy-
perledger project is an open source collaborative effort created to advance cross-industry
blockchain technologies[2]. It is a global collaboration including leaders in finance, bank-
ing, Internet of Things, supply chain, manufacturing and technology. Fabric is an implemen-
tation of blockchain technology that is intended as a foundation for developing blockchain
applications or solutions. It offers a modular architecture allowing components, such as
consensus and membership services, to be plug-and-play. It leverage container technol-
ogy to host smart contracts called ”chaincode” that comprises the application logic of the
system[3].

With a more complex solution comes many additional challenges. For example, if no special
techniques are applied, every node in the network will verify every transaction. This puts
a limit on how many smart contracts can be processed in each block, and in turn how large
a smart contract application can be before it affects the overall performance of the network
too much. If we want to take functions provided centrally today, for example by exchanges
and clearing houses, and put them in a blockchain network, it is necessary that we find
ways to remove or handle these limitations. It is also necessary that we are aware of the
current limits in performance when creating smart contracts when evaluating potential uses
of applications run in a blockchain network.

1.2 Thesis goals

The purpose of this thesis is to evaluate different blockchain networks with focus on per-
formance and scalability. We will examine what scalability issues Bitcoin will eventually
have to face as well as Ethereum’s interesting solutions to their scalability issues. Mean-
while other types of blockchain networks which are more centralized, e.g. permissioned
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networks, do not have the same scalability issues as public network. However, this means
that permissioned networks will not have the same degree of decentralization as a public
network would have. This dilemma we are examining now reminds us of the CAP theo-
rem, which states that it is impossible for a distributed computer system to simultaneously
provide more than two out of three of the following guarantees: Consistency, Availability,
and Partition tolerance. In the sense of a blockchain network, this translates to: Decentral-
ization, Scalability, and Security. Since this technology is young we are still learning and
trying out new techniques that could provide a blockchain network that is decentralized,
scalable, and secure.

More specifically, this paper aims to:

• Provide an analysis of the benefits and drawbacks of Bitcoin, Ethereum and Hyper-
ledger Fabric in regards to performance and scalability, and address the three-way
trade-off between decentralization, scalability and security

• Address the possible requirements needed for applications that will run on a blockchain
network

• Outline where performance constraint can exist in Hyperledger Fabric when tested
with use cases found within the finance industry, and how does different network
configuration affect the system’s performance

• Outline current techniques to improve performance on applications running on Bit-
coin or Ethereum

• Address whether these techniques could improve the performance of Hyperledger
Fabric

• Address the limitations of blockchain networks have compared to traditional central-
ized solutions in regards to performance
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2 Blockchain technology

A blockchain is a special kind of distributed database. A distributed works well when
all entities trust each other and do not want to keep duplicate records of the same data.
Blockchain however, comes into play when the entities cannot trust each other, that is,
there is no single entity in control and we need a magical database that is: Distributed and
decentralized. A block contains transactional data and they can be thought of as a page of a
ledger. Each block also contains a timestamp and a hashed link to a previous block, creating
a chain of blocks. By design, blockchains are resistant to modification of data; once a new
entry has been recorded, the data in that block cannot be altered retroactively[4]. Moreover,
older blocks cannot be altered without breaking the chain to every block that is recorded
afterwards. If an attacker would attempt to modify a block, he would have to change all
blocks that happened afterwards to the most recent block. This attack is very difficult to
achieve and will be explored in more detail later in this chapter.

The true utility of the blockchain is through the use of a peer-to-peer network. When the
blockchain is distributed over a network of nodes, each node can validate the actions of other
nodes, as well as the ability to create, authenticate and verify new transaction to be recorded
onto the blockchain. The network itself incentives the nodes to enforce the protocol or the
law of the blockchain for all other nodes by rewarding those who do it right, and ignoring
those who do it wrong. Invalid data submitted by a node will be discarded by all other nodes
and will not be recorded onto the blockchain.

The Blockchain can be thought of as a single shared truth and it is secure by design. The
nodes run the same software and manage the same data, therefore, they can fail without
consequences. It is an example of a distributed computing system with high Byzantine
fault tolerance that enables trustless consensus. This makes blockchain suitable for the
recording of events, digital assets and stocks, cryptocurrency, voting system, etc., without
being controlled by powerful forces.

2.1 Merkle tree

A Merkle tree is a way of hashing a larger chunk of data into a single hash (Figure 2.1.1).
A block holds batches of valid transactions that are hashed and encoded into a merkle tree.
Merkle trees are a fundamental component in the blockchain technology. With it, each
block in the blockchain contains a summary of all the transactions in the block. Although
it is theoretically possible to create a huge block that directly contains every transaction in
the header. But doing so poses large scalability challenges that arguably puts the use of
blockchains out of reach of all but the most powerful computers. Merkle trees allow small
and simple smart phones, laptop and even internet of things device, to powerful computers
to run a blockchain.
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Figure 2.1.1: An illustration of a Merkle tree

The tree is constructed bottom-up. The leaves in the tree are hashed transactions from
a single block. Consecutive pairs of leaf nodes are then summarized in a parent node,
by concatenating the two hashes and hashes them together, until there is only one hash,
called the merkle root. Then using a neat mechanism known as Merkle proofs, devices can
download the chain of block header, 80-byte chunk of data in bitcoin for each block, and
verify that a certain transaction is recorded in the blockchain. A light client is a client that
can only download the chain of block headers and they can verify the hashing for a branch
is consistent going all the way up the tree, and therefore the given transaction is at that
position in the tree[5].

2.2 Bitcoin: A Peer-to-Peer Electronic Cash System

The first blockchain was conceptualized by an unknown author under the pseudonym Satoshi
Nakamoto in 2008 with the publication of the white paper Bitcoin: A Peer-to-Peer Elec-
tronic Cash System[6]. The Bitcoin network combines several cryptographic components
to create a Peer-to-Peer(P2P) payment system today known as cryptocurrency, which allows
for true peer-to-peer exchange of value without the need of a trusted intermediary.

Bitcoin transactions are sent from and to Bitcoin wallets, and are digitally signed using
private keys. The digital bitcoin does not exist at one’s account in the same way dollars are
held in a bank account, only records of bitcoin transaction exists. Bitcoin wallets store the
private key that is required to access your bitcoin from a transaction and to spend your funds.
This model is known as a UTXO which is an abbreviation for Unspent Transaction Output,
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meaning, transaction in which bitcoins were transferred to the user that has not yet been
spent. All input to a transaction must be one or more UTXO available in the blockchain
for it to be valid. It is possible that inputs can be invalid if either the transaction is trying
to double-spend some bitcoin that were already spent or the transaction is trying to spend
bitcoin that does not exist. To know a key in this sense is analogous to owning bitcoins, and
loosing a private key essentially means that the bitcoin on that key is gone forever.

A user sends bitcoins by creating a bitcoin transaction and selects a set of UTXO as input
and the amount of bitcoin the user wishes to transfer to each party as output. Transactions
can also have multiple outputs to pay multiple parties. Also, if the combined amount of
bitcoins in the input is more than the output, another output can be used to send bitcoins
back to the user. If the input is worth 10 BTC but the user wants to send only 5 BTC,
Bitcoin will create two outputs worth 10 BTC: one to the destination, and one back to the
user (Figure 2.2.1). Any remaining input bitcoins not redeemed in an output is considered
a transaction fee; whoever generates the block will get it. A valid transaction must have a
greater or equal amount of bitcoins in the input as in the output. The output is addressed
using the bitcoin address, which is in this sense is equal to the public key. The user then
signs the transaction with the private key associated with the UTXO’s and the transaction is
then broadcasted to the Bitcoin network.

