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ABSTRACT

Byzantine fault-tolerant (BFT) protocols allow a group of replicas

to come to consensus even when some of the replicas are Byzantine

faulty. There exist multiple BFT protocols to securely tolerate an op-

timal number of faults 𝑡 under different network settings. However,

if the number of faults 𝑓 exceeds 𝑡 then security could be violated.

In this paper we mathematically formalize the study of forensic
support of BFT protocols: we aim to identify (with cryptographic

integrity) as many of the malicious replicas as possible and in as dis-

tributed manner as possible. Our main result is that forensic support

of BFT protocols depends heavily on minor implementation details

that do not affect the protocol’s security or complexity. Focusing

on popular BFT protocols (PBFT, HotStuff, Algorand) we exactly

characterize their forensic support, showing that there exist mi-

nor variants of each protocol for which the forensic supports vary

widely. We show strong forensic support capability of LibraBFT,

the consensus protocol of Diem cryptocurrency; our lightweight

forensic module implemented on a Diem client is open-sourced [4]

and is under active consideration for deployment in Diem. Finally,

we show that all secure BFT protocols designed for 2𝑡 + 1 replicas
communicating over a synchronous network forensic support is

inherently nonexistent; this impossibility result holds for all BFT

protocols and even if one has access to the states of all replicas

(including Byzantine ones).

CCS CONCEPTS

• Security andprivacy→Distributed systems security; •Com-

puter systems organization→Dependable and fault-tolerant

systems and networks.
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1 INTRODUCTION

Byzantine Fault Tolerant (BFT) protocols, guaranteeing distributed

consensus among parties that follow the protocol, are a corner

stone of distributed system theory. In the relatively recent context

of blockchains, BFT protocols have received renewed attention;

new and efficient (state machine replication (SMR)) BFT protocols

specifically designed for blockchains have been constructed (e.g.,

Algorand [18], HotStuff [32], Streamlet [12]). The core theoretical

security guarantee is that as long as a certain fraction of nodes are

“honest”, i.e., they follow the protocol, then these nodes achieve

consensus with respect to (a time evolving) state machine regardless

of the Byzantine actions of the remaining malicious nodes. When

the malicious nodes are sufficiently numerous, e.g., strictly more

than a 1/3 fraction of nodes in a partially synchronous network,

they can “break security”, i.e., band together to create different

views at the honest participants.

In this paper, we are focused on “the day after” [16]: events after
malicious replicas have successfully mounted a security breach.

Specifically, we focus on identifying which of the participating

replicas acted maliciously; we refer to this action as “forensics”.

Successful BFT protocol forensics meets two goals:

• identify as many of the nodes that acted maliciously as pos-

sible with an irrefutable cryptographic proof of culpability;

• identification is conducted as distributedly as possible, e.g.,

by the individual nodes themselves, with no/limited commu-

nication between each other after the security breach.

Main contributions. Our central finding is that the forensic pos-

sibilities crucially depend on minor implementation details of BFT

protocols; the details themselves do not affect protocol security or

performance (latency and communication complexity); we demon-

strate our findings in the context of several popular BFT protocols

for Byzantine Agreement (BA). We present our findings in the con-

text of a mathematical and systematic formulation of the “forensic

support” of BFT protocols. The forensic support of any BFT protocol

is parameterized as a triplet (𝑚,𝑘, 𝑑), that represents the aforemen-

tioned goals of forensic analysis. The triplet (𝑚,𝑘, 𝑑) along with

traditional BFT protocol parameters of (𝑛, 𝑡, 𝑓 ) is summarized in
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Symbol Interpretation

𝑛 total number of replicas

𝑡 maximum number of faults for obtaining agreement

and termination

𝑓 actual number of faults

𝑚 maximum number of Byzantine replicas under which

forensic support can be provided

𝑘 the number of different honest replicas’ transcripts

needed to guarantee a proof of culpability

𝑑 the number of Byzantine replicas that can be held

culpable in case of an agreement violation

Table 1: Summary of notations.

Protocols

Forensic

Support

Parameters

𝑚 𝑘 𝑑

PBFT-PK

HotStuff-view Strong 2𝑡 1 𝑡 + 1
VABA

HotStuff-hash Medium 2𝑡 𝑡 + 1 𝑡 + 1
PBFT-MAC 0

HotStuff-null None 𝑡 + 1 2𝑡 1

Algorand 0

Table 2: Summary of results; the forensic support values of

𝑑 are the largest possible and 𝑛 = 3𝑡 + 1 here.

Table 1. We emphasize that each of the protocol variants is safe and

live when 𝑓 ≤ 𝑡 (here 𝑛 = 3𝑡 + 1 for all the protocols considered)
but their forensic supports are quite different.

Security attacks on BFT protocols can be far more subtle than

simply double voting or overt equivocation (when the culpable

replicas are readily identified), and the forensic analysis is corre-

spondingly subtle. This paper brings to fore a new dimension for

secure BFT protocol design beyond performance (low latency and

low communication complexity): forensic support capabilities.

We analyze the forensic support of classical and state-of-the-art

BFT protocols for Byzantine Agreement. Our main findings, all

in the settings of safety violation (agreement violation), are the

following, summarized in Table 2.

• Parameter d. We show that the number of culpable replicas 𝑑

that can be identified is either 0 or as large as 𝑡 +1. In other words,
if at least one replica can be identified then we can also identify

the largest possible number, 𝑡 + 1 replicas; the only exception

is for HotStuff-null, where in a successful safety attack, we can

identity the culpability of one malicious replica.

• Parameterm.We show that the maximum number of Byzantine

replicas 𝑚 allowed for nontrivial forensic support (i.e., 𝑑 > 0)

cannot be more than 2𝑡 . Furthermore, any forensic support fea-

sible with 𝑚 is also feasible with 𝑚 being its largest value 2𝑡 ,

i.e., if (𝑚,𝑘, 𝑑) forensic support is feasible, then (2𝑡, 𝑘, 𝑑) is also
feasible.

• Parameter k. Clearly at least one replica’s transcript is needed

for forensic analysis, so 𝑘 = 1 is the least possible value. This

suffices for several of the BFT protocol variants. However for

HotStuff-hash, 𝑘 needs to be at least 𝑡 + 1 for any nontrivial

forensic analysis.

• Strong forensic support. The first three items above imply that

the strongest possible forensic support is (2𝑡, 1, 𝑡 +1). Further, the
BFT protocols in Table 2 that achieve any nontrivial forensic sup-

port automatically achieve the strongest possible forensics (the

only exception is HotStuff-hash, for which the forensic support

we identified is the best possible).

