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Abstract

Cryptocurrencies and decentralized ledger technology has been widely adopted
over the last decades. However, there isn’t yet a decentralized exchange that
protects users’ privacy from end to end. In this paper, we construct the first
ledger-based decentralized token exchange with strong privacy guarantees. We
propose the first Decentralized Anonymous eXchange scheme (DAX scheme)
based on automated market maker (AMM) and zkSNARK and present a formal
definition of its security and privacy properties.

1 Introduction

In an ideal world, cryptocurrencies bring a decentralized token economy while
protecting users’ privacy. The widely used cryptocurrencies on permissionless
consensus protocols, such as Bitcoin [11], Ethereum [14], and Polkadot [1], are
pseudo-anonymous: although there are no real-world identities explicitly at-
tached to public keys, the transaction history is public. Users’ identities can
still be revealed by link analysis on transaction history [10, 15, 13, 7]. Privacy-
preserving cryptocurrencies such as Zcash [2] provide a decentralized and anony-
mous payment (DAP) scheme. Zcash uses zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zkSNARKs) and a consensus protocol similar to Bit-
coin. However, having DAPs is not enough. To ensure a privacy preserving token
economy, we need to ensure that the token exchange process, an integral part of
token economy, will not leak the users’ privacy as well.

In this paper, we propose a Decentralized Anonymous eXchange (DAX)
scheme, which formally captures the functionality and security guarantees of
a decentralized exchange based on automated market maker (AMM). We pro-
vide a construction of this primitive and prove its security under standard
cryptographic assumptions. This construction leverages recent advancements
on zero-knowledge proofs for verifiable computation, especially, the zkSNARKs
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[6, 12, 3, 9]. Specifically, this construction consists of a mint mechanism that con-
verts base coins to be exchanged to private coins, and a decentralized exchange
mechanism that trades private coins anonymously.

We plan to build Manta, an instantiation of this DAX scheme, on Parity
Substrate, a virtual machine that interoperates with DOT (Polkadots’ native
token), and many parachain assets on Polkadot, including stable coins.

We note that Manta is a framework that is independent of the underlying
zero-knowledge prove system, i.e., the framework may be optimized for verifier
efficiency via Groth16 [9], which best suits blockchain uses cases with a sub 5
seconds block generation time; and may also be instantiated for other proving
systems that aim for none trusted setups or quantum resistance. Therefore, we
do not report any concrete performance parameters at the current stage, and
leave concrete implementations to future work. We do, however, note that when
instantiated with Groth16 and BLS curves, we will achieve a constant proof size
of 196 bytes and a sub 10 ms verification time.

In the following part of this paper, we first summarize the technology that
underlies building blocks of our overall scheme: zero-knowledge proofs and zk-
SNARKs in section 2. We present our mint mechanism for converting base coins
to private coins in section 3 and our decentralized exchange scheme for private
coins in section 4, respectively, and anaylze the security in section 5. Finally,
section 6 concludes this paper.

2 Background: Zero-knowledge Proofs and zkSNARKs

In cryptography, a zero-knowledge proof protocol is a proof system, in which one
party, a.k.a Alice (the prover), proves to another party, a.k.a Bob (the verifier),
that she knows a value x, without conveying any information apart from the fact
she knows x. By the seminal work from Goldwasser, Micali, and Rackoff [8], we
know that this notion of knowledge can be generalized to any NP statement.

In recent years, emerging from a pure theoretical concept, zero-knowledge
proof systems have become practical, thanks to many great work in this space [9,
6, 3, 12]. The major cryptographic primitive used in this paper is a typical kind of
Succinct Non-interactive ARgument of Knowledge (SNARK): publicly-verifiable
preprocessing zero-knowledge SNARK, or zkSNARK for short. We informally
define zkSNARK as follows.