Figure 2.2.1: Bitcoin transaction using output from other transaction as input

2.2.1 Consensus model

The transaction recorded in a block is decided by the miner that generated the block. A
miner that generated a block receive the cumulative amount of fees from transaction as well
as a special transaction that is always the first transaction appearing in every block, known
as a block reward, that they can credit to their own wallet. The block reward transaction
is how new bitcoins are created in the system. In order to generate a new block and claim
this reward, miners must compete to solve a difficult mathematical puzzle, an answer that is
unique to each block, also known as a nonce. A block cannot be submitted to the blockchain
without the correct answer. Having the correct answer is what is known as the Proof-of-
Work that creates a distributed trustless consensus and solves the double-spend problem[6].
Proof-of-Work is a piece of data which is costly and time consuming to produce but easy for
others to verify. To find the correct answer, a miner must hash to a value less than the current
target. The difficulty of this work is adjusted to limit the rate at which a new block can be
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generated by the network to one block every ten minutes. The networks hash rate is what
dictates if the difficulty has to increase. The more miners that join the Bitcoin network, the
higher the network hash rate is. Due to the very low probability of successful generation,
this makes it unpredictable which miner in the network will be able to generate the next
block. This creates an arguably fair distribution of Bitcoin. Each block contains the hash of
the preceding block, thus, the blockchain contains a immense amount of work. Changing a
block by making a new block referencing the same predecessor requires regeneration of all
successor and redoing the immense work they contain. This protects the blockchain from
tampering.

Since it takes time for a newly generated block to be propagated through the network, there
is a probability that another miner have found the right answer and generated a block as
well. Each miner will mine onto which ever block they received first, creating a fork in
the blockchain (Figure 2.2.2). Honest miners only build onto the longest valid chain since
the block reward and transaction fees are only redeemable if the block is part of the longest
chain. The probability that the divided miners on the separate chains continue to solve
blocks simultaneously diminishes with each mined block, to the point where one chain
eventually overtakes the other chain, and that chain is dropped. Miners would not risk
trying to solve a block that may not be a part of the longest chain. This creates an incentive
for miners to work towards a single version of the blockchain.

Figure 2.2.2: The purple blocks are ”orphan” blocks while the black blocks are the longest
validated blockchain. The green block is called the ”genesis block”, the first
block in the blockchain.

When blocks are not part of the conventional blockchain they are known as orphaned blocks.
It means that the blocks were successfully mined but are not included on the current longest
chain, likely because some other block at the same height had it’s chain extended first.
Orphan block could easily be confused with stale blocks, which are blocks that already have
a valid successor[7][8]. In the graph above, all black blocks are stale except the most recent
one. Mining on a stale block is considered bad since it is mining on old data, which will be
a waste of energy and money because the block will not be included in the blockchain.

Transactions that are broadcast to the network are collected by the miners and added to the
block they are trying to solve. When a new block is generated with correct answer, the
newly created block is propagated into the network containing a set of transaction which
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the miner has collected. A transaction fee is necessary to include because miners prioritize
transaction with higher fees to be recorded in the next block since not all transaction in the
pool of transaction might not fit inside a block. The block rewards is an incentive for miners
to continue generating blocks and the transaction fee is an incentive for the miner to include
the transaction in their block. In the future, as the amount of new bitcoins created from a
new bitcoins decreases, the fees will make up a much more important percentage of mining
income to secure the network. The block reward started at 50 BTC in the first block and
halves every 210,000 blocks. This means that block number 210,001 and onward rewards
25 BTC. Since blocks are mined on average every ten minutes[9], 144 blocks are generated
each day on average. At 144 blocks per day, 210,000 blocks take on average four years to
mine. The block reward will continue to be halved until a total of 21 million Bitcoins are
produced, then the block reward will stop and no more Bitcoins will ever be produced.

The Proof-of-Work of Bitcoin allows anyone with a processing unit to participate in the
competition of creating new blocks. It introduces bitcoins into the network in a steady pace
using an arguably fair distribution mechanism. It makes the blockchain tamper-resistant due
to the immense work needed to change a block and allows for a consensus mechanism that is
resistant to Sybil attacks. Although the Proof-of-Work of Bitcoin accomplishes these tasks,
they are still vulnerable to certain attacks. Since all miners in the networking are continu-
ously completing new Proof-of-Work and try to always generate block on the longest chain
because it is in their self-interest. However, an attacker could manipulate the public ledger
at will by controlling >50% of the hash rate, commonly known as a 51% attack or majority
hash rate attack. The attacker would not have complete control over the network[10].

There is only a couple of things that can be achieved with 51% of the network hash rate.
The attacker could prevent transactions of their choosing from gaining any confirmation,
thus preventing users from sending bitcoins between addresses. A confirmation is when a
transaction is verified and recorded in a block that is included the the blockchain[11]. When
potential loss due to spending is high, as most exchanges and other merchant, requires the
transaction to be six blocks or more deep before the transaction is confirmed. For inexpen-
sive or non-fungible items, it is common to complete the exchange as soon as the transac-
tion is seen on the network. The attacker could reverse transaction they send during the time
they are in control, allowing for double-spend transactions. In reality a 51% attack from a
small group is impossible considering the hash rate of the network is at the time of writing
2,989,368 TH/s(Tera hash per second) or 37,964,981 PetaFLOPS/s[12]. Comparing with
fastest supercomputer in the world, the Sunway TaihuLight, with 125 PetaFLOPS/s[13].
The comparison with the supercomputer is not really fair since the mining network uses
ASICs(Application Specific Integrated Circuits)[14] that are much more efficient than gen-
eral computing circuits, but it gives an idea of how powerful the mining network is. If an
attacker wants to control more than 50 percent of the hash rate, the attacker has to purchase
huge amount of ASICs to compete with the current hash rate. Antminer S9 is the most
cost-effective mining hardware with a cost of around $2,400 for a hash rate of 14 TH/s[15],
and this is not counting the cost of electricity. The price to compete with the current hash
rate for a small group of attackers is too much. However, today’s mining is done in groups
of cooperating miners who agree to share the block reward and transaction fees, these group
are known as mining pools. A 51% attack is feasible if the four biggest mining pools col-
laborate in the attack[16].
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2.3 Ethereum

Ethereum is an open source platform to build and distribute the next generation of decen-
tralized applications[17][18]. Applications where there is no middleman, where user inter-
act with social systems, financial systems, gaming interfaces, all in peer-to-peer fashion.
Ethereum provide a blockchain with a built-in Turing-complete programming language that
can be used to create smart contracts and to encode arbitrary state transition functions,
allowing users to create any of the system described above, as well as other applications
not yet imagined. Simply put, Ethereum takes the core blockchain technology that Bitcoin
conceptualized and evolves it. Everything Bitcoin can do, store money, sending/receiving
payments, Ethereum can also do but does it more efficiently.

2.3.1 Smart contracts

Smart contracts are programs written in Solidity[19], a smart contract specific language,
which compiles to EVM (Ethereum Virtual Machine) opcodes. Contracts are defined by
their creators, but their execution, and by extension the services they offer, is provided by
the Ethereum network itself. They exist in the network and can be executable as long as
the network itself continues to exist, and will only disappear if they are programmed to
self destruct. Solidity provides a more expressive and complete language than Bitcoin for
scripting. It is a Turing complete language capable of holding objects on the Ethereum
blockchain, interact with other contracts, make decisions, store data, and send ether to
others. Ether is the necessary element that is used as fuel for operating application on
Ethereum. It is a form of payment made by clients to the machines executing the requested
operations[20].