• Impossibility. For certain variants of BFT protocols (PBFT-MAC,

HotStuff-null, and Algorand), even with transcripts from all hon-

est replicas, non-trivial forensics is simply not possible, i.e., 𝑑 = 0

even if 𝑚 is set to its smallest and 𝑘 set to its largest possible

values (𝑡 + 1 and 2𝑡 respectively); again, HotStuff-null allows the

culpability of a single malicious replica.

• Practical impact. Forensic support is of immediate interest to

practical blockchain systems; we conduct a forensic support anal-

ysis of LibraBFT, the consensus protocol in the new cryptocur-

rency Diem, and show in-built strong forensic support. We have

implemented the corresponding forensic analysis algorithm in-

side of a Diem client and built an associated forensics dashboard;

our reference implementation is available open-source [4] and is

under active consideration for deployment in Diem.

• BFT with 𝑛 = 2𝑡 + 1. For a secure BFT protocol operating on a

synchronous network, the ideal setting is 𝑛 = 2𝑡 + 1. For every
such protocol we show that at most one culpable replica can be

identified (i.e., 𝑑 is at most 1) even if we have access to the state

of all honest nodes, i.e, 𝑘 = 𝑡 .

Outline. We describe our results in the context of related work in

§2; to the best of our knowledge, this is the first paper to system-

atically study BFT protocol forensics. The formal forensic support

problem statement and security model is in §3. The forensic support

of PBFT, HotStuff and Algorand (and variants) are explored in §4,

§5, §6, respectively. Our forensic study of LibraBFT and implemen-

tation of the corresponding forensic protocol is the focus of §7. In

appendix §A, we present the forensic support analysis for VABA,

a state-of-the-art efficient BFT for asynchronous network condi-

tions. The impossibility of forensic support for all BFT protocols

operating in the classical 𝑛 = 2𝑡 + 1 synchronous network setting is
shown in §B. Our choice of the 5 protocols studied here (PBFT, Hot-

Stuff, Algorand, LibraBFT, VABA) is made with the goal of covering

a variety of settings: (a) partially synchronous vs asynchronous;

(b) authenticated vs non-authenticated; (c) player replaceable vs

irreplaceable; (d) chained version vs single-shot version; (e) vari-

ants that communicate differing amounts of auxiliary information.

Stitching the results across the 5 different protocols into a coherent

theory of forensic support of abstract BFT protocols is an exciting

direction of future work; this is discussed in §8.



2 RELATEDWORK

BFT protocols. PBFT [10, 11] is the first practical BFT SMR proto-

col in the partially synchronous setting, with quadratic communi-

cation complexity of view change. HotStuff [32] is the first partially

synchronous SMR protocol that enjoys both a linear communica-

tion of view change and optimistic responsiveness. Streamlet [12]

is another SMR protocol known for its simplicity and textbook con-

struction. Asynchronous Byzantine agreement is solved by [2] with

asymptotically optimal communication complexity and round num-

ber. Synchronous protocols such as [1, 3] aim at optimal latency.

Algorand [14, 18] designs a committee self-selection mechanism,

and the Byzantine agreement protocol run by the committee decides

the output for all replicas.

Beyond one-third faults. The seminal work of [17] shows that it

is impossible to solve BA when the adversary corrupts one-third

replicas for partially synchronous communication (the same bound

holds for SMR). In BFT2F [22], a weaker notion of safety is defined,

and a protocol is proposed such that when the adversary corrupts

more than one-third replicas, the weaker notion of safety remains

secure whereas the original safety might be violated. However, the

weaker notion of safety does not protect the system against common

attacks, e.g., double-spending attack in distributed payment systems.

Flexible BFT [23] considers the case where clients have different

beliefs in the number of faulty replicas and can act to confirm

accordingly. Its protocol works when the sum of Byzantine faults

and alive-but-corrupt faults, a newly defined type of faults, are

beyond one-third. Two recent works [21, 31] propose BFT SMR

protocols that can tolerate more than one-third Byzantine faults

after some specific optimistic period. The goal of these works is to

mask the effects of faults, even when they are beyond one-third,

quite different from the goals of forensic analysis.

Distributed system forensics.Accountability has been discussed

in seminal works [19, 20] for distributed systems in general. In the

lens of BFT consensus protocols, accountability is defined as the

ability for a replica to prove the culpability of a certain number of

Byzantine replicas in [15]. Polygraph, a new BFT protocol with high

communication complexity 𝑂 (𝑛4), is shown to attain this property

in [15]. Reference [28] extends Polygraph to an SMR protocol, and

devises a finality layer to “merge” the disagreement. Finality and

accountability are also discussed in other recent works; examples

include Casper [8], GRANDPA [29], and Ebb-and-flow [26]. Casper

and GRANDPA identify accountability as a central problem and

design their consensus protocols around this goal. Ebb-and-flow

[26] observes that accountability is immediate in BFT protocols for

safety violations via equivocating votes; however, as pointed out in

[15], safety violations can happen during the view change process

and this is the step where accountability is far more subtle.

Reference [15] argues that PBFT is not accountable and cannot

be modified to be accountable without significant change/cost. We

point out that the definition of accountability in [15] is rather nar-

row: two replicas with differing views have to themselves be able

to identify culpability of malicious replicas. On the other hand, in

forensic support, we study the number of honest replicas (not nec-

essarily restricted to the specific two replicas which have identified

a security breach) that can identify the culpable malicious replicas.

Thus the definition of forensic support is more flexible than the one

on accountability. Moreover, our work shows that we can achieve

forensic support for protocols such as PBFT and HotStuff without

incurring additional communication complexity other than (i) send-

ing a proof of culpability to the client in case of a safety violation,

and (ii) the need to use aggregate signatures instead of threshold

signatures.

3 PROBLEM STATEMENT AND MODEL

The goal of state machine replication (SMR) is to build a replicated

service that takes requests from clients and provides the clients

with the interface of a single non-faulty server, i.e., each client

receives the same totally ordered sequence of values. To achieve

this, the replicated service uses multiple servers, also called replicas,

some of which may be Byzantine, where a faulty replica can behave

arbitrarily. A secure state machine replication protocol satisfies

two guarantees. Safety: Any two honest replicas cannot output

different sequences of values. Liveness: A value sent by a client

will eventually be output by honest replicas.

SMR setting also has external validity, i.e., replicas only output

non-duplicated values sent by clients. These values are eventually

learned by the clients. Depending on the context, a replica may be

interested in learning about outputs too. Hence, whenever we refer

to a client for learning purposes, it can be an external entity or a

server replica. A table of notations is in Table 1.