For a finite field F, an F-arithmetic circuit, where the inputs, outputs and
intermediate values are all in F. We consider circuits that have an input x ∈ Fn
and an auxiliary input a ∈ Fh, namely a witness. We define arithmetic circuit
satisfiability as follows:

Definition 1. The arithmetic circuit satisfiability problem of an F-arithmetic
circuit C: Fn × Fh → F l is captured by the relation RC = {(x, a) ∈ Fn × Fh :
C(x, a) = 0l}, where the language LC = {x ∈ Fn : ∃a ∈ Fh s.t. C(x, a) = 0l}.

Given a field F , a zkSNARK for F−arithmetic circuit satisfiability is defined
by a triple of a polynomial-time algorithms (KeyGen, Prove, Verify):
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1. KeyGen(1λ, C) →(pk, vk). Taken a security parameter λ (e.g. 128 bits) and
an F-arithmetic circuit C, KeyGen probabilistically samples a proving key
pk and a verification key vk. Both keys are published as public parameters
and can be used for any number of times, to prove/verify the memberships
in LC .

2. Prove(pk, x, a)→ π. Taken a proving key pk and any (x, a) ∈ RC as input,
the prover Prove outputs a non-interactive proof π for the statement x ∈ LC .

3. Verify(vk, x, π)→ b. Taken a verification key vk, x , and a proof π as input,
the verifier Verify outputs 1 if it is convinced that x ∈ LC , and outputs 0
otherwise.

A zkSNARK satisfies the following properties:
Completeness. For every security parameter λ, any F−arithmetic circuit C,

and any (x, a) ∈ RC , an honest prover must convince the verifier. Namely, output
1 with probability 1 − negl(λ) with the following: (pk, vk) ← KeyGen(1λ, C),
π ← Prove(pk, x, a), b← Verify(vk, x, π).

Soundness. If the verifier accepts a proof from a bounded prover, then the
prover must know the secret input corresponding to the witness of the given
instance 5.

Succinctness.An honestly-generated proof π hasOλ(1) bits and Verify(vk, x, π)
runs in time Oλ(|x|) (Oλ hides a fixed polynomial factor in λ).

Zero knowledge. An honestly-generated proof is perfect zero knowledge:
there exists a poly(λ)−size simulator Sim, who has no access to the secret in-
puts, can generate a simulated proof, such that all stateful poly(λ)−bounded
distinguishers D cannot distinguish this proof from an honest proof.

3 MantaDAP: Decentralized Anonymous Payment

In this section, we present MantaDAP, a decentralized anonymous payment (DAP).
While this construction is similar to Zcash, the difference is that the base coins
can be either DOT, Polkadot’s native currency or a parachain asset.This DAP
scheme supports both minting and forfeit, therefore, allows for bidirectional
transfers between private coins and base coins.

In addition to zkSNARK, we use the following cryptographic primitives:

– COMM, a non-interactive commitment scheme that is both hiding and binding.
For example, given a random seed r and a message m, the commitment is
c := COMMr(m). c can be opened by revealing r and m, which verifies the
commitment.

– pseudorandom functions. More specifically, we use three labeled pseudoran-
dom functions that may be instantiated from a same core function. For a
seed x, we derive PRFaddrx (·), PRFsnx (·), and PRFpkx (·), which will be used to
generate payment addresses and serial numbers.

5 The formal definition of soundness is based on the concept of extractor, which can
be found in [4].



4

Addresses

A user u generates an address key pair (apk, ask). The coins of u can be only
spent with the knowledge of ask. To generate a key pair, u randomly samples
a secret from the domain ask

$← 1λ, and sets apk := PRFaddrask (0). A user could
generate and use any number of key pairs.

Mint private coins

To mint a private coin with value v, a user u needs to initiate a coin minting
transaction txmint with the deposit of a base coin with value v6. To mint a new
coin, a user generates and submits txmint to the ledger as the following:

1. u samples a random number ρ $← 1λ, which is a secret value that determines
the coins serial number sn := PRFsnask(ρ). Note that this sn is not included in
txmint.

2. u commits to the triple (apk, v, ρ) in two phases: (a) sample a random r,
and compute k := COMMr(apk||ρ); then (b) sample a random s, and compute
cm := COMMs(v||k).

