
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DO

NutBaaS: A Blockchain-as-a-Service
Platform
WEILIN ZHENG1,2, ZIBIN ZHENG1,2, XIANGPING CHEN1,2, KEMIAN DAI3, PEISHAN LI3, AND
RENFEI CHEN3
1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion, Sun Yat-sen University, Guangzhou 510006, China
{zhengwlin}@mail2.sysu.edu.cn,{zhzibin,chenxp8}@mail.sysu.edu.cn
3Department of Blockchain Development, Badou Financial Blockchain Technology Co, Ltd, Guangzhou 510600, China
{daikemian,lipeishan,chenrenfei}@badousoft.com

Corresponding author: Zibin Zheng (zhzibin@mail.sysu.edu.cn).

The work described in this paper was supported by the National Key Research and Development Program (2016YFB1000101), the
National Natural Science Foundation of China (61722214,U1811462), the Guangdong Province Universities and Colleges Pearl River
Scholar Funded Scheme (2016) and the Pearl River S&T Nova Program of Guangzhou (201710010046)

ABSTRACT Blockchain, originated from Bitcoin system, has drawn intense attention from the academic
community because of its decentralization, persistency, anonymity and auditability. In the past decade,
the blockchain technology has evolved and became viable for various applications beyond the domain of
finance. However, due to the complexity of blockchain technology, it is usually difficult and costly for most
developers or teams to build, maintain and monitor a blockchain network that supports their applications.
Most common developers or teams are unable to ensure the reliability and security of the blockchain system,
which to a certain extent affects the quality of their applications. In this paper, we develop a BaaS platform
called NutBaaS, which provides blockchain service over cloud computing environments, such as network
deployment and system monitoring, smart contracts analysis and testing. Based on these services, developers
can focus on the business code to explore how to apply blockchain technology more appropriately to their
business scenarios, without bothering to maintain and monitor the system.

INDEX TERMS Blockchain, Blockchain-as-a-Service, cloud computing, smart contracts

I. INTRODUCTION

Blockchain technology, known as the foundation of Bitcoin
[1], has been used in various fields with its rapid develop-
ment, resulting in the dawn of a new economy [2]. Recently,
a wide range of blockchain-based applications and services
have emerged. However, most developers still lack a con-
venient and effective way to deploy, maintain and monitor
their applications, and thus they cannot ensure the reliability
and security of the applications. There are many reasons for
this, but the most important one is the complexity of the
blockchain technology itself. When developers are designing
business code, they are unaware of the impact from the
complex underlying system, so they cannot take precautions
to deal with future errors. Besides, due to a lack of profes-
sional knowledge, common developers or teams often fail to
monitor the running condition of their systems and cannot
accordingly identify and take appropriate measures to fix
the system errors in time. In order to solve these problems,
developers often need to devote a lot of energy to learning

the underlying technology of the blockchain, rather than
focusing on the design of business code. However, the work
involving these underlying technologies is difficult for most
developers or teams.

For example, as shown in the Figure 1, a Hyperledger Fab-
ric [3] network running Kafka consensus algorithm consists
of three organization, one orderer cluster as well as one Kafka
cluster which is supported by Zookeeper [4]. Therefore, in
order to build this network to support your application, you
should learn how to translate this network topology into a
file that can be understood by docker-compose (either in
JSON or YAML format). Besides, you need to be skilled in
docker and docker-compose, which are used to startup the
network through the file mentioned above. During the startup
process, there is a high probability that a few errors will
occur, such as the mismatch between docker-image version
and source code version, Kafka service unavailable and so
on. Only if you are equipped with all or more of the above
knowledge can you deal with these errors. Furthermore,

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

aimed to monitor the network for more details about each
stage of transactions, such as the duration of the endorsement
and transaction commitment, you need to have an intimate
knowledge of the principle of Kafka consensus algorithm [5]
and even modify the source code to change its underlying
architecture. In addition to the above issues, there are still
many issues to be considered after successful deployment,
such as automatic recovery after system downtime, network
environment updating, etc. In short, it is difficult and costly
for common developers and teams to deploy, maintain and
monitor a blockchain network.

�

�� �

��

���
�
�

���
�
� ���
�
�

�
��
�
	���

�
�

�

�� �

���

�� �

��

����

��������

���
�
� �����
�

�
��
 �����
�

�
��
�
	���

�
�

�
��
�
	���

�
�

�
��
�
	���

�
�

FIGURE 1. A blockchain network based on Hyperledger Fabric.

Based on the problems mentioned above, BaaS
(Blockchain-as-a-Service) has been proposed in recent years.
By embedding the blockchain framework into the cloud
computing platform, a BaaS platform can leverage the
deployment and management advantages of cloud service
infrastructure to provide developers with convenient, high-
performance blockchain ecosystems and related services.
Through these basic cloud services, developers can quickly
startup a blockchain network to support their application
ignoring the complexity of the underlying architecture. Be-
sides, some more advanced services such as those related to
security and performance, have been gradually introduced
into BaaS platform to provide developers with a more com-
plete ecosystem.

Nowadays, many companies, such as IBM and Microsoft,
have released their BaaS platforms and achieved good out-
comes. Their contribution is mainly to reduce the difficulty
of deployment and development, but the services provided by
these platforms still have many shortcomings. Especially in
system monitoring and support of underlying system types,
these platforms have much to be improved. In the paper,
we develop a BaaS platform called NutBaaS (which means
providing developers with a ’hard’ barrier like the nut shell to
protect their blockchain applications) to improve the current
BaaS platforms, providing a more convenient and safer de-

velopment environment for developers. Many basic services
such as network deployment or advanced services like smart
contracts security vulnerability detection are available on the
platform through a set of RESTful API. All services are
dedicated to enabling developers to focus on business code
and leave the rest to NutBaaS.

The remainder of the paper is organized as follows. Section
II presents some related works about BaaS platform and
our major strengths compared with other platforms, while
Section III introduces the background and preliminaries of
the work. The structure and the technological innovation
of NutBaaS will be highlighted in Section IV and Section
V, respectively. Then, some key challenges for the future
development of BaaS are discussed in Section VI. Finally,
we provide a summary of this paper and some future plans in
Section VII.

II. RELATED WORKS AND OUR CONTRIBUTION
Since the concept of BaaS was put forward, many companies
in recent years have rushed to release BaaS platforms offering
services for blockchain manipulations and building, shipping
and running the business logic over blockchain networks.
The well-known platforms include but not limited to IBM
Blockchain [6], Microsoft Azure Blockchain [7], Ethereum
Blockchain as a Service on Azure [8], AWS Blockchain [9]
and so on.