In this paper, for simplicity, we focus on the setting of outputting

a single value instead of a sequence of values. The safety and live-

ness properties of SMR can then be expressed using the following

definition:

Definition 3.1 (Validated Byzantine Agreement). A protocol solves

validated Byzantine agreement among 𝑛 replicas tolerating a maxi-

mum of 𝑡 faults, if it satisfies the following properties:

(Agreement) Any two honest replicas output values 𝑣 and 𝑣 ′,
then 𝑣 = 𝑣 ′.
(Validity) If an honest replica outputs 𝑣 , 𝑣 is an externally valid

value, i.e., 𝑣 is signed by a client.

(Termination) All honest replicas start with externally valid

values, and all messages sent among them have been delivered,

then honest replicas will output a value.

Forensic support.Traditionally, consensus protocols provide guar-

antees only when 𝑓 ≤ 𝑡 . When 𝑓 > 𝑡 , there can be a safety or

liveness violation; this is the setting of study throughout this paper.

Our goal is to provide forensic support whenever there is a safety
violation (or agreement violation) and the number of Byzantine

replicas in the system are not too high. In particular, if the actual

number of Byzantine faults are bounded by 𝑚 (for some 𝑚 > 𝑡 )

and there is a safety violation, we can detect 𝑑 Byzantine replicas

using a forensic protocol. The protocol takes as input, the transcripts
of honest parties, and outputs and irrefutable proof of 𝑑 culprits.

With the irrefutable proof, any party (not necessarily in the BFT

system) can be convinced of the culprits’ identities without any
assumption on the number of honest replicas. However, if even

with transcripts from all honest replicas, no forensic protocol can

output such a proof, the consensus protocol has no forensic support

(denoted as “None” in Table 2). Note that when we say a protocol



has no forensic support, we are referring to an impossibility w.r.t.

providing irrefutable proof for 𝑑 culprits (more precisely, in the

context of Definition 3.2). In a general sense, there are other ways

to provide forensics related to hardware, software, and network

except for non-repudiation in the protocol.

To provide forensic support, we consider a setting where a client

observes the existence of outputs for two conflicting (unequal)

values.
1
By running a forensic protocol, the client sends (possibly a

subset of) these conflicting outputs to all replicas and waits for their

replies. Some of these replicas may be “witnesses” and may have

(partial) information required to construct the irrefutable proof.

After receiving responses from the replicas, the client constructs

the proof. We denote by 𝑘 the total number of transcripts from

different honest replicas that are stored by the client to construct

the proof.

Definition 3.2. (m, k, d)-Forensic Support. If 𝑡 < 𝑓 ≤ 𝑚 and

two honest replicas output conflicting values, then using the tran-

scripts of all messages received from 𝑘 honest replicas during the

protocol, a client can provide an irrefutable proof of culpability of

at least 𝑑 Byzantine replicas.

Other assumptions. We consider forensic support for multiple

protocols each with their own network assumptions. For PBFT

and HotStuff, we assume a partially synchronous network [17].

For VABA [2] and Algorand [14], we suppose asynchronous and

synchronous networks respectively.

We assume all messages are digitally signed except for one vari-

ant of PBFT (§4.3) that sometimes relies on the use of Message

Authenticated Codes (MACs). Some protocols, e.g., HotStuff, VABA,

use threshold signatures. For forensic purposes, we assume multi-

signatures [7] instead (possibly worsening the communication com-

plexity in the process). Whenever the number of signatures exceeds

a threshold, the resulting aggregate signature is denoted by a pair

𝜎 = (𝜎𝑎𝑔𝑔, 𝜖), where 𝜖 is a bitmap indicating whose signatures

are included in 𝜎𝑎𝑔𝑔 . We define the intersection of two aggregated

messages to be the set of replicas who sign both messages, i.e.,

𝜎 ∩ 𝜎 ′ := {𝑖 |𝜎.𝜖 [𝑖] ∧ 𝜎 ′.𝜖 [𝑖] = 1}. An aggregate signature serves

as a quorum certificate (QC) in our protocols, and we will use the

two terms interchangeably. We assume a collision resistant crypto-

graphic hash function.

4 FORENSIC SUPPORT FOR PBFT

PBFT is a classical partially synchronous consensus protocol that

provides an optimal resilience of 𝑡 Byzantine faults out of 𝑛 = 3𝑡 + 1
replicas. However, when the actual number of faults 𝑓 exceeds 𝑡 , it

does not provide any safety or liveness. In this section, we show

that when 𝑓 > 𝑡 and in case of a safety violation, the variant of the

PBFT protocol (referred to as PBFT-PK) where all messages sent

by parties are signed, has the strongest forensic support. Further,
we show that for an alternative variant where parties sometimes

only use MACs (referred to as PBFT-MAC), forensic support is

impossible.

1
We assume all the (honest) replica outputs are eventually learned by the client. In

practice, the client may monitor the outputs by periodically communicating with all

replicas.

4.1 Overview

We start with an overview focusing on a single-shot version of

PBFT, i.e., a protocol for consensus on a single value. The protocol

described here uses digital signatures to authenticate all messages

and routes messages through leaders as shown in [27]; however

we note that our arguments for PBFT-PK also apply to the original

protocol in [11].

The protocol proceeds in a sequence of consecutive views de-

noted as view number 𝑒 = 1, 2, · · · . A higher view is a view with a

larger view number. Each view has a unique leader. Each view of

PBFT progresses as follows:

- Pre-prepare. The leader proposes a NewView message con-

taining a proposal 𝑣 and a status certificate𝑀 (explained later)

to all replicas.

- Prepare. On receiving the first NewView message containing

a valid value 𝑣 in a view 𝑒 , a replica sends Prepare for 𝑣 if it

is safe to vote based on a locking mechanism (explained later).

It sends this vote to the leader. The leader collects 2𝑡 + 1 such
votes to form an aggregate signature prepareQC. The leader sends
prepareQC to all replicas.

- Commit.On receiving a prepareQC in view 𝑒 containingmessage

𝑣 , a replica locks on (𝑣, 𝑒) and sends Commit to the leader. The

leader collects 2𝑡 + 1 such votes to form an aggregate signature

commitQC. The leader sends commitQC to all replicas.

- Reply. On receiving commitQC from the leader, replicas output

𝑣 and send a Reply (along with commitQC) to the client.

Once a replica locks on a value 𝑣 in view 𝑒 , we call (𝑣, 𝑒) is the
current lock of this replica. And a higher lock is a lock formed in a

higher view. With lock (𝑣, 𝑒), the replica only votes for the value

𝑣 in subsequent views. The only scenario in which it votes for a

value 𝑣 ′ ≠ 𝑣 is when the status certificate 𝑀 provides sufficient

information stating that 2𝑡 + 1 replicas are not locked on 𝑣 . At the

end of a view, every replica sends its lock to the leader of the next

view. The next view leader collects 2𝑡 + 1 such values as a status

certificate𝑀 .