3. u thus mints a private coin c := (apk, v, ρ, r, s, cm) and a mint transaction
txmint := (v, k, s, cm).

4. the ledger adds cm to the merkle tree that represents the ledger state rt.

This design allows anyone to verify cm in txmint with value v but doesn’t disclose
the address of the owner (apk) or the serial number. Therefore, txmint is accepted
by the ledger if the user deposits a base coin of value v.

Transfer private coins

Private coins can be transferred and spent using the transfer operation, which
takes a set of input private coins to be consumed, and transfers their total value
into a set of new output coins: the total value of output coins equals the total
value of the input coins.

For example, suppose a user u, with address key pair (aoldpk , a
old
sk ), tries to

transfer or spend his old coin cold = (aoldpk , v
old, ρold, rold, sold, cmold) and produce

a new coin cnew that targets at address anewpk′
7. To create a transfer transac-

tion, u samples a trapdoor ρnew and compute knew := COMMrnew(apk′ ||ρnew) with a
random rnew, and then compute cmnew := COMMsnew(knew||snew) with a random snew.
This creates a new coin cnew := (anew, vnew, ρnew, rnew, snew, cmnew). The user u also
produces a zkSNARK proof πtransfer for the following NP statement, which is
called transfer:
6 Here we assume a 1 : 1 exchange ratio. A minor transaction fee e.g. 0.1% could be
charge when minting private coins.

7 Note that the corresponding anewsk′ is not present in transfer. This implies that the
address could belong to u, or some other user.
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Definition 2 (NP Statement of transfer). Given an accumulator acc that
represents the ledger state, serial number snold, and coin commitment cmnew, “I”
know coins cold, cnew, and secret key aoldsk such that:

– Both cold and cnew are well formed: for example, kold = COMMrold(aoldpk ||ρold)
and cmold = COMMsold(vold||kold).

– The address and the secret key derive the public key: aoldpk = PRFaddraskold
(0).

– The old coin’s commitment appears is a member of acc (cmold ∈ acc).
– The old coin and the new coin have the same value: vnew = vold

The user u sends a transfer transaction txtransfer := (acc, snold, cmnew, πtransfer)
to the ledger. The ledger checks the validity of the transaction: the transaction
is valid only if snold has never been used in a previous transaction in the ledger
(otherwise it is a double spend), and the zkSNARK verifier verifies the validity
of πtransfer.

We make two remarks. First, the proof does not specify which cmold the
coin is transferred from. Instead, it proves the existences of such a coin. This
breaks the link between old and new commitments, and is a key requirement for
anonymity. Second, a transfer does not update the state of the accumulator.
In deployment, there will be a block proposer, who collects a set of transfers,
validates them, and updates the accumulator in batch . Block validators therefore
need to check both the validity of the set of transfers, as well as the fact that
the ledger updates is a correct result of applying those transfers.

Stop double spending

Manta prevents double spending by binding the serial numbers with commit-
ments and enforces that each transfer transaction has a unique serial number.
Concretely, the ledger (a.k.a the consensus protocol) maintains two lists, rep-
resented by two accumulators, namely, accall and accspend. accall contains all
commitments that have ever appeared; while accspend contains sns for all spend
transfers. When generating a new transfer, the sender needs to prove that
(the commitment of) the coin it is about to spend is in accall and (the sn of ) the
coin is not in accspend. When the transfer is accepted, snold will be released
and added to accspend.

Note that this creates a link between a new commitment cmnew and an snold

since they both appear in a same transfer. This, however, do not break the
anonymity, since our commitment scheme is hiding.

Claim public coins from private coins.

This construction so far allows us to transfer the value from a private coin to
another with potentially a new address. A natural question is: how can a user
claim public coins from private coins? We make two simple modifications to
the transfer operations so that we can split or merge private coins, and transfer
them back to public coins. The first modification is to allow a transfer operation
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with multiple input coins and output coins. This enables splitting and merging
private coins. The second modification is to add an optional public output in the
output coins. As a result, the last invariant in the NP Statement of transfer
(Definition 2) becomes “vnew1 + vnew2 + vpub = vold1 + vold2 ”8.