In November 2015, Microsoft announced that it would
provide EBaaS (Ethereum Blockchain as a Service) services
on Azure cloud platform, where developers can quickly
create Ethereum blockchain environments in the easiest and
most efficient way. The platform was officially opened to the
public in August 2016. In February 2016, IBM announced
that it would provide blockchain as a service based on Hyper-
ledger Fabric. IBM Blockchain is designed to provide users
with an end-to-end blockchain platform solution that quickly
builds a highly available blockchain network and provides
blockchain security services. In May of the same year, AWS
(Amazon Web Services) partnered with the investment com-
pany DCG (Digital Currency Group) to provide a blockchain-
as-a-service environment for companies invested by DCG.
Even though these platforms have brought many benefits to
developers and the whole blockchain community, there are
still many deficiencies that need to be improved urgently.

In general, every BaaS platform will only choose one
blockchain type like Hyperledger Fabric, Ethereum or EOS
as a foundation of its underlying architecture. For example,
IBM blockchain uses Hyperledger Fabric, while Ethereum
Blockchain as a Service on Azure uses Ethereum. However,
in various business scenarios, some paying more attention to
the token in the network would choose Ethereum while others
requiring trading performance would choose Hyperledger.
Besides, based on the consideration of file storage, some sce-
narios may have to choose Filecoin [10], which is considered
as a decentralized storage network based on blockchain and
IPFS [11]. It can be seen that the existing BaaS platforms
have relatively monotonous support for blockchain types. On

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

NutBaaS, we support many types like Hyperledger Fabric,
Ethereum, EOS and Filecoin etc. Furthermore, we provide
a solution to combine different blockchain types to support
complex business scenarios.

In addition to the scalability of the supported blockchain
types, we also improve the scalability of smart contracts.
Since the Blockchain2.0 era, smart contracts have promoted
the development of the whole blockchain ecosystem because
it extends the ability of blockchain to process data. However,
the ability of smart contracts to access external data and
other chain’s data is still a troublesome issue which causes
inconvenience to many business scenarios. All the BaaS
platforms mentioned above haven’t made much improvement
in this respect. On NutBaaS, smart contracts are enabled to
call external data interfaces through http or https. This gives
developers more flexibility in designing smart contracts. Be-
sides, developers can easily write and test the contracts on the
platform based on the templates provided.

In system monitoring, most BaaS platforms, such as IBM
Blockchain, focus on the overall operation of the peers in the
network for achieving rapid recovery after node faults as well
as the duration and delay of transactions for a rough statistic
of system performance. However, this is not enough for most
business scenarios based on Hyperledger Fabric. When there
is something wrong in the blockchain system, developers
need more details about the peers and the transactions to
find out which stage (such as endorsement, commitment and
sorting) of the transaction goes wrong and results in system
faults. On NutBaaS, we implement a detailed and real-time
monitoring framework with a log-based method. It can track
service invocation in a transaction and the time-consuming
situation of each stage. Based on these statistics, developers
can conduct a detailed performance analysis on peers that
provide different services in the network and then make a
targeted optimization for them.

Apart from what mentioned above, we also introduce some
advanced technologies into NutBaaS, such as smart contracts
security vulnerability detection and automatic repair. In the
future, we hope that through the joint efforts of everyone, we
can introduce more advanced technologies to build a safer,
more reliable and more convenient BaaS platform.

III. BACKGROUND
A. BLOCKCHAINS
A blockchain can be referred to as a distributed ledger,
where the data and transactions are not under the control
of any third party. Any transactions are completely recorded
in the public ledger in a permanent and verifiable way. The
first introduction of blockchain was implemented by Satoshi
Nakamoto as a core part of Bitcoin.

With the further development of the technology, there
are various blockchains with different goals. For example,
Ethereum names its own blockchain as Ethereum Blockchain
[12], whereas Hyperledger names its own blockchain as
Hyperledger Fabric [3]. However, all of them have some
common elements as follows:

• Replicated ledger: All nodes in a blockchain network
securely store the history of transactions. The latest
transactions are packaged into a block and then the
block is append-only with immutable past. All transac-
tions in the blocks are distributed and replicated among
all nodes taking part in the network.

• Peer-to-Peer network: All nodes share a public ledger
without a centralized control actor over the Internet. In
other words, all nodes are connected through a peer-to-
peer network. Transactions and blocks are synchronized
through this network.

• Consensus: Before the blocks are inserted into the chain,
all nodes on the network need to reach a consensus
on the validity and the order of transactions within the
blocks. The most representative consensus algorithm in
public chain is Proof-Of-Work (POW) [1], which is used
in Bitcoin System. Other algorithms, like Proof of Stake
(POS) [13] and Practical Byzantine Fault Tolerance
(PBFT) [14] are used in Ethereum and Hyperledger
Fabric respectively.

• Cryptography: The security of blockchain system
is based on the knowledge of cryptography. In a
blockchain network, the integrity of transactions sup-
ports digital signatures and proprietary data structures
(e.g.,Merkle tree [15] in Bitcoin, Merkle Patricia Tree
[12], [16] in Ethereum). Besides, the authenticity of
transactions is supported by digital signatures. The pri-
vacy of transactions is supported by asymmetric cryp-
tosystem.

Blockchain technology also has some drawbacks [17],
which have attracted our attention. As we know, the
blockchain is immutable and append-only, so the storage
space of blockchain will continue to grow. For the Bitcoin
blockchain, its size reached 219GB on May 18, 2019. At the
same time, its distributed storage characteristics have caused
a waste of resources. Another crucial issue is transaction
throughput of blockchain network, which can be measured
by transactions per second. Besides, other issues, such as
network congestion, block size, or synchronization mecha-
nism, have been highlighted in many studies. To solve these
issues, in the past decade, a lot of researches [18]–[20]
have concentrated on the improvement of the four elements
mentioned above.

B. CLOUD COMPUTING
Cloud computing is a pay-as-you-go mode of providing scal-
able, flexible, and shared computing services (e.g., servers,
storage, databases, networks, software, analysis, intelligence,
etc.) to users over the network. It is attractive to business
owners because it has several compelling features: high scal-
ability, high reliability, on-demand services, easy access and
extremely low cost.

Nowadays, services offered by clouds can be divided into
three categories: software as a service (SaaS), platform as a
service (PaaS), and infrastructure as a service (IaaS). IaaS
refers to on-demand provisioning of infrastructural resources,

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

while PaaS refers to providing platform layer resources (such
as operating system support) and SaaS refers to providing on-
demand applications. Examples of different types of services
include Amazon EC2 (IaaS) [21], Google App Engine (PaaS)
[22], and Rackspace (SaaS) [23]. In recent years, other types
of cloud service, such as Function-as-a-Service (FaaS) [24]
and Data-as-a-Service (DaaS) [25] have also attracted public
attention.