The safety of PBFT follows from two key quorum intersection

arguments:

Uniqueness within a view. Within a view, safety is ensured by

votes in either round. Since a replica only votes once for the first

valid value it receives, by a quorum intersection argument, two

conflicting values cannot both obtain commitQC when 𝑓 ≤ 𝑡 .

Safety across views. Safety across views is ensured by the use

of locks and the status certificate. First, observe that if a replica

𝑟 outputs a value 𝑣 in view 𝑒 , then a quorum of replicas lock on

(𝑣, 𝑒). When 𝑓 ≤ 𝑡 , this quorum includes a set 𝐻 of at least 𝑡 + 1
honest replicas. For any replica in𝐻 to update to a higher lock, they

need a prepareQC in a higher view 𝑒 ′ > 𝑒 , which in turn requires a

vote from at least one of these honest replicas in view 𝑒 ′. However,
replicas in 𝐻 will vote for a conflicting value 𝑣 ′ in a higher view

only if it is accompanied by a status certificate𝑀 containing 2𝑡 + 1
locks that are not on value 𝑣 . When 𝑓 ≤ 𝑡 , honest replicas in 𝑀
intersect with honest replicas in 𝐻 at least one replica – this honest

replica will not vote for a conflicting value 𝑣 ′.



4.2 Forensic Analysis for PBFT-PK

The agreement property for PBFT holds only when 𝑓 ≤ 𝑡 . When

the number of faults are higher, this agreement property (and even

termination) can be violated. In this section, we show how to pro-

vide forensic support for PBFT when the agreement property is

violated. We show that, if two honest replicas output conflicting

values 𝑣 and 𝑣 ′ due to the presence of 𝑡 < 𝑓 ≤ 𝑚 Byzantine replicas,

our forensic protocol can detect 𝑡 + 1 Byzantine replicas with an

irrefutable proof. For each of the possible scenarios in which safety

can be violated, the proof shows exactly what property of PBFT

was not respected by the Byzantine replicas. The irrefutable proof

explicitly uses messages signed by the Byzantine parties, and is

thus only applicable to the variant PBFT-PK where all messages are

signed.

Intuition. In order to build intuition, let us assume 𝑛 = 3𝑡 + 1 and
𝑓 = 𝑡 + 1 and start with a simple scenario: two honest replicas

output values 𝑣 and 𝑣 ′ in the same view. It must then be the case

that a commitQC is formed for both 𝑣 and 𝑣 ′. Due to a quorum

intersection argument, it must be the case that all replicas in the

intersection have voted for two conflicting values to break the

uniqueness property. Thus, all the replicas in the intersection are

culpable. For PBFT-PK, the commitQC (as well as prepareQC) for
the two conflicting values act as the irrefutable proof for detecting

𝑡 + 1 Byzantine replicas.

viewse

< i, Reply, v, σ >
No higher lock 

formed

e + 1 ⋯

First view a higher 
lock for  formsv′ 

σt

t

M

e*

< j, Reply, v′ , σ′ >

Second commit 
may happen

e′ ⋯

t + 1

         

       

        

e* − 1

(v′ , e*)

(v′ , e*)

(v, e) Locked on  at the end of  view ev Status certificateM σ commitQC

(v, e)

(_, _)

e′ ′ ⋯

(v′ , e′ ′ )

< NewView, e*, v′ , M >

Figure 1: An example sequence of events in the PBFT-PK

protocol that leads to replicas 𝑖 and 𝑗 outputting different

values.

When two honest replicas output conflicting values in different

views, there are many different sequences of events that could lead

to such a disagreement. One such sequence is described in Figure 1.

The replicas are split into three sets: the blue set and the green set

are honest replicas each of size 𝑡 and the red replicas are Byzantine

replicas of size 𝑡 + 1.
• In view 𝑒 , replica 𝑖 outputs 𝑣 due to commitQC formed with the

Commit from the honest blue set and the Byzantine red set. At

the end of the view, replicas in the blue and red set hold locks

(𝑣, 𝑒) whereas the green set holds a lower lock for a different

value.

• In the next few views, no higher locks are formed. Thus, the blue

and the red set still hold locks (𝑣, 𝑒).

• Suppose 𝑒∗ is the first view where a higher lock is formed. At

the start of this view, the leader receives locks from the honest

green set who hold lower-ranked locks and the Byzantine red

set who maliciously send lower-ranked locks. The set of locks

received by the leader is denoted by𝑀 and suppose the highest

lock was received for 𝑣 ′. The leader proposes 𝑣 ′ along with 𝑀 .

This can make any honest replica “unlock” and vote for 𝑣 ′ and
form quorum certificates in this view.

• In some later view 𝑒 ′, replica 𝑗 outputs 𝑣 ′.
With this sequence of events, consider the following questions:

(1) Is this an admissible sequence of events? (2) How do we find the

culpable Byzantine replicas?What does the irrefutable proof consist

of? (3) How many replica transcripts do we need to construct the

proof?

To answer the first question, the only nontrivial part in our

example is the existence of a view 𝑒∗ where a higher lock is formed.

However, such a view 𝑒 < 𝑒∗ ≤ 𝑒 ′ must exist because replica 𝑗

outputs in view 𝑒 ′ and a higher lock must be formed at the latest

in view 𝑒 ′.
For the second question, observe that both the red replicas as

well as the green replicas sent locks lower than (𝑣, 𝑒) to the leader

in 𝑒∗. However, only the red replicas also sent Commit messages

for value 𝑣 in view 𝑒 . Thus, by intersecting the set of Commit

messages for value 𝑣 in view 𝑒 and the messages forming the status

certificate sent to the leader of 𝑒∗, we can obtain a culpable set of

𝑡 + 1 Byzantine replicas. So the proof for PBFT-PK consists of the

commitQC in 𝑒 and the status certificate in 𝑒∗, which indicates that

the replicas sent a lower lock in view 𝑒∗ despite having access to a

higher lock in a lower view 𝑒 .

For the third question, the NewView message containing the

status certificate 𝑀 in view 𝑒∗ can act as the proof, so only one

transcript needs to be stored.