2.3.2 EVM

The EVM can be thought of as a distributed global computer where all smart contracts are
executed. Given that every smart contract in the network is executed on every machine, there
has to be a mechanism to limit the amount of resources a smart contract can use. Ethereum
uses two additional fields in a transaction known as STARTGAS and GASPRICE. STARTGAS is
value representing the maximum number of computational steps the transaction execution is
allowed to take. GASPRICE is a value representing the fee the sender pays per computational
step, this value is the amount of ether per gas the sender is prepared to pay. For example, if
A sends a transaction to B with 2000 gas and 0.001 ether gasprice, 2000 * 0.001 = 2 ether,
then 2 ether is subtracted from A’s account. Although it might not be necessary to use up
all the gas. If the operation on a contract finishes with some gas remaining, what is left is
computed back to ether using the gasprice and sent back to A’s account. If the sender did
not have enough ether, or the code execution ran out of gas, revert all state changes except
for the payment of the fees. Most computational step costs one gas, the cost varies depends
on how expensive the computation is or increased amount of data to be stored as part of the
state. There is also a fee of five gas for every byte in the transaction data. The STARTGAS
and GASPRICE fields are crucial for Ethereum’s anti-denial of service model. These two
values prevent accidental or hostile infinite loops or other computational wastage in code.
The intent of this system is to require the attacker to pay proportionately for every resource
they consume, including computation, bandwidth and storage.
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2.3.3 Accounts

In Bitcoin, user’s balance are stored in the structure based on UTXO described earlier,
whereas the state of Ethereum is made up of objects called ”accounts”. Each account having
a 20-byte address and state transition being direct transfer of value and information between
accounts. An account can be divided into two types: externally owned accounts, controlled
by user with their private key, and contract accounts, controlled by their code. An Ethereum
account contains four fields:

• The nonce, a counter to make sure each transaction can only be used once.

• The account’s current ether balance

• The account’s contract code, if it is a contract account

• The account’s storage

An externally owned account has no code, and one can send messages to other externally
owned accounts or contract account by creating and signing a transaction. An contract
lives inside the Ethereum execution environment, execution specific code when receiving
messages or transactions, and managing their own account. Messages are somewhat similar
to transactions, but the key differences are that messages are produced by a contract and not
an external actor. A message is produced when a contract wants to invoke code on another
contract. A message contains:

• The sender of the message (implicit)

• The recipient of the message

• The amount of ether to transfer alongside the message

• An optional data field

• A STARTGAS value

A transaction on the other hand refers to the piece of data, signed by an external actor.
There are three type of transactions: contract creation transaction, normal transaction with a
regular ether transfer and message call transaction to a smart contract. Transactions contain:

• The recipient of the message

• A signature identifying the sender

• The amount of ether to transfer from the sender to the receiver

• An optional data field

• A STARTGAS value

• A GASPRICE value
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The Ethereum blockchain tracks the state of every account, and all state transition function
transfers value and information between accounts. Each block contains a copy of the trans-
action list and the most recent state. Storing the state of every account with every block
may seem highly inefficient at first glance, but handled by a special kind of tree known as
a ”Patricia tree”. The state is stored in a tree structure, and since after every block, only a
small part of the tree needs to be changed. Between two adjacent block, the vast majority of
the tree stay the same, and therefore the data can be stored once and then referenced using
pointers. A modified merkle-patricia-tree is used to accomplish this.

2.3.4 Consensus model

Mining in Ethereum works the same as in Bitcoin[21]. Miners produce blocks that is only
valid if it contains a proof-of-work of a given difficulty. Ethereum uses a different hashing
algorithm than Bitcoin called ”Ethash”[22] and the difficulty dynamically adjusts so that
on average one block is produced by the network every 15 seconds. Ethash PoW is mem-
ory hard, making it basically resistant to highly efficient application-specific integrated cir-
cuits(ASIC). The mining rewards are similar to Bitcoin, the successful proof-of-work miner
of the winning block receives:

• A static block reward, consisting of five ether

• All of the gas consumed by the execution of all the transaction within the block is
compensated for by the senders

• An extra 1/32 of the static block reward per uncle included as part of the block

Since the block time is low relative to Bitcoin’s block time, there is a higher chance that
a miner will working on a stale block. A protocol called ”GHOST” (Greedy Heaviest
Observed Subtree) was introduced as a way of combating the way that fast block time
suffers from a high stale rate[23]. Because blocks take a certain time to propagate through
the network, if miner a mines a block and then miner B happens to mine another block
before A’s block propagates to B, B’s block will end up wasted and will not contribute to
the network security. GHOST solves this issue by including stale blocks in the calculation
of which chain is the ”longest”, known as uncles(Figure 2.3.1). Ethereum does more with
uncles by rewarding the miner of the uncle that are included in a block with 87.5% of the
static block reward. A block can only include uncles up to seven generation to avoid having
unlimited uncles.
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Figure 2.3.1: When B2 is mined, the B branch is selected as the best chain, since C1 is
included as an uncle and counts as another block in the branch weight.

2.3.5 Token systems

Ethereum as a platform to distribute decentralized applications is much more powerful in
the way that it is not limited to only a cryptocurrency. There are three types of applications
on top of Ethereum. The first category is financial applications, proving users a way to
manage and entering into contracts using their money. This includes sub-currencies, finan-
cial derivatives, hedging contracts, savings wallets, wills, and maybe even some classes of
full-scale employment contracts. The second category is semi-financial applications, where
money is one part of the application but it also involves a non-monetary part to what is be-
ing done. For example a self-enforcing bounties for solutions to computational problems.
Finally, there are applications such as online voting and decentralized governance that are
not financial at all[24].

Token systems are used in many applications ranging from sub-currencies representing as-
sets such as USD or gold to company stock, individual tokens representing smart prop-
erty, that is, property whose ownership is controlled via the blockchain, secure unforgeable
coupons, and even token system with no ties to conventional value at all which is used as
point system for incentivization. Token systems are easy to implement in Ethereum since all
that a currency, or token system is, is only a database with one operation: subtract X from
A and give X units to B. With a condition that A had at least X units before the transaction
and the transaction is approved by A. For example a simple hedging contract would look as
follows:

1. Wait for party A to input 1000 ether

2. Wait for party B to input 1000 ether

3. Record the USD value of 1000 ether, this value can be retrieved from a ”data feed”
such as NASDAQ, let this value be $x
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4. After 30 days, allow A or B to ”reactive” the contract in order to send $x worth of
ether to A and the rest to B. The new value of x is again retrieved from a data feed.

2.4 Hyperledger Fabric

Hyperledger Fabric is an implementation of a specific type of permissioned blockchain net-
work on which members can track, exchange and interact with digitized assets by using
transactions that are controlled by chaincodes, which is the piece of code that is installed
and instantiated onto the network of Hyperledger Fabric peer nodes, enabling interaction
with that network’s shared ledger. A permissioned blockchain means that any node is re-
quired to maintain a member identity on the network. Even end users must be authorized
and authenticated in order to use the network. Participants in the network can interact in a
manner that ensures that their transaction and data can be restricted to an identified subset
of network participant, known as a channel. The members in the channel has the ability
to establish a shared ledger containing digitized assets and recorded transaction only avail-
able to the members in that channel. There is only one ledger per channel. The ledger is
comprised of a blockchain, as well as a state database to maintain current state. The state
database represents the latest values for all keys ever included in the blockchain. Nodes exe-
cute transaction against the current state to make chaincode interactions extremely efficient.
Besides, the blockchain can be stored on nodes file system whereas the state database can
reside in memory for fast access. The state database can simply get recovered (or generated
if needed) upon node startup, by reading the blockchain from the file system[2].