C. BLOCKCHAIN-AS-A-SERVICE (BAAS)
Blockchain-as-a-service (BaaS), the combination of cloud
computing and blockchain, is an offering that allows users
to leverage cloud-based solutions to build, host and manage
their own blockchain apps, smart contracts and functions on
the blockchain. The BaaS providers manage all the necessary
tasks and activities to keep the infrastructure agile, opera-
tional and easily accessible. It is an interesting development
in the blockchain ecosystem that is indirectly aiding the
blockchain adoption across businesses by helping enterprises
simplify operation process and reduce deployment cost. It is
based on, and works similar to, the concept of Platform-as-a-
Service (PaaS) model.

Clouds can enable the outsourcing of skills and expertise
with regard to technology deployment and management.
Blockchain is an emerging technology, meaning that ex-
perts in the area are limited, and in high demand. As such,
BaaS can facilitate technology access, providing abstractions
over the lower-level technical details. Currently, a key BaaS
marketing focus is on quickly establishing the development
environment to support businesses in their desire to ex-
plore the blockchain technology’s potential. Besides, it can
also provide a series of operation services such as search
query, transaction submission and data analysis based on
blockchain. These services can help developers verify their
concepts and models more quickly. The service ability of
BaaS platform is embodied in its stronger instrumentality,
which facilitates the creation, deployment, operation and
monitoring of blockchain. Recently, many large companies
have gradually released their BaaS platforms, such as IBM
blockchain [6] and Microsoft Azure Blockchain [7], but
the services provided by these platforms still have some
limitations.

IV. ARCHITECTURE
The architecture of NutBaaS is divided into four layers,
which is shown in Figure 2. The lowest layer is the Resource
Layer which provides the infrastructure (such as storage,
databases and networks) needed for blockchain services. The
layer above the Resource Layer is the Service Layer, which
is the most important layer on NutBaaS. All blockchain basic
services and advanced services are implemented in this layer.
By integrating these services, we have constructed some
applications (such as DApp Store, Contract center as well as
some general industry solutions) at the Application Layer that
are conducive to the overall ecological development. In the
Application Layer, people can quickly find solutions to their

business scenarios in the Business Layer, where some mature
solutions and corresponding application examples are shown.

The main goal of the NutBaaS architecture design is to
provide a comprehensive and detailed operational monitoring
mechanism for the blockchain system, as shown in the right
part of Figure 2. The four major layers mentioned above
are also working for this goal. The mechanism covers four
aspects of blockchain operations: Configuration manage-
ment, Visual monitoring, User-defined alert, and Automated
deployment. Automated deployment is aimed at providing
an integrated service from deploying test networks, writing
and testing smart contracts, customizing applications, to ex-
periencing and sharing applications. The key work of Con-
figuration management is the maintenance of the network,
including the initial configuration of the network, as well
as network configuration updates (such as peer upgrades) at
runtime. The purpose of Visual monitoring and User-defined
alert is to provide the user with instant visual information,
and alarm users according to the alarm threshold set by the
user, so that the user can immediately discover the system
problem and solve it. We’ll follow up with more details on
the four major layers mentioned above.

In the Resource Layer, NutBaaS provides various
clouds resources and infrastructures for deploying a basic
blockchain network. NutBaaS can support private, public and
hybrid cloud deployment including Amazon Web Services,
Microsoft Azure, Alibaba Cloud etc. In other words, you can
deploy different types of peers (e.g., orderer peers, endorse-
ment peers) in different clouds, which can reduce the risk
and damage of system collapse when some of the clouds you
choose have problems (e.g., Network jitter, system outage).
Besides, in the mode of hybrid cloud deployment, it is
difficult for service tenants (network participants) to collude
with all cloud service providers and unilaterally modify the
entire network. Compared to the mode of deploying all
peers in the same cloud, hybrid cloud deployment can ef-
fectively increase the attack difficulty of malicious attackers.
In deploying technology, NutBaaS supports docker-container
deployment and other deployment methods. In order to im-
prove the portability and scalability of the system, we also
use Kubernetes [26] (an open-source system for automating
deployment, scalization, and management of containerized
applications) to arrange and manage our containers. Through
the services provided by Kubernetes, network participants
can quickly update, expand and migrate containers (i.e.
peers) or even rearrange the entire network.

The Service Layer, the most important layer on NutBaaS,
can be divided into three sublayers. The lowest sublayer
is the Underlying System supporting the current blockchain
framework for different types of blockchains. Based on the
Underlying System, we develop a lot of tools in Developer
Tools. Then, in Service sublayer, we combined these tools to
provide some basic and advanced services.

Based on the Resource Layer, NutBaaS supports the de-
ployment of multiple underlying systems, including consor-
tium blockchain Hyperledger Fabric 1.0.x to 1.4.x, public

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Maintenance supportResources support

Service integration

Business layer

Application layer

Service layer

Resource layer

Finance Medical Commonweal LoT Insurance Logistics Government affairs

Cloud Service Industry Solutions Contract Center Ecological communityDApp Store

Service Blockchain
building services

Blockchain
join-up services

Protocol and
algorithmic services

Smart
contract services

Wallet
services

Developer
Tools

Blockchain
browser

IDE
Contract

management
SDK &

API
Identity
service

Private blockchain Public blockchain FilecoinConsortium blockchain
Underlying

System

Passport
service

Log
query

Resources and technology: Cloud host, Network resource, Storage resources, Docker, Kubemetes….

Business support

Provide resources and services

Resources providers: Amazon Web Services, Microsoft Azure, Alibaba Cloud….

Operation
monitoring

Configuration
management

Visual
monitoring

User-defined
alert

Automated
deployment

FIGURE 2. The architecture of NutBaaS

or private blockchain Ethereum peers, distributed storage
Filecoin and so on. We also enhance the ability of smart
contracts to access external data, so different types of chains
can access each other’s data through smart contracts. Thus,
in some business scenarios, users can flexibly combine dif-
ferent types of chains according to their needs of business,
making full use of the advantages of different types of chains
without worrying about cross-chain data access. On top of the
Underlying System, we develop a series of tools to facilitate
blockchain developer’s development including Blockchain
browser, IDE, SDK&API, Contract management, Identity
service, Passport service and Log query. These tools are
designed to simplify the interaction between developers and
blockchain. Blockchain browser provides a visual interface
for users to interact with the blockchain system. For exam-
ple, users can see the real-time status (such as transaction
throughput, service quality of peers, etc.) of the blockchain
system through the browser. IDE and SDK&API provide
a set of tools that help developers design smart contracts
and deploy blockchain test network. Contract management is
responsible for managing the contract on the chain, including
contract update, periodic statistics on contract data, and so
on. Identity service and Passport service are mainly related
to Identity-Chain technology (In Section V). Log Query
provides an interface that allows users to trace the operational
records of the blockchain system.