Forensic protocol for PBFT-PK.Algorithm 1 describes the entire

protocol to obtain forensic support atop PBFT-PK. For completeness,

we also provide a complete description of the PBFT-PK protocol in

Algorithm 5. Each replica keeps all received messages as transcripts

and maintains a set 𝑄 containing all received NewView messages

(line 2). If a client observes the replies of two conflicting values, it

first checks if two values are output in the same view (line 9). If

yes, then any two commitQC for two different output values can

provide a culpability proof for at least 𝑡 + 1 replicas (lines 19-22).
Otherwise, the client sends a request for a possible proof between

two output views 𝑒, 𝑒 ′ (lines 13). Each replica looks through the set

𝑄 for the NewView message in the smallest view 𝑒∗ > 𝑒 such that

the status certificate 𝑀 contains the highest lock (𝑒 ′′, 𝑣 ′′) where
𝑣 ′′ ≠ 𝑣 and 𝑒 ′′ ≤ 𝑒 and sends it to the client (line 7). If inside 𝑀

there are conflicting locks in the same view, the intersection of them

proves at least 𝑡 + 1 culprits (line 15), otherwise the intersection of

𝑀 and the commitQC proves at least 𝑡 + 1 culprits (line 18).
The following theorem sharply characterizes the forensic support

capability of PBFT-PK. As long as𝑚 ≤ 2𝑡 , the best possible forensic

support is achieved (i.e., 𝑘 = 1 and 𝑑 = 𝑡 + 1). Algorithm 1 can be

used to irrefutably detect 𝑡 + 1 Byzantine replicas. Conversely, if
𝑚 > 2𝑡 then no forensic support is possible (i.e., 𝑘 = 𝑛− 𝑓 (messages

from all honest nodes) and 𝑑 = 0).



Algorithm 1 Forensic protocol for PBFT-PK Byzantine agreement

1: as a replica running PBFT-PK

2: 𝑄 ← all NewView messages in transcript

3: upon receiving ⟨Reqest-Proof, 𝑒, 𝑣, 𝑒 ′⟩ from a client do

4: for𝑚 ∈ 𝑄 do

5: (𝑣 ′′, 𝑒 ′′) ← the highest lock in𝑚.𝑀

6: if (𝑚.𝑒 ∈ (𝑒, 𝑒 ′]) ∧ (𝑣 ′′ ≠ 𝑣) ∧ (𝑒 ′′ ≤ 𝑒) then
7: send ⟨NewView,𝑚⟩ to the client

8: as a client

9: upon receiving two conflicting Reply messages do

10: if the two messages are from different views then

11: ⟨Reply, 𝑒, 𝑣, 𝜎⟩ ← the message from lower view

12: 𝑒 ′ ← the view number of Reply from higher view

13: broadcast ⟨Reqest-Proof, 𝑒, 𝑣, 𝑒 ′⟩
14: wait for: ⟨NewView,𝑚⟩ s.t.𝑚.𝑒 ∈ (𝑒, 𝑒 ′] ∧ (𝑣 ′′ ≠

𝑣) ∧ (𝑒 ′′ ≤ 𝑒) where (𝑣 ′′, 𝑒 ′′) is the highest lock in𝑚.𝑀 .

15: if in 𝑚.𝑀 there are two locks (𝑒 ′′, 𝑣1, 𝜎1) and
(𝑒 ′′, 𝑣2, 𝜎2) s.t. 𝑣1 ≠ 𝑣2 then

16: output 𝜎1 ∩ 𝜎2
17: else

18: output the intersection of senders in𝑚.𝑀 and

signers of 𝜎 .

19: else

20: ⟨Reply, 𝑒, 𝑣, 𝜎⟩ ← first Reply message

21: ⟨Reply, 𝑒, 𝑣 ′, 𝜎 ′⟩ ← second Reply message

22: output 𝜎 ∩ 𝜎 ′

Theorem 4.1. With 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting values, PBFT-PK provides (2𝑡, 1, 𝑡 + 1)-forensic
support. Further (2𝑡 + 1, 𝑛 − 𝑓 , 𝑑)-forensic support is impossible with
𝑑 > 0.

Proof. We prove the forward part of the theorem below. The

converse (impossibility) is proved in §C.1. Suppose the values 𝑣 and

𝑣 ′ are output in views 𝑒 and 𝑒 ′ respectively.

Case 𝑒 = 𝑒 ′.
Culpability. The quorums commitQC for 𝑣 and commitQC for 𝑣 ′

intersect in 𝑡 + 1 replicas. These 𝑡 + 1 replicas should be Byzantine

since the protocol requires a replica to vote for at most one value

in a view.

Witnesses. Client can obtain the culpability proof based on two

commitQC. No additional communication is needed in this case

(𝑘 = 0).

Case 𝑒 ≠ 𝑒 ′.
Culpability. If 𝑒 ≠ 𝑒 ′, then WLOG, suppose 𝑒 < 𝑒 ′. Since 𝑣 is output
in view 𝑒 , it must be the case that 2𝑡 + 1 replicas are locked on (𝑣, 𝑒)
at the end of view 𝑒 (if they are honest). Now consider the first

view 𝑒 < 𝑒∗ ≤ 𝑒 ′ in which a higher lock (𝑣 ′′, 𝑒∗) is formed (not

necessarily known to any honest party) where 𝑣 ′′ ≠ 𝑣 (possibly

𝑣 ′′ = 𝑣 ′). Such a view must exist since 𝑣 ′ is output in view 𝑒 ′ > 𝑒
and a lock will be formed in at least view 𝑒 ′. Consider the status
certificate𝑀 sent by the leader of view 𝑒∗ in its NewViewmessage.

𝑀 must contain 2𝑡 + 1 locks; each of these locks must be from view

𝑒 ′′ ≤ 𝑒 , and a highest lock among them is (𝑣 ′′, 𝑒 ′′).

We consider two cases based on whether the status certificate

contains two different highest locks: (i) there exist two locks (𝑣 ′′, 𝑒 ′′)
and (𝑣 ′′′, 𝑒 ′′) s.t. 𝑣 ′′ ≠ 𝑣 ′′′ in 𝑀 . (ii) (𝑣 ′′, 𝑒 ′′) is the only highest

lock in𝑀 . For the first case, since two locks are formed in the same

view, the two quorums forming the two locks in view 𝑒 ′′ intersect
in 𝑡 + 1 replicas. These replicas are Byzantine since they voted for

more than one value in view 𝑒 .

For the second case, (𝑣 ′′, 𝑒 ′′) is the only highest lock in the status
certificate𝑀 .𝑀 intersects with the 2𝑡 + 1 signers of commitQC in

view 𝑒 at 𝑡 + 1 Byzantine replicas. These replicas are Byzantine

because they had a lock on 𝑣 ≠ 𝑣 ′′ in view 𝑒 ≥ 𝑒 ′′ but sent a
different lock to the leader of view 𝑒∗ > 𝑒 .
Witnesses. Client can obtain the proof by storing the NewView

message containing the status certificate𝑀 in 𝑒∗. Only one witness

is needed to provide the NewView message (𝑘 = 1). The status

certificate𝑀 and the first commitQC act as the irrefutable proof. □

Communication complexity. In the first branch of the forensic

protocol, Algorithm 1, the client needs to receive one message from

𝑘 = 1 replica and the message size is (2𝑡 + 1) ( |𝑣 | + |𝑠𝑖𝑔|) where |𝑣 |
and |𝑠𝑖𝑔| stand for the size of a value and an aggregate signature

(line 14). In the second branch, the client doesn’t need any message

(line 19). Therefore the complexity of the client receiving messages

is 𝑂 (𝑛( |𝑣 | + |𝑠𝑖𝑔 |)). Notice that we exclude the communication for

learning replica outputs (Reply messages) since that procedure

happens before the forensic protocol.