The Hyperledger Fabric architecture is comprised of the following components: peer nodes,
ordering nodes and client applications. These components have identities derived from
the certificate authorities. A peer can have two roles; a peer is called a committer when
maintaining the ledger by committing transactions, and a peer is called endorser when it is
responsible for simulating transactions by executing chaincodes and endorsing the result.
Peers are not limited to a single role. A peer may be an endorser for certain types of trans-
action and just a committer for others. The ordering nodes decides the order of transactions
in a block to be committed to the ledger. The ordering service can be implemented as a
centralized or decentralized service. There are a few implementations of the ”ordering”
function available, e.g. Kafka for crash fault tolerance, or sBFT/PBFT for byzantine fault
tolerance. Developers can also implement their own protocol to plug into the service. The
work done by peer and ordering nodes are roughly the same kind of work that miners do in
the other blockchain architectures.
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2.4.1 Transaction flow

Figure 2.4.1: Illustration of one possible transaction flow.

The basic workflow of a transaction in a Hyperledger Fabric blockchain begins by two or
more participant, such as a company or organization that creates and joins a channel. Ini-
tially the members in the channel agree on the terms of the chaincode that will govern the
transaction as well as the policies governing the channel membership. When a consensus is
reached on the proposal to deploy a given chaincode, it is committed to the ledger. Now a
end user with the right privileges can propose transaction to endorsers in the channel that ex-
ecutes the chaincode (Figure 2.4.1). The endorsing peer verify the signature of the proposal
and determines if the client is authorized to perform the proposed operation. Endorsers
use the transaction proposal as input and execute them against the current state database
to produce a transaction result. The transaction result includes a response value, read set,
and write set. No updates are made to the ledger at this point. The transaction result along
with the endorsing peer’s signature and a YES/NO endorsement statement are passed back
to the client. The client ensures that the results from the endorser are consistent and signed,
and send the transaction, comprised of the result, endorsement, and the channel id, to the
ordering service. The ordering service does not read the transaction details, it simply orders
transactions by channels as First-Come-First-Served basis into a block which is then sent
to the peers to be committed to the ledger. The committer nodes validate the transactions
within the block to ensure endorsement policy is fulfilled and to ensure no changes has been
made to the read set variables in the ledger state. Each transaction in the block are tagged
as being valid or invalid and when the peer appends the block to the channel’s blockchain;
only the write sets of valid transaction are committed to the current state database[25].

2.4.2 Read and write set semantics

When an endorser simulates a transaction, a read-write set is created for the transaction.
During simulation, the endorser records what keys are used from the state database to read
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their value as well as their committed versions of that value. A list of the keys and their
committed version are contained in the read set. The write set contains a list of keys and
their new values that the transaction writes. Instead of the new value for a key, a delete
marker can be set if the update performed by the transaction is to delete the key.

Following is an illustration of a read-write set prepared by simulation of a transaction.

<TxReadWriteSet name"channelId">
<read -set >

<read key="K1", version="1">
<read key="K2", version="1">

</read -set >
<write -set >

<write key="K1", value="V1"
<write key="K3", value="V2"
<write key="K4", isDelete="true"

</write -set >
</TxReadWriteSet >

After the transactions are ordered in a block, the committer iterates through the block and
checks the validity of each transaction. A transaction is considered valid if the version of
each key in the read set matches the version for the same key in the world state, i.e. the
current state database. If a transaction passes the validation check, the committer uses the
write set to update the world state and the version of the key is changed to reflect the latest
version[26].

2.4.3 Endorsement policy

Endorsement refers to the process where endorsing peer nodes execute a transaction and
return a YES/NO response to the client application. The endorsement policy defines all the
peers that must execute transactions attached to a specific chaincode, as well as the required
combination of endorsements. The policy is used to instruct a peer on how to decide whether
a transaction is properly endorsed. A policy could require endorsement from a minimum
number of endorsing peers, a percentage of endorsing peers, or by all the endorsing peers
in the channel[27][28].



17(41)

3 Method

3.1 Network topology

There are two version of Hyperledger Fabric that can be used for tests: version 0.6 and
1.0. The older version, v0.6, is the only stable release at the moment. The architecture of
v0.6 has a few differences compared to v1.0, and most notably is how functions are further
separated into more roles. In v0.6, there is only a validating peer and a non-validating
peer, whereas in v1.0, there are: endorsing peers, committing peers, and a ordering service.
Several significant issues with the architecture of v0.6 was already recognized and are now
being addressed in v1.0. For this reason, a decision was made to not use v0.6. Despite
being the only stable version which has the tools to monitor and stress test the system that
could certainly help in this thesis. Besides, the results the tests would produce would reveal
the same kind of issues already recognized and addressed by the developers. Thus, the
conclusions would only confirm what has already been addressed to a version that is no
longer relevant. For this reason, v1.0 is the sensible version to use in the tests.

Version 1.0 is, however, not finished yet but an alpha version has been released with the
functionality needed for this thesis. The problem with v1.0 is the lack of documentation and
tools to monitor and stress test the system. With that being said, it was possible to ask the
developers and other experienced users how things worked and if you have problems they
could help out. Without proper monitoring and stress testing tools, a simple implementation
of client that sends request is created, and using the logs to monitor the system.

To start up a fully-functioning transactional network with Hyperledger Fabric there is a
couple of fundamental tools that we need to use first.

1. Prerequisites

• Docker - v1.12 or higher
• Docker Compose - v1.8 or higher
• Docker Toolbox - Windows users only
• Go - v1.7 or higher
• Git Bash - Windows users only

2. Chaincode. The chaincode, which is the self-executing logic that encodes the rules
for specific types of network transactions. It can be written in Java or Go, but Go
is currently more supported than Java, thus, the chaincode is written in Go. The
chaincode used in the tests is a simple payment of digital assets from account A to
account B. The purpose was to create a simple application found in finance that is not
too computational expensive. The reason is that applications that are running slow
on the local computer will without a doubt run slow in a Hyperledger Fabric network
and there is not much interest in that. What is more interesting to test is how different
configuration of the network affect the performance.
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3. Java SDK and Hyperledger Fabric. A client is created to perform a stress test of the
network, which involves: installing chaincode, instantiating accounts, and then send
thousands of invoke-request to the network. The invoke-request moves assets from
account A to account B, or more specifically, it subtracts X amount from account A
and adds X to account B. The Java SDK used in the client is in development as well
and the SDK is only compatible with a certain commit-level of Hyperledger Fabric.
The commit-level that were used during the test are:

• Java SDK: 1b6a996f3bb60b06c944cdd4c03ebef8910c7b4f

• Hyperledger Fabric: 96b1b901ce2f2f3800a554e4a56c9568954633d5

• Hyperledger Fabric-ca: 3b8932ac46e9779b6d1e9aae456816019460bf73

Docker images are then created from Fabric and Fabric-ca by issuing make docker
command in their respective directories. The images are then used to launch peers,
orderers, a Certificate Authority(CA), or any other Fabric components in docker con-
tainers.

4. Docker network configuration. Docker Compose was used to launch our vari-
ous Fabric component containers, as this is the simplest approach. In the docker-
compose.yaml-file we can define the services and environmental variable that will be
launched with the following command: docker-compose up. This was a helpful tool
to configure and launch several endorsers with a single command. An example of a
docker-compose.yaml-file can be seen in the Appendix A.1

5. Cryptogen-tool. This tool is used to generate the crypto material. Recall that every
entity in the network must be a member and identifiable; this tool generates the cer-
tificates and keys for the peers and orderers to digitally sign transactions and prove
their membership. The tool can be found in fabric/common/tools/cryptogen.