By combining the functions provided by these tools, we
will provide some customized blockchain services to further
reduce the uptake barriers of development. In the Service sub-
layer, we provide a series of services which users can easily
access through a set of RESTful API. Blockchain building

services mainly provides one-click deployment and update
services of blockchain networks based on user-defined pro-
files. Blockchain join-up Services is dedicated to helping
new members quickly join an existing blockchain network.
Besides, NutBaaS provides Smart contract services to help
developers detect security vulnerabilities of smart contracts
to avoid economic losses caused by these potential vulner-
abilities. In order to promote the development of the DApp
ecosystem, NutBaaS also provides Wallet service to allow
developers to experience and share their blockchain appli-
cations. All services in this sublayer are aimed to provide a
convenient and safe development environment.

By integrating the underlying blockchain services, we pro-
vide some applications in the Application Layer to help find
suitable solutions faster according to their business scenarios.
For example, you can experience all kinds of DApp in the
DApp Store, and then know which underlying framework is
suitable for your scenario. Besides, you can learn how to
design smart contracts in Contract Center by reading some
classic examples. In order to create a good learning atmo-
sphere, we also build a community where you can share and
discuss some interesting topics with others. On the top of the
architecture, the Business Layer, our main task is to explore
more business scenarios suitable for the use of blockchain
technology, and then come up with a specific solution for
people to study.

V. TECHNOLOGICAL INNOVATION
A. TRANSACTION BEHAVIOR TRACKING
Performance has been one of the important issues in var-
ious blockchain systems and becomes a major constraint

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of its applications since the emergence of the blockchain.
Current blockchain systems, whether public blockchains or
consortium blockchains (such as Ethereum and Hyperledger
Fabric), suffer from various performance problems, espe-
cially when executing complex smart contracts. In the study
[27], McCorry et al. introduced an open board voting system
which maximizes the privacy of the voters, but the execution
time of the contract will become longer as the number of
voters grows. In addition, Christidis et al. investigated the ap-
plication and limitations of smart contracts for IoT, indicating
that the efficiency is too low to execute the contracts on IoT
[28]. All of these applications have the same problem of long
execution time and low efficiency, which make them still un-
able to replace the centralized solution. Performance is one of
the key factors restricting the application of blockchain-based
smart contacts. Therefore, real-time performance monitoring
of a blockchain network is urgently needed, which can help
developers find out the mistakes when the system is abnormal
as well as optimize the corresponding peers according to the
result of the performance analysis.

At present, there are some studies [29], [30] focusing on
the overall performance evaluation of blockchain systems.
The performance monitoring methods of the current BaaS
platform are similar to the methods of these studies. They
focus on monitoring the overall transaction situation of the
whole network such as transaction throughput, average time
to complete a transaction, transaction confirmation delay and
so on. However, overall metrics cannot reflect the detailed
performance at different stages. Once the network is abnor-
mal, it’s hard to pinpoint which stage of the transaction has
an impact on the system. In the study [31], Peilin Zheng et
al. introduced a Detailed and Real-time Performance Mon-
itoring Framework for different blockchain types, including
Ethereum, Parity-PoW, Hyperledger Fabric, CITA and so on.
This framework takes different stages such as transaction
validation, execution and so on) of a transaction into con-
sideration. In this framework, all peers are treated as the
same role in the system, but in Hyperledger Fabric, there
are several different roles of peers, which are responsible for
different tasks of transaction processing. Besides, as shown in
the Figure 3, a transaction in Hyperledger Fabric is divided
into several stages, some of which (e.g., endorsement) are not
considered in the framework. In general, the framework is
not fully applicable to Hyperledger Fabric. It cannot monitor
the service invocation and time-consuming situation of a
transaction at different stages.

As shown in Figure 3, there are several stages to reach a
transaction in a network based on Hyperledger Fabric. The
first stage is endorsement according to endorsement strategy
and the second one is committing the transactions to Fabric
Orderer. After sorting the transactions, Fabric Orderer will
package all transactions into a block and transmit it to Leader
Peer. Finally, the Leader Peer will synchronize this block to
other peers in the same channel. In order to monitor the ser-
vice invocation and time-consuming situation of each stage,
we develop a GRPC/GRPCS Tracking Interceptor based on

�
���� ��� ������ �
���� ����������������

�� �����������

�
�����
������

�� �������
������������

�� ������������������

	�
��������
����
��������

����
��������

�� �������!�������"�����

�������� �������� ����	����	���

	����	���
����������
����������

FIGURE 3. Four stages to reach a transaction in Hyperledger Fabric.

Jaeger [32]. As shown in Figure 3, transactions and blocks are
transmitted between different peers though GRPC/GRPCS,
so we install a tracking interceptor between GRPC server and
GRPC client. When the endorsement peers, the orderers and
the ordinary peers are interacting with GRPC, the tracking
interceptor can collect the context information for service
invocation as well as transaction information. Finally, all
information is transmitted to our system as a source of data
for our analysis of system performance or exceptions.

There are four collecting points for tracking information
from generation to entry into NutBaaS system, which is
shown in Figure 4:

• Jaeger Client: An OpenTracing-compliant SDK is im-
plemented for different languages. Through the API
provided by the SDK, the GRPC interceptor writes
data to Jaeger Client and then the client passes the
tracing information to the Jaeger Agent according to the
sampling strategy specified by the application.

• Jaeger Agent: It is a network daemon that listens to
receive span data on a UDP port, and it sends data to
the Jaeger collector in batch.

• Jaeger Collector: It receives data from Jaeger Agent and
then writes the data to the backend storage.

• Data Store: Currently, we use Elasticsearch [33], a dis-
tributed, RESTful search and analytics engine capable
of solving a growing number of use cases, to store log
information. Users can query real-time log information
easily through a set of RESTful API.

After collecting the context information, we can track the
service invocation at each stage and the time spent on each
service in a complete transaction. By comparing the service
invocation and time-consuming situation at different stages
of the transaction, we can quickly find out which service is
the main cause of the system exception when the system is
abnormal. Then, we can optimize the peers that provide this
service. In this paper, we optimize the monitoring facility of
blockchain systems based on Hyperledger Fabric by intro-

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

���(� ���(

��
 $*�(��&*%(

�&�$
(�� $� ���

�����(
" �$*

�����(���$* �����(
%""��*%(

�+�+�

�� �%$ *%(*(��! $�
�$�%(#�* %$ � +�& �

�� �+�# * $�%(#�* %$ *% �%""��*%(

��*� �*%(�
�"�)* �)��(��

�� ��,� *(���
 $�%(#�* %$ *%
��*� �*%(�

�+*	��� �(�$)��* %$
	���, %(�(��! $� �-)*�#

�� �)&"�- %('+�(-
(��! $� $�%(#� %$

FIGURE 4. Implementation of GRPC/GRPCS Tracking Interceptor.

ducing a GRPC/GRPCS Tracking Interceptor. At the same
time, we introduce this interceptor into the framework in
the study [31] and integrate this framework into NutBaaS to
provide comprehensive and detailed monitoring services for
different blockchain types.