With the modification of public output, we also need to guarantee that
transfer operation is non-malleable. During the transfer operation, the user
u also needs to sign the entire transaction:

1. samples a key pair (pksig, sksig) for a one-time signature scheme.
2. computes hSig := CRH(pksig).
3. computes the hash for two input coins, h1 := PRFpk

aoldsk,1
, h2 := PRFpk

aoldsk,2
.

4. add hsig, h1, and h2 into the NP statement of transfer and prove that h1
and h2 are computed correctly.

5. use sksig to sign the entire transfer operation. This will produce a signature
σ. The transaction txtransfer should include both σ and pksig.

4 MantaDAX: Decentralized Anonymous Exchange

In this section, we describe MantaDAX, a Decentralized Anonymous eXchange
(DAX) scheme that extends the DAP scheme (section 3) to support AMM 9

style swap. In principle, our idea could extend to other kind of decentralized
exchange as well, we choose AMM for its elegant simplicity.

Ledger State of MantaDAX

Without loss of generality, we assume that this MantaDAX scheme can exchange
two kinds of private coins pACoin, and pBCoin, each of which is constructed
using the DAP scheme in section 3 (It is trivial to extend this scheme to multiple
private coins).

To support the exchange of private coins, we extend each ledger to support
a special coin, namely, DEXCoini (i ∈ {A,B}). For example, DEXCoinA and is
supported by the ledger of pACoin (referred to as LA) and DEXCoinB is supported
by the ledger of pBCoin (referred to as LB). A DEXCoini is a tuple that consists
of a serial number sn and a value v, i.e, cDEX := (sn, v). The DEXCoini can only
be spent by the decentralized exchange, a.k.a the ledger, denote by LDEX, which
is controlled by the consensus.

The ledger state of Manta can be defined as a triple S = (LA, LB, LDEX):

– LA: the ledger state of pACoin, which is committed in an accumulator accA.
– LB: the ledger state of pBCoin, which is committed in an accumulator accB.

8 For simplicity, we ignore the transaction fee in this statement.
9 AMM can be viewed a trading pair that always maintain an invariant on the balances
of the assets. Please refer [5] for a detailed explaination of AMM.
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– LDEX: the ledger state of the exchange pair of pACoin and pBCoin. It follows
automated market maker scheme. Here, we present a simplified design first,
using the “x×y = k” market maker scheme [5]. LDEX consists of the following
fields:
• cmA: a commitment of an pACoin, cmA must be a valid DEXCoinA in LA.
• cmB: a commitment of a pBCoin, cmB must be a valid DEXCoinB in LB.
• vA: the value of cmA.
• vB: the value of cmB.

As in the normal automated market maker setting, LDEX needs to maintain
the invariant vA × vB = l, where l is a constant.

The MantaDAX Protocol

A user can exchange an pACoin for a pBCoin or vice versa, using an exchange
transaction. Due to the symmetry, we only focus on exchanging a ACoin for a
BCoin in this paper.

MantaDAX.Prove: For example, if a user u, with address key pair (aoldpk , a
old
sk ),

tries to exchange his old pACoin cold = (“pACoin” , aoldpk , v
old, ρold, rold, sold, cmold)

and for a new pBCoin, cnew that targeted at address anewpk′ (the address could either
belong to u or an other user). To create a transfer transaction, u samples a trap-
door ρnew and compute knew := COMMrnew(apk′ ||ρnew) with a random rnew, and then
computes cmnew := COMMsnew(kv

new ||snew) with a random snew. This creates a new
coin cnew := (“pBCoin”, anewpk′ , v

new, ρnew, rnew, snew, cmnew). The user u also produces
a zero-knowledge proof πexchange for the following NP statement:

Definition 3 (NP Statement of πexchange). Given an accumulator of ledger A
accA, a serial number snold, and a coin commitment cmnew, “I” know coins cold,
cnew, and a secret key aoldsk such that:

– Both cold and cnew are well formed: for example, kold = COMMrold(aoldpk ||ρold)
and cmold = COMMsold(vold||kold).