6. Configtxgen-tool. The second tool is used to create our first block in the blockchain,
i.e. the genesis block for bootstrapping the orderer and a channel configuration arte-
fact. The channel configuration artefact are defined by a configtx.yaml-file, which
contains the definition of our sample network and present the topology of the net-
work components. The channel configuration used in the test can be seen in the
Appendix A.2

7. Endorsement policy. Endorsing policy are used to instruct a peer on how to decide
whether the transaction is properly endorsed. An example of a endorsing policy is
as following: AND(’Org1.member’, ’Org2.member’) requires 1 signature from

a member i Org1 and a member in Org2. OR(’Org1.member’, ’Org2.member’)
requires 1 signature from either one of the two members. For critical transactions, e.g.
channel configuration transaction, you would probably want endorsement from a ad-
ministrator with: AND(’Org1.admin’, ’Org2.admin’) . The endorsement used
in the test are simple since it does not affect performance. A small Go program in Ap-
pendix A.3 creates a binary file with the endorsing policy: AND(’Org1.member’) .
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4 Result

4.1 Techniques to improve performance and scalability

The different blockchain networks have their own performance and scalability issues. It
is mostly due to the implications a public blockchain has compared to a permissioned
blockchain. Bitcoin is the public blockchain with the most complicated scalability prob-
lem and also the most constrained protocol to change. Ethereum can be implemented as a
public blockchain as well as a permissioned blockchain. Both types of Ethereum have dif-
ferent benefits and drawbacks. Hyperledger fabric is only implemented as a permissioned
blockchain. What impact does a public blockchain have on performance and scalability
compared to a permissioned blockchain? Permissioned blockchains have the advantage to
configure the network to allow parallelism whereas public blockchain struggles to partition
the network to even make it possible for parallel execution. The problem is really com-
plicated when you consider that no single entity can decide how the network should be
partitioned.

The following sections describe techniques to improve performance and scalability in Bit-
coin, Ethereum, and Fabric.

Bitcoin

The increasing adoption of cryptocurrencies has raised concerns whether their ability to
scale is sufficient. Bitcoin’s ability to scale is restricted since its highest transaction through-
put has effectively peaked at maximum block size divided by block interval. In recent years
the block size has been rapidly filled up towards 1 MB sizes but now in 2017, every gener-
ated block has reached the maximum of 1 MB, effectively limiting the transaction through-
put to 2-4 transaction/sec. If we look at the current wallet-users which at the time of writing
are around 11,8 million user[29], each user can only send around 10 transaction every year1.
Only ten transaction each year does not allow for any adoption in the financial services and
not even near the possibility to allow microtransactions on the blockchain. What if there
are 100 million users? This means that each user could only send one transaction each year,
which is not sustainable in the economics sector. Without a solution to blockchain con-
gestion problem, transaction on the blockchain will continue to be delayed, and transaction
fees will continue to increase, thus, it cannot cover the world’s commerce anytime in the
near future.

The block size cap was set to 1 MB by Nakamoto in 2008 when the white paper was pub-
lished. Miners can solve blocks that can be more than 1 MB, but they will be invalid to
the rest of the network. This limit can not be raised without a hard fork. This means that
nearly all miners need to agree to adopt the new block size, which has been a long debate

14tps * (365*24*3600) = 10,69
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and it even led to splits within the community. The solution to increase the block size is
arguably a linear solution, which only creates a breathing room for better scaling solutions.
The generated blocks would reach the new block size in no time and each time it is raised
through a hardfork

A hardfork is a change to the Bitcoin protocol that makes it less restrictive, non-upgraded
miners will not validate blocks created by upgraded miners, and will remain on their own
blockchain-fork indefinitely. Softforks implement new rules to the Bitcoin protocol that
makes it more restrictive, all blocks considered valid by the newer version are also valid
in the old version. The difference between hardfork and softfork is that hardforks are not
forward and backward compatible whereas softforks are. To roll out ”hard” changes to
the protocol requires every miner, merchant, and user to upgrade or be left behind. Since
softfork is backwards compatible, users can update in their own time[30]. Softfork only
requires a majority of the miners to upgrade to enforce the new rules. Although the more
miners that accept the new rules, the more secure the network is post-fork. Therefore,
softforks should be deployed when 95% of the miners have signaled their support.

There are two camps of the Bitcoin community with different opinion on how to fix Bit-
coin’s scalability issues. On one side there is a team of developers, known as Bitcoin core
that proposed a feature via a softfork aiming to optimize the blocksize. This feature is
included in a concept called Segregated Witness, or SegWit, which aims to remove data re-
lated to signatures from Bitcoin transaction making them smaller in size. This in turn makes
the block even smaller meaning more transaction can be included in the block. SegWit also
addresses other issues as transaction malleability and opens up for second layer solutions
like the Lightning Network. It requires 95% of miners to signal support for SegWit and for
full nodes to upgrade to the latest version to activate this feature[31]. However SegWit has
met a lot of resistance from miners who have raised concerns about it’s technological and
economic complexity in hope of finding a better solution.

A solution for micropayments in Bitcoin is to decide whether all transactions have to be
recorded on the blockchain. If only a handful of participants care about an everyday re-
curring transaction, it not necessary for all other nodes in the network to know about that
transaction. Instead, we create micropayment channels between two parties and let them
send as many transaction they want. Only a single transaction netting out the total balance
between the two parties needs to be recorded on the blockchain. This allows Bitcoin to scale
to millions or even billions of transaction per day. It also allows for a trustless channel since
one of the parties can always guarantee their current balance on the blockchain if the other
party does not cooperate[32].

On the other side are those who wanted an increase in block size, with further debate over
what the ideal size was. Bitcoin Unlimited provides a voice for all stakeholders in the bitcoin
ecosystem. Every node operator or miner can choose their own blocksize. This approach
allows the miners to vote with their hash power on what the block size should be and let
them reach a consensus based on free-market economics[33][34]. Although, implementing
this feature would involve a hardfork which requires everyone to agree with and this is
almost impossible.
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Ethereum

Probably the biggest scalability issues with Ethereum are that every node has to process all
transactions and has to store the entire state of every account balance, contract code and
storage, etc. Although this provides a large amount of security, but greatly limits scalability
to the point that a blockchain cannot process more transactions than a single node. One
would think that a network with thousands of nodes should be able to have more throughput
than a single node, but this is not the case in Ethereum or in public blockchain networks in
general.

A possible solution for this problem is to create a new mechanism where only a small subset
of nodes has to verify a subset of transactions. As long as there are sufficient many nodes
verifying each transaction, the system will still be secure, but also allow for the system to
process transactions in parallel. This techniques is called sharding. The basic idea behind
sharding is by dividing the global state of accounts, both external and contract accounts,
in smaller chunks known as a shard. In simpler forms of sharding, each shard also has its
own transaction history, and the effects of transaction in some shard K are limited to the
state of shard K. However, transactions across two shards can be achieved with a ”debit”
and ”credit” kind of transactions. For example a transfer of money, where money is moved
from shard K to shard L by first creating a ”debit” transaction that destroys coins in shard
K, and then creating a ”credit” transaction that creates coin in shard L, pointing to a receipt
created by the debit transaction as proof that the credit is legitimate. In more complex
forms of sharding, transactions may in some cases affect other shards as well and may also
synchronously ask for data from the state of multiple shards. Each shard gets its own set of
validators, and these validators will not need to validate all shards[35].