B. IDENTITY-CHAIN TECHNOLOGY
For most business scenarios, the account is the basic con-
figuration of each product, which is no exception in the
blockchain system. Whether in the public or consortium
chain, a secure account system that supports smart contracts
transactions is required. For example, in Ethereum, each
common user has an account and each account has a public
key and a private key. The security and confidentiality of
transactions initiated by the account are protected by this pair
of secret keys, i.e., by a symmetric cryptosystem. In addition,
a secure account system can withstand many malicious at-
tacks, such as double-spend attack. In the Ethereum account
model, the account’s nonce field is added to each transaction
initiated by the account, so that only one of the transac-
tions with the same nonce value initiated by the account is
recognized by the network finally. Therefore, Ethereum can
effectively withstand double-spend attack.

However, in the current consortium chain frameworks
(such as Hyperledger Fabric), the account system is not com-
plete. In Hyperledger Fabric, the account in Fabric is actually
a set of certificates and key files generated according to the
PKI specification, and is generally only owned by a member
(or a peer) in the organization. Usually the member represents
an institution (such as an enterprise), but for common users
of the institution, they do not have an account. They can only
use the services provided by the institution. Therefore, the
security of transactions for all common users depends on the
confidentiality of member’s certificates and secret key files.
Once a member’s certificates or keys are leaked, the security
of the common user in the member will be threatened. As
shown in Figure 5, we provide Identity-Chain technology to
solve this problem, allowing enterprises to choose their own
encryption algorithm as the public and private key generation
algorithm of accounts and build their own identity chain

according to their business needs. Thus, enterprises can give
their users a secure account (identity) to protect the security
and privacy of their transactions.

����������

�������!����������� 	�������

�����!�����
������!

����������������� ��� � ���������

��������������������������
��� � ���������

����� ����������

�������!������
�������"�����

�������!������
�������������������

�������!������
����������

�������!������
�����!����

����� �������!

��������������! 	�
��� ��!
	�� ��� ��!

���������
�������! �����

FIGURE 5. The design of the Identity Chain

Firstly, the enterprise needs to customize their identity
chain profile based on the templates provided by NutBaaS,
such as identity-chain account address prefix, identity-chain
account permissions as well as what basic information users
need to register. Next, the enterprise uploads the profile
to the NutBaaS platform, and the platform will check the
validity of the profile. Once the profile’s check is passed,
the platform transmits the profile to the deployment factory
and starts deployment. After successful deploying, the cus-
tomized identity chain for the enterprise will be generated
in which the users of the enterprise can register themselves.
In order to ensure the security of the chain account, the
enterprise can choose the identity chain encryption algorithm
(such as Original ECDSA (Elliptic Curve Digital Signature
Algorithm) [34] or Ethereum-modified ECDSA [35]) sup-
ported by the Identity Center as the public and private key
generation algorithm of the account.

Now, in this mode, the user can only successfully submit
the transaction to the business chain when authorized by the
identity chain. Figure 6 shows the interaction between the
identity chain and the business chain after the user initiates a
transaction.

�� 	���������� �������������������

�� 	��� ��������� �� ������������������

�� ������������� �����������

��
�������������� �����������

��������
� ������
����

���

	
� ��	�
 ����	
��� ���	

����

FIGURE 6. The interaction between the identity chain and the business chain.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1) Send random information request: When the
Bussiness-Chain peer (a member of the organization)
receives a transaction, and if the transaction needs to
be authorized, a request is sent to obtain the random
information. (If the authorization is forcibly skipped,
the transaction fails due to the transaction verification.)

2) Obtain random information: Business-Chain peer
sends a request for random information, including the
public identity information of the user. After receiving
the request, Identity-Chain peer first checks whether
the public identity information sent by Business-Chain
peer is legal. If it is legal, a random information is
generated and returned to the Business-Chain peer. The
generated random information and the public identity
of the user are saved for a short period of time.

3) Send signature of random information: The Bussiness-
Chain peer receives the random information returned
by the Identity-Chain peer, then uses the elliptic curve
encryption algorithm to sign the random information.
Finally, it sends the signature information and the
random information to the Identity-Chain peer.

4) Verify identity information: When the Identity-Chain
peer receives the information from the Bussiness-
Chain peer, it first checks whether the random infor-
mation is generated by itself in a short period of time.
If the check is passed, the random information is used
to obtain the public identity information of the user
from the identity chain and then use it to verify the
signature. If all verifications pass, the transaction will
be successfully submitted, otherwise the transaction
will be terminated.

Through the Identity-Chain technology described above, a
common user can register an account on the identity chain
of the enterprise and initiate a transaction on the network
as a separate entity. The privacy of the individual users and
the security of the transaction are supported by user’s private
key. Any transaction needs to go through the authorization
process shown in Figure 6 to be successfully executed.
Identity-Chain technology optimizes the account system of
Hyperledger Fabric, allowing the users of the member peers
to interact with the blockchain system as independent indi-
viduals rather than relying entirely on the services provided
by the member peers. In addition, this technology allows
enterprises to customize their user account system, including
the choice of the encryption algorithm, the definition of
account permission and account prefix, etc.

C. EXTERNAL DATA ACCESS CAPABILITY OF SMART
CONTRACTS
With the emergence of smart contracts, blockchain technol-
ogy is no longer only used in digital currencies, but also
widely used in finance, medical, the Internet of Things and so
on. However, smart contracts have limited ability to process
and store data. For example, in Ethereum, due to the limita-
tion of each block’s gasLimit, the amount of data that a smart
contract can handle in each transaction is limited. In addition,

once the smart contract stores too much data, the speed of
querying the data will be low. Therefore, when designing a
smart contract, developers usually introduce a cache database
to store data, and only store some key data on the chain.
However, in the design of most business scenarios (whether
based on Hyperledger Fabric or Ethereum), the inability of
smart contracts to access external data(from cache database
or other applications) is a huge inconvenience to developers.