– The address secret key matches the public key: aoldpk = PRFaddraskold
(0).

– cmold ∈ accA.
– This trading pair didn’t use all liquidity: vA > vold ∧ vB > vnew
– After exchange, the invariant of LDEX remains valid: (vA+vold)×(vB−vnew) =
vA × vB

This proof is generated by MantaDAX.Prove, more specifically (πexchange, cnew) :=
MantaDAX.Prove(pk, accA, snold, aoldsk , c

old). The user u sends an exchange trans-
action txexchange := (accA, snold, cmnew, πexchange) to the ledger.

MantaDAX.Verify: The ledger checks the validity of the transaction: the transac-
tion is valid only if snold has never been used in a previous transaction in the LA
(otherwise it is a double spend), and the zkSNARK verifier verifies the validity
of πexchange. In addition to adding cmold and cmnew to LA and LB respectively,
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the ledger also mints two new DEXCoins: DEXCoinA with value vA + vold and
DEXCoinB with vB − vnew, and new serial numbers to replace the old ones in LA
and LB.

5 Security

In this section, we formally state the security properties of MantaDAX. Note that
the ledger state of our DAX scheme is a triple: S = (LA, LB , LDEX). We assume
that the zkSNARK uses a proving key pk and verification key vk during the
trusted setup.

– Completeness. For any ledger state S, a valid exchange transaction txexchange =
(accA, snold, cmnew, πexchange) , that is :
• snold has never been used in a previous transaction in the LA.
• (πexchange,_) := MantaDAX.Prove(pk, accA, snold, aoldsk , c

old)

It holds that:

Pr[Manta.Verify(vk, txexchange,S) = 1] = 1

– Soundness. For any PPT adversaryA, the following probability is negligible
in λ (C is the zkSNARK circuit of MantaDAX):

Pr



(vk, pk)← Gen(1λ, C),

(cnew
′
, π′
exchange)← A(1λ, vk, pk)

where cnew
′
= (“pBCoin” , anew

′

pk′ , vnew
′
, ρnew

′
, rnew

′
, snew

′
),

knew ← COMMrnew (anew
′

pk′ ||ρnew
′
),

cmnew ← COMMsnew (vnew
′
||knew

′
),

let tx′cxchange = (accA, sn
old, cmnew, πexchange)

then 1←MantaDAX.Verify(vk, tx
′
exchange,S),

tx′exchange 6= txexchange for snnew
′
6= snnew


– Zero Knowledge. An honestly-generated proof is perfect zero knowledge.

For security parameter λ and (vk, pk), PPT distinguisher D, there exists a
PPT simulator Sim such that the following probabilities are indistinguishable
(at most differ by negl(λ)):
• The probability that D(cm, txexhange) = 1 on an honest transaction

(MantaDAX.Gen is the procedure for trusted setup):

Pr


(vk, pk)←MantaDAX.Gen(1

λ, C),
(snold, ρnew)← D(vk, pk),

D(cm, txexchange) = 1 (cm, txexchange)←
MantaDAX.Prove(pk, accA, snold, aoldsk , c

old).


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• The probability that D(cm, tx′exhange) = 1 on a simulated transaction:

pr


(vk, pk)← Sim(1λ, C),
(snold, ρnew)← D(vk, pk),

D(cm, txexhange) = 1 (cm, tx′exchange)←
Sim(pk, accA, snold, aoldsk , c

old).


6 Conclusion

In this paper, we present Manta, a decentralized anonymous exchange scheme
that ensures users’ privacy while exchanging private coins. The core idea of
Manta is to leverage zkSNARKs to private zero knowledge proof for an au-
tomated market maker scheme. We formally define the security and privacy
properties of our scheme.
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