Hyperledger Fabric

The performance and scalability in Fabric are completely different from both Bitcoin and
Ethereum due to being a permissioned blockchain. This allows Fabric to have different
types of nodes with their own responsibilities, and allows them to configure a network of
nodes to scale independent of each other. There is no parallel relationship between the num-
ber of peers in a network and the number of orderers. It is possible to add endorsers and
committers without having to add corresponding orderers. The system scale better than if
these functions were executed by the same nodes. This becomes clear when you consider
that chaincodes can be installed on disjointed endorsers, which introduces partitioning of
chaincodes between endorsers and allows parallel chaincode execution. Furthermore, en-
dorsers may have to execute heavy computations, but since endorsers are separated from
the ordering service it does not affect it’s execution time. Developers are therefore free to
write more complex applications that are costly to execute without disrupting the ordering
service or any other application on the network.

Fabric has a concurrency control where transactions are executed in parallel by the en-
dorsers to increase throughput. Since endorsers do not have to worry about the ordering of
transaction and double spending, because they are handled by the ordering service and the
committers, they can push through as many transaction per second as possible. Comparing
with Ethereum, where the nodes must execute transactions sequentially to prevent double
spending, will not benefit much by using powerful hardware while endorsers could utilize
the hardware to full potential. This means that we got hardware scaling and it make sense
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for enterprises to invest in powerful computers to run as endorsers.

Channels are a clever way to split one big blockchain into many private blockchains, allow-
ing for data isolation and confidentiality. Each channel has a corresponding ledger which is
shared across the peers in the channel. The channel-specific ledger contains the blockchain
and a state database with current state data. The peers in the channel maintain their own
copy of the ledger and syncs ledger state across all peers using a gossip data dissemination
protocol. It is the gossip protocol that connects the peers on a channel to spread ledger
data and manages peer discovery and channel membership. Combine the protocol with
channels and we got a scalable network, where peers only need to communicate with other
peers in the same channel. Adding more peers to a channel should affect the performance
on just that channel, other channels will not be affected considering how separated chan-
nels are from each others. Although you could take advantage of a more coarse grained
endorsement policy to improve performance on the channel when adding peers. Lets say
you need N endorsement out of M to have a properly endorsed transaction and the endorse-
ment can be signatures from any of the members of organisation: Org1. The transaction
could be load balanced to any of M members and since the clients does not know the iden-
tities of the endorsers we get elasticity, i.e. the number of members M can grow/shrink on
demand[36][37][38].

4.2 Performance analysis and the three-way trade-off

Proof-of-Work way of extending the blockchain heavily and negatively impacts system scal-
ability and overall throughput. Bitcoin has been forked a number of times in order to tune
PoW parameters, i.e. the block generation time and the hash function. The most popu-
lar fork, or altcoin, is known as Litecoin which has a 2,5 minutes block time instead of a
10 minutes block time[39]. However, in terms of transaction speed, a protocol with shorter
block time needs more confirmations for the same level of security as a protocol with longer
block time. A confirmation is not a guarantee of authenticity. A confirmation is indirectly
determined by difficulty, with difficulty roughly determines how many hashes are required
to solve a block. If a block time of 2,5 minutes are used instead of 10 minutes, the number
of hashes required is roughly 1/4, which essentially means that the ”value” of a confirmation
is worth about 1/4 of a confirmation on 10 minutes block time. Although, one confirmation
time will be faster and it is usually adequate for most transaction, where the potential loss
due to double spending is small. Merchant and exchanges, who arguably bear more risk
from double spending would still want the same level of security as six confirmations on a
ten minutes block time. Generally shorter block time means a higher stale rate which in turn
requires a higher number of confirmation to match Bitcoin’s security. A higher stale rate
also means that more work is wasted. The ten minutes block time is simply a compromise.

Block size is also one of the main performance-related parameter of a PoW blockchain
such as Bitcoin. The 1 MB block size is a compromise as well. Increasing the block size
with the goal to increase throughput comes as the cost of increasing the latency, because
of longer propagation delays of larger blocks across the network. These longer delays,
in turn, have negative implications on Bitcoin security: longer delays may increase the
risk of chain forking and therefore increases the possibility for dishonest miners to mount a
double-spend attack. With increased block size comes a larger blockchain, which means the
blockchain could get too large in size that not everyone can run a full node. This means that
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only large scale server can run a full node, leaving the average user behind, and therefore
resulting in less decentralization. The main concern with full node centralization is trust: if
there is only a few entities capable of running full nodes, then those entities could conspire
to allow invalid transactions for their own gain, and there will be no way for other users
to know without processing the block for themselves. Furthermore, larger blocks cause
miner-centralization as well since it takes more time to download larger blocks. Thus users
on lower bandwidth can not compete with users on higher bandwidth and only a small
collection of businesses can afford the resources.

Ethereum has mitigated most of the security loss with faster block time by using a modified
version of GHOST protocol, but the blocks still have to propagate across the network which
is a relatively slow process. The block size needs to be smaller in order to propagate faster
and that is why Ethereum can only process about 15 tps even though the block time is as
low as 15 seconds. The bottom line is that public blockchain networks are not efficient. It
is the price we pay for decentralization and it does not matter which network we are talking
about, neither of them does not even come close to providing the kind of throughput that
would truly be needed for global adoption. It comes down to every single node has to bear
the full transaction load of the entire network. These two public blockchains do not scale
well.

Ethereum is, on the other hand, in far worse state than Bitcoin since all the Bitcoin network
need to do is to handle simplistic transactions. Ethereum is supposed to do much more
than that. It is Turing complete and the network needs to handle arbitrary processing tasks
and store potentially immense amount of data. That is why Ethereum is working on the
most promising scaling solutions compared to Bitcoin. To be able to scale and to provide
more throughput we need a solution for two bottlenecks: transaction processing and state
storage. Channel-based strategies like lightning network, Raiden, etc., can scale transaction
processing by a constant factor but does not scale state storage. The most promising solution
is on-chain scaling via sharding and complementary off-chain scaling via channels, but it
will take some time before these solutions are implemented in production. The reason is
that blockchains gets their robust decentralized trust from the way they operates. They are
secure for the same reason they do not scale, changing something to gain scalability while
maintaining high security is a difficult task.

When comparing these two public blockchain network with a permission blockchain such as
Hyperledger Fabric—we can see that sacrificing some of decentralization greatly improves
scalability and performance. Sacrificing some decentralization means we need more trust
on the validating nodes and the authority and trust has to come from outside the network. By
having a governing authority that provides inherent level of trust between participants, en-
ables design decisions like sharding and channels to be implemented without much hassle.
And since trust is already achieved from outside the network, we do not need much compu-
tational power to support that trust. This allows us to use different consensus mechanism,
such as BFT protocols, and almost all of the issues public blockchains have, disappears.
Furthermore, the governing body can ensure data access to participants in the channel and
only allow them to view sensitive transaction data. Thus, Hyperledger Fabric has the fea-
tures required for modern enterprise security standards, that are difficult to achieve in public
blockchains.
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4.3 Application requirements

Because the term ”blockchain” is not clearly defined it can be difficult to know whether an
application can run on a blockchain or if it is just better to run with a regular database. In
most cases a regular database is more appropriate way to go, and using a blockchain would
just be considered as over-engineering. It could make sense to use a blockchain if robustness
and disintermediation is important, otherwise, there is nothing a blockchain can do that a
regular database cannot. Additionally, smart contract are only computer code running on
every node in the network, and it is similar as stored procedures in DBMS.

If the application does make sense to run on a blockchain there are a few requirements
to think about during development if the application will run on Ethereum or Hyperledger
Fabric.

Since every node in the Ethereum network will execute the same code, a gas is introduced to
pay for the resources needed, which was described in more detail in the Ethereum chapter.
The gas is used to pay for each computational step, memory usage, storage, and network
usage. This means that heavy computations are really expensive as well as sending huge
data packages. Therefore, an application should be developed as simple as a ordinary cal-
culator but will have great security. The gas prevents attackers from deploying applications
with infinite loops.