4.3 Impossibility for PBFT-MAC

We now show an impossibility for a variant of PBFT proposed in

[11, Section 5]. The arguments here also apply to the variant in [10].

Compared to §4.1, the only difference in this variant is (i) Prepare

and Commit messages are authenticated using MACs instead of

signatures, and (ii) these messages are broadcast instead of routing

them through the leader.

Intuition. The key intuition behind the impossibility relies on the

absence of digital signatures which were used to “log” the state of

a replica when some replica 𝑖 outputs a value. In particular, if we

consider the example in Figure 1, while 𝑖 receives 2𝑡 + 1 Commit
messages for value 𝑣 , these messages are not signed. Thus, if 𝑡 + 1
Byzantine replicas vote for a different value 𝑣 ′, 𝑣 ′ can be output by

a different replica. The absence of a verifiable proof stating the set

of replicas that sent a Commit to replica 𝑖 prevents any forensic

analysis. We formalize this intuition below.

Theorem 4.2. With 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting values, (𝑡 + 1, 2𝑡, 𝑑)-forensic support is impossible
with 𝑑 > 0 for PBFT-MAC.

Proof. Suppose the protocol provides forensic support to detect

𝑑 ≥ 1 replicas with irrefutable proof. To prove this result, we

construct two worlds where a different set of 𝑡 + 1 replicas are

Byzantine in each world but a forensic protocol cannot be correct

in both worlds. We fix 𝑓 = 𝑡 + 1, although the arguments will apply

for any 𝑓 > 𝑡 .

Let there be four replica partitions 𝑃,𝑄, 𝑅, {𝑥}. |𝑃 | = |𝑄 | = |𝑅 | =
𝑡 , and 𝑥 is an individual replica. In both worlds, the conflicting



outputs are presented in the same view 𝑒 . Suppose the leader is a

replica from set 𝑅.

World 1. Let 𝑃 and 𝑥 be Byzantine replicas in this world. The honest

leader from set 𝑅 in view 𝑒 proposes 𝑣 ′. Parties in 𝑅, 𝑥 and 𝑄 send

Prepare and Commit messages (authenticated with MACs) for

value 𝑣 ′. Due to partial synchrony, none of these messages arrive

at 𝑃 . At the end of view 𝑒 , only 𝑅 and one replica 𝑞 in 𝑄 receive

enough Commit messages and send replies to the client. So the

client receives the first set of 𝑡 +1 replies for value 𝑣 ′, which contain
the same quorum 𝑅, 𝑥,𝑄 .

The Byzantine parties in 𝑃 and 𝑥 simulate a proposal from the

leader for 𝑣 , and the sending of Prepare and Commit messages

within 𝑅, 𝑃 and 𝑥 . The simulation is possible due to the absence of a

PKI. At the end of view 𝑒 , 𝑃 and 𝑥 obtain enough Commitmessages

and send replies to the client. Thus, the client receives the second

set of 𝑡 + 1 replies for value 𝑣 , which contain the same quorum

𝑃, 𝑅, 𝑥 .Client starts the forensic protocol.

During the forensic protocol, Byzantine 𝑃 and 𝑥 only present the

votes for 𝑣 , forged votes from𝑅 as their transcripts. Since 𝑡+1 parties
have output each of 𝑣 and 𝑣 ′, there is a safety violation. Since the

protocol has forensic support for 𝑑 ≥ 1, using these transcripts, the

forensic protocol determines some subset of 𝑃 and 𝑥 are culpable.

World 2. Let 𝑅 and 𝑞 (one replica in 𝑄) be Byzantine replicas in

this world. The Byzantine leader in view 𝑒 proposes 𝑣 to 𝑃, 𝑅 and

𝑥 . They send Prepare and Commit messages (authenticated with

MACs) for value 𝑣 . These messages do not arrive at 𝑄 . At the end

of view 𝑒 , parties in 𝑃 and 𝑥 output 𝑣 . So the client receives the

first set of 𝑡 + 1 replies for value 𝑣 , which contain the same quorum

𝑃, 𝑅, 𝑥 .

Similarly, the leader sends 𝑣 ′ to 𝑄, 𝑅 and 𝑥 . The proposal does

not arrive at 𝑥 . Only 𝑄 and 𝑅 send Prepare and Commit messages

(authenticated with MACs) for 𝑣 ′, these messages do not arrive at

𝑃 . However, 𝑅 and 𝑞 forge Prepare and Commit messages from

𝑥 . At the end of view 𝑒 , 𝑅 and 𝑞 output 𝑣 ′. So the client receives

the second set of 𝑡 + 1 replies for value 𝑣 ′, which contain the same

quorum 𝑅, 𝑥,𝑄 . Client starts the forensic protocol.

During the forensic protocol, Byzantine 𝑅 and 𝑞 sends the same

transcripts as in World 1 by dropping votes for 𝑣 and forging votes

from 𝑥 . Again, since 𝑡 + 1 parties have output each of 𝑣 and 𝑣 ′, there
is a safety violation. However, observe that the transcript presented

to the forensic protocol is identical to that in World 1. Thus, the

forensic protocol outputs some subset of 𝑃 and 𝑥 as culpable replicas.

In World 2, this is incorrect since replicas in 𝑃 and 𝑥 are honest.

This completes the proof.

□

5 FORENSIC SUPPORT FOR HOTSTUFF

HotStuff [32] is a partially synchronous consensus protocol that

provides an optimal resiliency of 𝑛 = 3𝑡 + 1. The HotStuff protocol

is similar to PBFT but there are subtle differences which allow it to

obtain a linear communication complexity for both its steady state

and view change protocols (assuming the presence of threshold

signatures). Looking ahead, these differences significantly change

the way forensics is conducted if a safety violation happens.

5.1 Overview

We start with an overview of the protocol. For simplicity, we dis-

cuss a single-shot version of HotStuff. The protocol proceeds in a

sequence of consecutive views where each view has a unique leader.

Each view of HotStuff progresses as follows:
2

- Pre-prepare. The leader proposes a NewView message con-

taining a proposal 𝑣 alongwith the highQC (the highest prepareQC
known to it) and sends it to all replicas.

- Prepare. On receiving a NewView message containing a valid

value 𝑣 in a view 𝑒 and a highQC, a replica sends Prepare for 𝑣 if
it is safe to vote based on a locking mechanism (explained later).