Oraclize [36] is designed to solve this problem. It is a
smart contract in Ethereum, so that it can only work for
Ethereum. Besides, callers need to pay a fee based on their
use of Oraclize. At the same time, Oraclize uses contract-
call-contract to access external data, which is not the most
familiar development method for developers. There is still a
lack of a common and free way for users to access external
data within contracts. As a result, we develop a module
called NutHTTPS to make it easy for smart contracts to
access external data through http or https, which can work
for various frameworks including Hyperledger Fabric and
Ethereum. Figure 7 shows the basic implementation logic of
the module:

NutHTTPS Module

Data Store

Smart Contract

Http/Https
Response

GRPC Stub

NutBaaS Message Queue

GRPC Server

External data

Write logs to
Data Store

Http/Https
Request

ProtoBuf Request

ProtoBuf Response

Call NutHTTPS
module

Return result
through callbacks

FIGURE 7. The basic implementation logic of NutHTTPS module.

The NutHTTPS module is primarily responsible for defin-
ing data specifications for smart contracts to interact with ex-
ternal data, submitting requests to NutBaaS Message Queue,
and processing the results returned from the message queue.
In order to support the diversification of programming lan-
guages for smart contracts, NutBaaS uses Protocol Buffers
(protoBuf) [37] to define the parameter format for requests
to interact with external data, and interacts with NutBaaS
Message Queue via the GRPC/GRPCS protocol. ProtoBuf
is a Google’s language-neutral, platform-neutral, extensible
mechanism for serializing structured data – like XML, but
smaller, faster, and simpler. The data interaction format de-
fined by ProtoBuf can be compiled into GRPC Stub code
(interface code) for different programming languages. GRPC
[38] is an open-source remote procedure call system initially
developed at Google, which uses HTTP/2 for transport and
ProtoBuf as the interface description language. NutBaaS
uses protoBuf to define the parameter type of a request, as
shown in Table 1, and generate different GRPC Stub code for
different programming languages.

Developers can import Stub code for the corresponding
programming language according to their needs. When it is

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. The parameter format of a request

Request param-
eters

Type Instruction

url String The uniform resource lo-
cator of the external data
source

params Object The parameter list of re-
quests

requestType String Request type: GET, POST,
PUT, DELETE

timeout long Timeout unit: milliseconds

necessary to interact with external data, the developer only
needs to fill in the relevant parameters of Table 1 and send a
request to the NutBaaS Message Queue through GRPC. The
Stub code converts the parameters represented by the high-
level language into a messages in ProtoBuf format and sends
a request to the NutBaaS Message Queue. The NutBaaS
message queue mainly converts and verifies the message in
ProtoBuf format through a GRPC server and constructs a
HTTP/HTTPS request to interact with external data. During
this process, all request logs are logged to the backend
database for later queries. After the GRPC server gets the
result of the request, it also returns the result to NutHTTPS in
ProtoBuf format and finally to the smart contract that initiated
the request. With the NutHTTPS module, developers can
easily access any data outside the contracts, as long as it is
accessible via the network. In addition, developers can use
NutHTTPS to build a logical channel between different types
of chains so that different chains can access each other’s data.

D. SMART CONTRACTS SECURITY VULNERABILITY
DETECTION

Smart contracts, which run on each node of the blockchain
network in the form of chain scripts, provide an application-
level extension interface for the blockchain. Based on these
interfaces, smart contracts help people apply blockchain
technology to more complex business scenarios, and as a re-
sult, they often carry a large amount of digital assets or com-
mercial interests in many scenarios. At the same time, smart
contracts are highly autonomous, meaning that once a smart
contract is deployed, it cannot be changed at will. Therefore,
it is especially important to perform security vulnerability
detection before deploying smart contracts. Especially after
the DAO incident, people further realized the importance of
the security issues of smart contracts, which may cause huge
economic losses.

In recent years, the identification and detection of smart
contracts security vulnerabilities has become a research
hotspot in academia. Traditional code defect identification
and detection are mainly divided into two types, namely,
code defect detection based on test cases [39] and code
defect detection based on static analysis [40]. The former
is to input test cases to the program under test, simulate the
execution process of the program, observe the output of the
program and speculate on possible defects in the program;

the latter is to identify or find potential defects through
automatic scanning and analysis of the program code. Cur-
rently, researchers mainly use static analysis methods (such
as symbolic execution, model checking) to detect security
vulnerabilities in smart contracts. In the studies [41] and
[42], symbolic execution technique is used to detect potential
types of known vulnerabilities in smart contracts at the byte-
code level. In addition, multiple smart contracts verification
systems [43]–[46] use model checking techniques to detect
potential vulnerabilities in smart contracts. These systems,
based on the attributes or assertions given by the users,
use model checking technique to verify that whether the
target contract implementation has relevant characteristics,
thereby discovering potential vulnerabilities in the contract.
However, the existing vulnerability detection techniques rely
on heuristic strategies, such as depth (or breadth) prioritized
search in symbolic execution techniques, which may result
in higher computational costs in order to achieve analytical
accuracy. On NutBaaS, we use existing tagged data (many
contracts of known defect types) to initially establish a learn-
ing model, use machine learning algorithms to determine
contract vulnerabilities, and reduce the cost of heuristics
strategies.

In the previous work, we have collected the source code
of 19,000 smart contracts and their bytecode files from
Ethereum. Through manual verification, we found 11 com-
mon types of code defects in smart contracts, such as integer
overflow, transaction failure exceptions, transaction status
dependency, and so on. In the data annotation phase, we have
manually selected 2000 smart contracts from the dataset and
manually verified them, i.e., detected whether each contract
has the above 11 code defects.

In the feature extraction phase, we are ready to incorporate
the source code and bytecode files of the smart contracts
into the feature consideration. The source code defines the
logical behavior of the contract program. We use the way
of traversing the code AST (Abstract Syntax Tree) to obtain
the behavior characteristics of the code, taking the timing
characteristics of the contract bytecode file into account. We
will measure contract defects from different perspectives by
combining the two types of features.

�	�� �	����

���� ����

���� ����

���� ����

���� ����

�
	��
� �����

��
�� �����

���� ���� ���
�
�� ����

FIGURE 8. The learning model for smart contracts vulnerability detection.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In the model training phase, considering that the contract
source AST has a complex logical structure, we model it
using bidirectional LSTM (ie, BiLSTM, Bi-directional Long
Short-Term Memory). At the same time, since the contract
bytecode file only contains timing information, we use a one-
way LSTM (Long Short-Term Memory) to model it. The
model architecture is shown in Figure 8. On this basis, we
use a manually validated data set for model training, and
finally use the trained model to predict contract defects. In the
future, we will continue to improve our model from different
perspectives to improve the accuracy of forecasts and release
it as an official service for users.