Another important requirement is that the smart contract must be deterministic. We cannot
have each node returning different result, then the network will not reach a consensus. It
is not possible for smart contracts to make API-calls to the Internet since the data fetch
from different sources are considered dynamic data and such sources would interfere with
the consensus process of Ethereum. That is why smart contracts can only fetch data within
their own blockchain. The method to fetch data from outside of the blockchain can be
achieved by oracles. An oracle is a third party which provides a smart contract with spe-
cific data from the outside world[40]. However, this means that the smart contract is no
longer decentralized since the data comes from a single entity that could manipulate the
responses. This risk can be mitigated by allowing multiple oracles to have control over a
M-of-N multi signature contract, that requires at least M signatures before the transaction
is accepted. Its arguably more decentralized this way and other contracts can rely on the
external information since it is much easier for N nodes to reach consensus on the result of
an HTTP request than an entire blockchain.

We are also not sure on what hardware the nodes are running on. It is important for anyone
to join the network without requiring a supercomputer to keep the network as decentralized
as possible. This problem does not really exist in Hyperledger Fabric since the endorsers
that executes the contracts are known, and they are only a couple of nodes with that re-
sponsibility compared to Ethereum that has at least 5000 nodes. Furthermore, since the
endorsers are chosen we can demand higher performance hardware. This would allow for
more demanding applications.

Unlike Ethereum, Fabric does not have a way to control the amount of resource used like
gas does. Fabric allows application to use as much memory, storage, bandwidth, and can
execute as many computational step as they want. They rely on the fact that everyone has
a membership and can therefore be identifiable. If an application misuse the resources,
appropriate action will be taken on the developers.



25(41)

4.4 Blockchain or traditional centralized solutions?

There is also, however, a further point to be considered is whether using blockchain technol-
ogy in a application add more value to the product than using a regular relational database
as today’s traditional centralized solutions have been using for decades. We have already
explored the limitations of different blockchain networks compared with each other in pre-
vious sections, but what are the limitations of blockchains compared with traditional cen-
tralized solutions?

The answer to this question is partially answered already in previous sections. We have
concluded that every single node has to bear the full transaction load of the entire network.
Moreover, the process of validating each transaction is not only applying the changes to the
ledger like a regular database, but the node also carries three additional burdens:

1. Signature verification. Every transaction signature must be verified and verification
of these signatures are computationally complex. A regular centralized database does
not need to individually verify every transaction once a connection has been estab-
lished.

2. Consensus mechanism. A blockchain has to be able to create trust in a naturally dis-
trustful situation and to ensure that nodes in the network reach consensus. It requires
immense amount computational power to support that trust and we have seen that
the rather long time it takes to reach consensus is necessary to have a highly secure
system. While a centralized database does not need to create trust in the system since
the database is owned and controlled by the same organisation.

3. Redundancy. The fact that every transaction must be processed independently by
every node in the network for the same end result. Whereas centralized databases
process transactions once.

Today’s blockchains will therefore always be slower than centralized solutions. It is not
because blockchain is still new and unoptimized, but it is result of the nature of blockchains
themselves.

4.5 Performance constraints in Hyperledger Fabric

Block size scaling

The configuration of the Fabric can be done in many areas of the network. Enterprises
can decide for themselves the composition of peers by deciding how many endorsers,
committers and orderers that suits their use case. Furthermore, there is one parameter,
MaxMessageCount, that can be optimized to maximize throughput. This parameter tells
the orderer how many transaction that can be included inside a batch which is then sent to
committers to form the next block.
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Figure 4.5.1: Transaction per second(tps) as a function of block size(# transactions)

As we can see in Figure 4.5.1, only a couple of transactions per block do have a negative
impact on throughput. Although, the throughput quickly increases at 10 transaction per
block then the performance increase starts to diminish. The maximum throughput of 350
tps lands around 100 transactions per block with this network configuration.

Endorser scaling

Here we mainly focus on endorser scaling on the same channel. From Section 4.1 we
concluded that adding endorsers on different channels would not have any impact on the
performance of a channel. Therefore, we limit the test to a single channel.
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Figure 4.5.2: Transaction per second(tps) decreases with larger networks

The test is configured with a single client that uses 1 thread to send 1000 transactions to
varied amount of endorsers and record the time taken for all transaction to be included in
a block (Figure 4.5.2). The most significant drop in throughput; from one endorser to two
endorsers; is the most interesting part.
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5 Discussion

The rather low throughput we got from the test does not reflect the performance of Hy-
perledger Fabric in reality. Fabric could handle thousands of transactions per second if
powerful machines are used to run as endorsers and multiple clients sends as many trans-
actions they can. The fact that this test use the same machine to run as an endorser and as
a client means that they have to share resources. We can only achieve as much tps as one
computer can handle. It is always tough to test performance of a distributed system, such
as this one, with limited resources. To truly reach a maximum throughput, one would have
to run tests on a production-ready environment with several powerful computers connected
with each other in close proximity. Only then can you find out how powerful this type of
system can be, and using just one computer only proves that the computer is the bottleneck,
while the purpose was to find out where the bottlenecks are in the system itself.

What you can do is to divide the resources evenly between the peers. Each peer is limited
to only one core, and if we control the CPU usage and not push the peers to use 100% of
their core, then we can see a trend to find possible bottlenecks. The performance would
be lower, naturally, but this isolates peers more from each other and it almost emulates
peers running on completely different machines. However, there is no denying that some
peers will be affected more than others by background noise, i.e. processes from other
applications running in the background, but there is not much you can do about it.

The result also shows that more endorsers in the network lowers the throughput. Remem-
ber that endorsers execute chaincode independent from one another, which means that the
messaging from the gossip protocol has a significant impact on performance and scalability.
We get the most performance out of Fabric with one endorser, but this to be expected as this
configuration of the network is as close to a centralized solution as possible using Fabric.
The gossip protocol has not taken effect yet since there is not another endorsers to exchange
messages with. The performance drop rather quickly when you add the second endorser and
the effects of the gossip protocol kicks in. As more endorsers are added to the network, each
endorser has to exchange messages between every other endorsers across the channel which
is why we see a continuous decrease in throughput. This intensive network communication
would arguably involve as many as O(n2) messages per endorser, where n is the number of
endorsers in the channel. Thus, the scalability of the number of endorsers are limited to only
a couple endorsers per channel, but it is not well explored yet. Once again, one would have
to test on a standard production environment with powerful endorsers running in close prox-
imity to find out how the number of endorsers scale. Furthermore, BFT-based blockchain
offers good performance for small number of nodes, whereas PoW-based blockchain offers
good node scalability with poor performance. Given seemingly inherent trade-off between
the number of nodes and performance, enterprises should strive to use a small number of
endorsers for their use cases.

There is also, however, a further point to be considered. These tests does not take network
latency and bandwidth into account. Bandwidth could certainly have an impact on the
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block size, where larger blocks would take more time to send compared to smaller blocks.
The network latency would impact the messaging which is constantly going on across the
endorsers in the channel. That is why enterprises or a consortium of financial institutions
should put their computers that runs as peers in close proximity to minimize the latency as
much as possible.
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6 Conclusion

This research examined the differences between a public blockchain with a permissioned
blockchain in regards to performance and scalability and how viable Hyperledger Fabric is
to use within the finance industry compared to traditional centralized solutions. The results
have shown that sacrificing decentralization by creating authority and trust outside of the
network greatly improves performance and scalability. A permissioned blockchain does not
require computational power to support that trust compared to public blockchains, which in
turn eliminates the throughput issues.