It sends this vote to the leader. The leader collects 2𝑡 + 1 votes
to form an aggregate signature prepareQC in view 𝑒 . The leader

sends the view 𝑒 prepareQC to all replicas.

- Precommit. On receiving a prepareQC in view 𝑒 containing

message 𝑣 , a replica updates its highest prepareQC to (𝑣, 𝑒) and
sends Precommit to the leader. The leader collects 2𝑡 + 1 such
votes to form an aggregate signature precommitQC.

- Commit. On receiving precommitQC in view 𝑒 containing mes-

sage 𝑣 from the leader, a replica locks on (𝑣, 𝑒) and sends Commit
to the leader. The leader collects 2𝑡 + 1 such votes to form an

aggregate signature commitQC.
- Reply. On receiving commitQC from the leader, replicas output

the value 𝑣 and send a Reply (along with commitQC) to the client.
Once a replica locks on a given value 𝑣 , it only votes for the

value 𝑣 in subsequent views. The only scenario in which it votes

for a value 𝑣 ′ ≠ 𝑣 is when it observes a highQC from a higher view

in a NewView message. At the end of a view, every replica sends

its highest prepareQC to the leader of the next view. The next view

leader collects 2𝑡 + 1 such values and picks the highest prepareQC
as highQC. The safety and liveness of HotStuff when 𝑓 ≤ 𝑡 follows
from the following:

Uniqueness within a view. Since replicas only vote once in each

round, a commitQC can be formed for only one value when 𝑓 ≤ 𝑡 .

Safety and liveness across views. Safety across views is ensured

using locks and the voting rule for a NewViewmessage. Whenever

a replica outputs a value, at least 2𝑡 + 1 other replicas are locked
on the value in the view. Observe that compared to PBFT, there

is no status certificate 𝑀 in the NewView message to “unlock” a

replica. Thus, a replica only votes for the value it is locked on. The

only scenario in which it votes for a conflicting value 𝑣 ′ is if the
leader includes a prepareQC for 𝑣 ′ from a higher view in NewView

message. This indicates that at least 2𝑡 + 1 replicas are not locked
on 𝑣 in a higher view, and hence it should be safe to vote for it. The

latter constraint of voting for 𝑣 ′ is not necessary for safety, but only
for liveness of the protocol.

Variants of HotStuff. In this paper, we study three variants of

HotStuff, identical for the purposes of consensus but provide varied

forensic support. The distinction among them is only in the informa-

tion carried in Preparemessage. For all three versions, the message

contains the message type Prepare, the current view number 𝑒

and the proposed value 𝑣 . In addition, Prepare in HotStuff-view

contains 𝑒𝑞𝑐 , the view number of the highQC in the NewView

2
The description of HotStuff protocol is slightly different from the basic algorithm

described in [32, Algorithm 2] to be consistent with the description of PBFT in §4.1.



HotStuff-view HotStuff-hash HotStuff-null

Info 𝑒𝑞𝑐 Hash(highQC) ∅
𝑚 2𝑡 2𝑡 𝑡 + 1
𝑘 1 𝑡 + 1 2𝑡

𝑑 𝑡 + 1 𝑡 + 1 1

Table 3: Comparison of different variants of HotStuff, the

Preparemessage is ⟨Prepare, 𝑒, 𝑣, Info⟩
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Figure 2: Depiction of events in the HotStuff-view protocol

for the first view where a higher prepareQC for 𝑣 ′ is formed.

message. HotStuff-hash contains the hash of highQC (cf. Table 3).

HotStuff-hash is equivalent to the basic algorithm described in [32,

Algorithm 2]. HotStuff-null does not add additional information.

5.2 Forensic Analysis for HotStuff

If two conflicting values are output in the same view, Byzantine

replicas can be detected using commitQC and using ideas similar to

that in PBFT. However, when the conflicting outputs of replicas 𝑖

and 𝑗 are across views 𝑒 and 𝑒 ′ for 𝑒 < 𝑒 ′, the same ideas do not hold

anymore. To understand this, observe that the two key ingredients

for proving the culpability of Byzantine replicas in PBFT were (i) a

commitQC for the value output in a lower view (denoted by 𝜎 for

replica 𝑖’s reply in Figure 1) and (ii) a status certificate from the first

view higher than 𝑒 containing the locks from 2𝑡+1 replicas (denoted
by 𝑀 for view 𝑒∗ > 𝑒 in Figure 1). In HotStuff, a commitQC still

exists. However, for communication efficiency reasons, HotStuff

does not include a status certificate 𝑀 in its NewView message.

The status certificate in PBFT provides us with the following:

• Identifying a potential set of culpable replicas. Depending

on the contents of𝑀 and knowing 𝜎 , we could identify a set of

Byzantine replicas.

• Determining whether the view is the first view where a

higher lock for a conflicting value is formed. By inspecting

all locks in𝑀 , we can easily determine this. Ensuring first view

with a higher lock is important; once a higher lock is formed,

even honest replicas may update their locks and the proof of

Byzantine behavior may not exist in the messages in subsequent

views.

Let us try to understand this based on the first view 𝑒# where

a higher prepareQC is formed for 𝑣 ′ ≠ 𝑣 (see Figure 2). The set

of replicas who sent Prepare (the red ellipse) in 𝑒# and formed a

prepareQC are our potential set of Byzantine replicas. Why? If 𝑒# is

indeed the first view in which a higher prepareQC is formed, then

all of these replicas voted for a NewView message containing a

highQC from a lower or equal view 𝑒 ′′ on a different value. If any of

these replicas also held a lock (𝑣, 𝑒) (by voting for replica 𝑖’s output)
then these replicas have output the culpable act of not respecting

the voting rule.

The only remaining part is to ensure that this is indeed the first

view where a higher conflicting prepareQC is formed. The way to

prove this is also the key difference among three variants of Hot-

Stuff. For HotStuff-view, prepareQC contains 𝑒𝑞𝑐 , which explicitly

states the view number of highQC in the NewView message they

vote for. If 𝑒𝑞𝑐 < 𝑒 , prepareQC provides an irrefutable proof for cul-

pable behavior. For HotStuff-hash, the hash information contained

in Prepare provides the necessary link to the NewView message

they vote, so once the linked NewView message is accessible, the

prepareQC and NewView together serve as the proof for culpa-

ble behavior. However for HotStuff-null, even if we receive both

prepareQC and NewView messages that are formed in the same

view, no proof can be provided to show a connection between them.

A Byzantine node vote for the first higher prepareQC can always

refuse to provide the NewView message they receive.

Thus, to summarize, the red set of replicas in view 𝑒# are a

potential set of culpable nodes of size 𝑡 + 1. The irrefutable proof
to hold them culpable constitutes two parts, (1) the first prepareQC
containing their signed Prepare messages, and (2) a proof to show

this is indeed the first view. In the next two subsections we will

introduce the forensic protocols for HotStuff-view and HotStuff-

hash to provide different forensic supports, and how it is impossible

for HotStuff-null to provide forensic support.