VI. DISCUSSION
In recent years, the concept of BaaS has become popular,
and a large number of companies have released their BaaS
platforms and offered a variety of innovative services to
seize the market. The blockchain infrastructure (or service)
provided by the BaaS platform aims to bring convenience
to developers and ensure the reliability and security of the
blockchain system (or application), but the service providers
often ignore the reliability of the infrastructure itself. The
availability and reliability of BaaS infrastructure is impor-
tant for those planning to contract or deliver shared ledgers
through these environments, mostly in order to keep up with
strict service level agreements (SLAs) [47]. However, current
service providers still lack an effective means to evaluate the
reliability of these infrastructures, and optimize the relevant
components based on the results of the evaluation to improve
the overall service quality of the BaaS platform. Carlos
Melo et al. used the Dynamic Reliability Block Diagram
(DRBD) to evaluate the reliability of the BaaS infrastructure
[48]. By understanding system availability and reliability in
advance, these service providers can apply high-availability
technologies such as redundant or preventive maintenance
and improve their SLAs. The study was based solely on the
experimental environment of Hyperledger Cello [49], which
ultimately resulted in system downtime, but did not perform
a comprehensive reliability assessment analysis. In the fu-
ture, seeking a comprehensive and detailed BaaS reliability
assessment through modeling will play an important role in
the development of BaaS.

Blockchain has received more and more attention because
of its potential to decentralise, disintermediate, and enable
‘trustless’ interactions. In recent years, BaaS offerings have
gradually emerged to provide the underlying supporting in-
frastructure, aiming to reduce the uptake barriers of the
technology. However, an interesting characteristic of BaaS is
that it reintroduces an intermediary in the form of a service
provider (e.g., IBM, Microsoft, Amazon, etc.), who often has
a relationship with certain participants in the network (for
example, some participants may have more power to control
the infrastructure than others through their arrangements with
service providers). This ‘recentralisation’ introduces new
trust considerations as they relate to the provider. As a third-
party provider of blockchain services, BaaS seems to run

counter to the decentralized trust mechanism of blockchain.
In the study [50], Jatinder Singh et al. analyzed the recen-
tralisation and the trust considerations of BaaS in detail,
particularly with respect to the role of service providers.
At present, the views on this issue introduced by BaaS are
mainly divided into two factions. Some people believe that
BaaS introduces the role of a third-party service provider,
which is contrary to the decentralization and trustless mecha-
nism of the blockchain. Others believe that BaaS reduces the
uptake barriers of development and improves the security and
reliability of blockchain applications, thus, would drive the
development of blockchain technology. They believe that the
recentralisation and the trust issue of BaaS can be solved by
other means. We prefer the latter view that the emergence of
BaaS has more advantages than disadvantages for the devel-
opment of blockchain. At present, there are also a few studies
proposing some solutions to the issue. Study [51] introduces
a novel Blockchain-as-a-Service paradigm which adopts de-
ployable components to reconstruct the open and decentral-
ized blockchain service. This paradigm increases the trans-
parency of BaaS when deploying and running blockchain
systems to a certain degree, but it cannot prevent collusion
between tenants and providers. In the future, we will study
this issue and seek a more complete solution.

VII. CONCLUSION ADN FURURE WORK
This paper proposes a more complete platform to make up
for the shortcomings of the current BaaS platform, espe-
cially in terms of reliability and security. We also introduce
some more advanced technical services, such as Identity-
Chain technology and smart contracts security vulnerability
detection. In addition, we discuss the reliability of BaaS
infrastructure and the new trust considerations arising from
BaaS, which would undermine the security, decentralization
and ‘trustless’ mechanism of blockchain.

In the future, our work can be extended in different aspects:
(1) Transparency of blockchain deployment and runtime:
Applying a new service paradigm (maybe similar to that
described in the study [51]) to NutBaaS. Increasing the
transparency of blockchain deployment and runtime through
the new service paradigm to reduce the damage of BaaS
platform as a third party to the decentralization of blockchain.
(2) Reliability of BaaS infrastructure (service): Seeking
a more detailed and versatile evaluation method for BaaS
infrastructure. In this way, the service providers or the service
users can optimize the relevant components or take corre-
sponding preventive measures according to the evaluation re-
sults. (3) Security of smart contracts: Refining the existing
machine learning model and conducting research on smart
contracts performance optimization (such as reducing the gas
consumption of contracts) and automatic repair.

REFERENCES
[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] M. Swan, Blockchain: Blueprint for a new economy. " O’Reilly Media,

Inc.", 2015.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, no. 9. Boston, MA, USA, 2010.

[5] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[6] “Ibm blockchain(2016),” https://www.ibm.com/blockchain.
[7] “Microsoft azure blockchain solutions (2017),”

https://azure.microsoft.com/en-in/solutions/blockchain/.
[8] “Ethereum blockchain as a service on azure (2018),”

https://azure.microsoft.com/ en-us/blog/ethereum-blockchain-as-a-
service-now-on-azure/.

[9] “Aws blockchain partners,” https://aws.amazon.com/partners/blockchain/.
[10] J. Benet and N. Greco, “Filecoin: A decentralized storage network,”

Protoc. Labs, 2018.
[11] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.
[12] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[13] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-

of-stake,” self-published paper, August, vol. 19, 2012.
[14] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,

vol. 99, no. 1999, 1999, pp. 173–186.
[15] R. C. Merkle, “A digital signature based on a conventional encryption

function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[16] “Merkle patricia tree,” https://github.com/ethereum/wiki/wiki/Patricia-
Tree.

[17] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is
current research on blockchain technology?—a systematic review,” PloS
one, vol. 11, no. 10, p. e0163477, 2016.

[18] J. Kwon, “Tendermint: Consensus without mining,” Retrieved May,
vol. 18, p. 2017, 2014.

[19] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart con-
tracts,” in 2016 IEEE symposium on security and privacy (SP). IEEE,
2016, pp. 839–858.

[20] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), 2016, pp.
45–59.

[21] “Amazon elastic computing cloud,” https://aws.amazon.com/ec2/.
[22] “Google app engine,” http://code.google.com/appengine.
[23] “Dedicated server, managed hosting, web hosting by rackspace hosting,”

http://www.rackspace.com.
[24] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of

serverless computing and function-as-a-service (faas) in industry and
research,” arXiv preprint arXiv:1708.08028, 2017.

[25] Z. Zheng, J. Zhu, and M. R. Lyu, “Service-generated big data and big
data-as-a-service: an overview,” in 2013 IEEE international congress on
Big Data. IEEE, 2013, pp. 403–410.

[26] “An open-source system for automating deployment, scaling, and manage-
ment of containerized applications.” https://kubernetes.io/.

[27] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for board-
room voting with maximum voter privacy,” in International Conference on
Financial Cryptography and Data Security. Springer, 2017, pp. 357–375.

[28] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.