Hyperledger Fabric is certainly much faster and scalable than both Bitcoin and Ethereum,
and it can ensure data access to allow only the participant in a party to a transaction can see
sensitive details. For many enterprise and financial institutes use cases, Hyperledger Fabric
can meet the business requirements that are impossible to meet with a public blockchain.
Although the question still stands if Hyperledger Fabric is fast and scalable enough to re-
place the the centralized systems used today. The results have shown that Hyperledger
Fabric can put up with much higher throughput than Bitcoin and Ethereum but to truly
know the performance and scalability of Hyperledger Fabric one would have to run tests in
a network of powerful computers.
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A Appendix

A.1 Docker-compose.yaml

version: ’2’

services:
ca:

container_name: ca
image: hyperledger/fabric -ca
environment:

- FABRIC_CA_HOME =/var/hyperledger/fabric -ca-server
ports:

- "7054:7054"
command: sh -c ’fabric -ca-server start --ca.certfile /var/hyperledger/fabric

-ca-server -config/peerOrg1 -cert.pem --ca.keyfile
/var/hyperledger/fabric -ca-server -config /267

da8fb0b04f06e62b0d97ed82fb692c668640227947192f26955390ce72b53_sk -b admin
:adminpw -d’

volumes:
- ./crypto -config/peerOrganizations/peerOrg1/ca/:/var/hyperledger/fabric -

ca-server -config

orderer:
container_name: orderer
image: hyperledger/fabric -orderer
environment:

- ORDERER_GENERAL_LOGLEVEL=INFO
- ORDERER_GENERAL_LISTENADDRESS =0.0.0.0
- ORDERER_GENERAL_LOCALMSPDIR =/var/hyperledger/msp/orderer
- ORDERER_GENERAL_LOCALMSPID=OrdererMSP

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/orderer
command: orderer
volumes:
- ./ channel :/var/hyperledger/configtx
- ./crypto -config/ordererOrganizations/ordererOrg1/orderers/

ordererOrg1orderer1 /:/var/hyperledger/msp/orderer
ports:

- 7050:7050

peer1:
container_name: peer1
extends:

file: peer -base/peer -base.yaml
service: peer -base

cpuset: "1" # specify which core to use
environment:
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- CORE_PEER_ID=peer1
- CORE_PEER_GOSSIP_BOOTSTRAP=peer1 :7051
- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1 :7051

volumes:
- /var/run/:/ host/var/run/
- ./crypto -config/peerOrganizations/peerOrg1/peers/peerOrg1Peer1 /:/var/

hyperledger/msp/peer
ports:

- 7051:7051
- 7053:7053

depends_on:
- orderer

A.2 Configtx.yaml

---
################################################################################
#
# Profile
#
# - Different configuration profiles may be encoded here to be specified
# as parameters to the configtxgen tool
#
################################################################################
Profiles:

# SampleSingleMSPSolo defines a configuration which uses the Solo orderer ,
# and contains a single MSP definition (the MSP sampleconfig).
SampleSingleMSPSolo:

Orderer:
<<: *OrdererDefaults
Organizations:

- *OrdererOrg
Application:

<<: *ApplicationDefaults
Organizations:

- *Org1

################################################################################
#
# Section: Organizations
#
# - This section defines the different organizational identities which will
# be referenced later in the configuration.
#
################################################################################
Organizations:

# SampleOrg defines an MSP using the sampleconfig. It should never be used
# in production but may be used as a template for other definitions.
- &OrdererOrg

# DefaultOrg defines the organization which is used in the sampleconfig
# of the fabric.git development environment.
Name: OrdererMSP

# ID to load the MSP definition as.
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ID: OrdererMSP

# MSPDir is the filesystem path which contains the MSP configuration.
MSPDir: /home/mattiasscherer/Documents/fabricbenchmark/myorg/crypto -

config/ordererOrganizations/ordererOrg1/orderers/ordererOrg1orderer1

# BCCSP: Select which crypto implementation or library to use for the
# blockchain crypto service provider.
BCCSP:

Default: SW
SW:

# TODO: The default Hash and Security level needs refactoring to
be

# fully configurable. Changing these defaults requires
coordination

# SHA2 is hardcoded in several places , not only BCCSP
Hash: SHA2
Security: 256
# Location of key store. If this is unset , a location will
# be chosen using: ’MSPDir ’/ keystore
FileKeyStore:

KeyStore:

- &Org1
# DefaultOrg defines the organization which is used in the sampleconfig
# of the fabric.git development environment
Name: Org1MSP

# ID to load the MSP definition as
ID: Org1MSP

# MSPDir is the filesystem path which contains the MSP configuration
#########################################################################

# FIXME: this path needs to be fixed to point to the actual location of
#

# the project ’fabric -sdk -node ’ in the file system
#

#########################################################################

MSPDir: /home/mattiasscherer/Documents/fabricbenchmark/myorg/crypto -
config/peerOrganizations/peerOrg1/msp

# BCCSP (Blockchain crypto provider): Select which crypto implementation
or

# library to use
BCCSP:

Default: SW
SW:

Hash: SHA2
Security: 256
# Location of Key Store. If this is unset , a location will
# be chosen using ’MSPDir ’/ keystore
FileKeyStore:
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KeyStore:

AnchorPeers:
# AnchorPeers defines the location of peers which can be used
# for cross org gossip communication. Note , this value is only
# encoded in the genesis block in the Application section context
- Host: peer0

Port: 7051

################################################################################
#
# SECTION: Orderer
#
# - This section defines the values to encode into a config transaction or
# genesis block for orderer related parameters
#
################################################################################
Orderer: &OrdererDefaults

# Orderer Type: The orderer implementation to start.
# Available types are "solo" and "kafka".
OrdererType: solo

Addresses:
- orderer :7050

# Batch Timeout: The amount of time to wait before creating a batch.
BatchTimeout: 10s

# Batch Size: Controls the number of messages batched into a block.
BatchSize:

# Max Message Count: The maximum number of messages to permit in a
# batch.
MaxMessageCount: 100

# Absolute Max Bytes: The absolute maximum number of bytes allowed for
# the serialized messages in a batch.
AbsoluteMaxBytes: 99 MB

# Preferred Max Bytes: The preferred maximum number of bytes allowed for
# the serialized messages in a batch. A message larger than the
# preferred max bytes will result in a batch larger than preferred max
# bytes.
PreferredMaxBytes: 2048 KB

Kafka:
# Brokers: A list of Kafka brokers to which the orderer connects.
# NOTE: Use IP:port notation
Brokers:

- 127.0.0.1:9092

# Organizations is the list of orgs which are defined as participants on
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# the orderer side of the network.
Organizations:

################################################################################
#
# SECTION: Application
#
# - This section defines the values to encode into a config transaction or
# genesis block for application related parameters
#
################################################################################
Application: &ApplicationDefaults

# Organizations is the list of orgs which are defined as participants on
# the application side of the network
Organizations:

A.3 Endorsing policy program

package main

import (
"fmt"
"io/ioutil"

"github.com/hyperledger/fabric/common/cauthdsl"
putils "github.com/hyperledger/fabric/protos/utils"

)

const policyString = "AND(’Org1MSP.member ’)"

func main() {
p, err := cauthdsl.FromString(policyString)
if err != nil {

fmt.Printf("Invalid␣policy␣%s\n", policyString)
} else {

policyMarshalled := putils.MarshalOrPanic(p)
err = ioutil.WriteFile("./ policyBits", policyMarshalled , 0777)
if err != nil {

fmt.Printf("Error␣writing␣to␣file:␣%s", err)
}

}
}
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