[29] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran, and
P. Rimba, “On availability for blockchain-based systems,” in 2017 IEEE
36th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2017,
pp. 64–73.

[30] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, “Block-
bench: A framework for analyzing private blockchains,” in Proceedings of
the 2017 ACM International Conference on Management of Data. ACM,
2017, pp. 1085–1100.

[31] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed and
real-time performance monitoring framework for blockchain systems,” in
2018 IEEE/ACM 40th International Conference on Software Engineering:

Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2018, pp.
134–143.

[32] “Jaeger: open source, end-to-end distributed tracing,”
https://www.jaegertracing.io.

[33] “a distributed, restful search and analytics engine ca-
pable of solving a growing number of use cases,”
https://www.elastic.co/products/elasticsearch.

[34] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36–63, 2001.

[35] H. Mayer, “Ecdsa security in bitcoin and ethereum: a research survey,”
CoinFaabrik, June, vol. 28, 2016.

[36] “A reliable bridge between smart contracts and the internet.”
https://github.com/oraclize.

[37] “Protocol buffers: A language-neutral, platform-neutral
extensible mechanism for serializing structured data,”
https://developers.google.com/protocol-buffers/.

[38] “Grpc: A high performance, open-source universal rpc framework,”
https://grpc.io/.

[39] J. Jaffar, V. Murali, and J. A. Navas, “Boosting concolic testing via
interpolation.” in ESEC/SIGSOFT FSE, 2013, pp. 48–58.

[40] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” in ACM SIGPLAN Notices, vol. 38, no. 5. ACM, 2003, pp.
196–207.

[41] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[42] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference. ACM, 2018,
pp. 653–663.

[43] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016, pp. 91–96.

[44] G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto, “Validation of de-
centralised smart contracts through game theory and formal methods,”
in Programming Languages with Applications to Biology and Security.
Springer, 2015, pp. 142–161.

[45] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of
smart contracts,” in 25th Annual Network and Distributed System Security
Symposium (NDSS’18), 2018.

[46] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 67–82.

[47] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level agreement in
cloud computing,” 2009.

[48] C. Melo, J. Dantas, D. Oliveira, I. Fé, R. Matos, R. Dantas, R. Maciel, and
P. Maciel, “Dependability evaluation of a blockchain-as-a-service envi-
ronment,” in 2018 IEEE Symposium on Computers and Communications
(ISCC). IEEE, 2018, pp. 00 909–00 914.

[49] H. Cello, “Setup cello platform,” 2017. [Online]. Available:
https://github.com/hyperledger/cello/blob/master/docs/setup.md

[50] J. Singh and J. D. Michels, “Blockchain as a service (baas): Providers
and trust,” in 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2018, pp. 67–74.

[51] Z. Wan, M. Cai, J. Yang, and X. Lin, “A novel blockchain as a service
paradigm,” in Blockchain - ICBC 2018 - First International Conference,
Held as Part of the Services Conference Federation, SCF 2018, Seattle,
WA, USA, June 25-30, 2018, Proceedings, 2018, pp. 267–273. [Online].
Available: https://doi.org/10.1007/978-3-319-94478-4_20

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941905, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

WEILIN ZHENG is currently pursuing the BA.D.
degree with the School of Data and Computer Sci-
ence, Sun Yat-sen University, Guangzhou, China.
His research interests include performance mon-
itoring, blockchain computing power utilization,
and blockchain-based decentralized applications.

ZIBIN ZHENG received the Ph.D. degree from
the Chinese University of Hong Kong, in 2011.
He is currently a Professor at School of Data and
Computer Science with Sun Yat-sen University,
China. He serves as the Chair of the Software
Engineering Department. He published over 120
international journal and conference papers, in-
cluding 3 ESI highlycited papers. According to
Google Scholar, his papers have more than 7000
citations, with an H-index of 42. His research

interests include blockchain, services computing, software engineering, and
financial big data. He was a recipient of several awards, including the Top 50
Influential Papers in Blockchain of 2018, the ACM SIGSOFT Distinguished
Paper Award at ICSE2010, the Best Student Paper Award at ICWS2010. He
served as BlockSys’19 and CollaborateCom’16 General Co-Chair, SC2’19,
ICIOT’18 and IoV’14 PC Co-Chair.

XIANGPING CHEN is an associate professor in
the School of Communication and Design, Sun
Yat-sen University. She got her Ph.D. degree from
the Peking University in 2010. Her research in-
terest includes software engineering and mining
software repositories.

KEMIAN DAI has fourteen years’ experience of
the software development. He has in charge of
many ERP system and other large-scale project
implementation, and he has been responsible for
the architecture planning, design, implementation
and problem solving of many large-scale projects
and development of many big data projects, in-
cluding HengTuo Freight Rubik’s Cube, Precision
Advertising Platform, Cloud Finance Platform.
He provides professional open source technology

consulting services for many enterprises in China, and helps enterprises to
improve and enhance their information construction capabilities. He awards
IBM 2009-2010 technical elite, IBM 2010 intellectual leader and other titles.
At present, He mainly research about cloud computing, big data, machine
learning, intelligent recommendation, blockchain. At present, He mainly
leads the team to develop BD BaaS, which provide many domestic enter-
prises with blockchain solutions and open source blockchain technologies
that provide appropriate scenarios. At the same time, he published several
papers on blockchain, and based on the BaaS platform, he carried out co-
operation with a number of colleges and universities on blockchain teaching
platform to promote the development of blockchain talent construction.

PEISHAN LI main developer of the BaaS Plat-
form. She is an experienced developer who has
participated in many blockchain project, such as
DongGuan Blockchain Enterprise Database, Wan-
gAn Trust Certificate Storage Platform, HitChain
distribution. At present, her research interests
include BaaS development, blockchain services,
such as ETH, Fabric, IPFS, Stellar and so on. She
also participated in the design and development
of BaaS platform and BD blockchain, which ob-

tained a number of technical Copyrights and patents.

RENFEI CHEN nine years of experience in
computer software and Internet industry, long-
term focus on product quality and implemen-
tation areas, proficient in product quality au-
tomation construction and project continuous au-
tomation deployment, has completed a number
of high-concurrence and high-availability deploy-
ment frameworks supporting provincial govern-
ment. System performance tuning can support user
levels up to 10,000 people, and continue to provide

performance tuning for a number of well-known enterprises. At present, in-
depth study of the area of block chain technology, mainly involving the block
chain BaaS, Hyperledger Super Accounts, ETH, IPFS, Bubi block chain,
and so on, with the team to create the BD BaaS. And based on block chain
technology, combined with docker, k8s rapid construction of deployment
framework, for the majority of enterprises to quickly build block chain
information security applications.

12 VOLUME 4, 2016