5.3 Forensic Protocols for HotStuff-view and

HotStuff-hash

Forensic protocol for HotStuff-view. Algorithm 2 describes the

protocol to obtain forensic support atop HotStuff-view. A complete

description of the general HotStuff protocol is also provided in

Algorithm 6. Each replica keeps all received messages as transcript

and maintains a set 𝑃 containing all received prepareQC from Pre-

commit messages and highQC from NewView messages (line 2).

If a client observes outputs of two conflicting values in the same

view, it can determine the culprits using the two Reply messages

(line 15). Otherwise, the client sends a request to all replicas for a

possible proof between two output views 𝑒, 𝑒 ′ for 𝑒 < 𝑒 ′ (line 12).
Each replica looks through the set 𝑃 for prepareQC formed in views

𝑒 < 𝑒# ≤ 𝑒 ′. If there exists a prepareQC whose value is different

from the value 𝑣 output in 𝑒 and whose 𝑒𝑞𝑐 is less than or equal to 𝑒 ,

it sends a reply with this prepareQC to the client (line 6). The client

waits for a prepareQC (line 13) formed between two output views.

For HotStuff-view, if it contains a different value from the first

output value and an older view number 𝑒𝑞𝑐 < 𝑒 , the intersection of

this prepareQC and the commitQC from the Reply message in the

lower view proves at least 𝑡 + 1 culprits (line 14).



Algorithm 2 Forensic protocol for HotStuff-view

1: as a replica running HotStuff-view

2: 𝑃 ← all prepareQC in transcript ⊲ including prepareQC in

Precommit message and highQC in NewView message

3: upon receiving ⟨Reqest-Proof, 𝑒, 𝑣, 𝑒 ′⟩ from a client do

4: for 𝑞𝑐 ∈ 𝑃 do

5: if (𝑞𝑐.𝑣 ≠ 𝑣) ∧ (𝑞𝑐.𝑒 ∈ (𝑒, 𝑒 ′]) ∧ (𝑞𝑐.𝑒𝑞𝑐 ≤ 𝑒) then
6: send ⟨Proof-across-View, 𝑞𝑐⟩ to the client

7: as a client

8: upon receiving two conflicting Reply messages do

9: if two messages are from different views then

10: ⟨Reply, 𝑒, 𝑣, 𝜎⟩ ← the message from lower view

11: 𝑒 ′ ← the view number of message from higher view

12: broadcast ⟨Reqest-Proof, 𝑒, 𝑣, 𝑒 ′⟩
13: wait for ⟨Proof-across-View, 𝑞𝑐⟩ s.t.

(1) 𝑒 < 𝑞𝑐.𝑒 ≤ 𝑒 ′, and
(2) (𝑞𝑐.𝑣 ≠ 𝑣) ∧ (𝑞𝑐.𝑒𝑞𝑐 ≤ 𝑒)

14: output 𝑞𝑐.𝜎 ∩ 𝜎
15: else

16: ⟨Reply, 𝑒, 𝑣, 𝜎⟩ ← first Reply message

17: ⟨Reply, 𝑒, 𝑣 ′, 𝜎 ′⟩ ← second Reply message

18: output 𝜎 ∩ 𝜎 ′

Algorithm 3 Forensic protocol for HotStuff-hash

1: as a replica running HotStuff-hash

2: 𝑃 ← all prepareQC in transcript

3: 𝑄 ← all NewView messages in transcript

4: upon receiving ⟨Reqest-Proof, 𝑒, 𝑣, 𝑒 ′⟩ from a client do

5: for 𝑞𝑐 ∈ 𝑃 do

6: if (𝑞𝑐.𝑣 ≠ 𝑣) ∧ (𝑞𝑐.𝑒 ∈ (𝑒, 𝑒 ′]) then
7: send ⟨Proof-across-View, 𝑞𝑐⟩ to the client

8: for𝑚 ∈ 𝑄 do

9: if (𝑚.𝑣 ≠ 𝑣) ∧ (𝑚.𝑒 ∈ (𝑒, 𝑒 ′]) ∧ (𝑚.highQC.𝑒 ≤ 𝑒)
then

10: send ⟨NewView,𝑚⟩ to the client

11: as a client

12: 𝑁𝑉 ← {}
13: upon receiving two conflicting Reply messages do

14: if two messages are from different views then

15: ⟨Reply, 𝑒, 𝑣, 𝜎⟩ ← the message from lower view

16: 𝑒 ′ ← the view number of message from higher view

17: broadcast ⟨Reqest-Proof, 𝑒, 𝑣, 𝑒 ′⟩
18: upon receiving ⟨NewView,𝑚⟩ do
19: if (𝑚.𝑣 ≠ 𝑣) ∧ (𝑚.𝑒 ∈ (𝑒, 𝑒 ′]) ∧ (𝑚.highQC.𝑒 ≤

𝑒) then
20: 𝑁𝑉 ← 𝑁𝑉 ∪ {𝑚}
21: wait for ⟨Proof-across-View, 𝑞𝑐⟩ s.t.

(1) 𝑒 < 𝑞𝑐.𝑒 ≤ 𝑒 ′, and
(2) (𝑞𝑐.𝑣 ≠ 𝑣) ∧ (∃𝑚 ∈ 𝑁𝑉,Hash(𝑚) =

𝑞𝑐.ℎ𝑎𝑠ℎ)
22: output 𝑞𝑐.𝜎 ∩ 𝜎
23: else

24: ⟨Reply, 𝑒, 𝑣, 𝜎⟩ ← first Reply message

25: ⟨Reply, 𝑒, 𝑣 ′, 𝜎 ′⟩ ← second Reply message

26: output 𝜎 ∩ 𝜎 ′

Forensic protocol for HotStuff-hash. Algorithm 3 describes the

protocol to obtain forensic support atopHotStuff-hash, which is sim-

ilar to the protocol for HotStuff-view. For replicas running HotStuff-

hash, besides 𝑃 , they also maintains the set𝑄 for receivedNewView

messages (line 3). When receiving a forensic request from clients,

replicas look through 𝑃 for prepareQC formed in views 𝑒 < 𝑒# ≤ 𝑒 ′
and send all prepareQC whose values are different from the value

𝑣 to the client (line 7). Besides, they also look through 𝑄 for a

NewView message formed in views 𝑒 < 𝑒# ≤ 𝑒 ′ and send all

NewView proposing a value different from 𝑣 and containing a

highQC with view number ≤ 𝑒 (line 10). For HotStuff-hash, when
receiving such a NewView for different values, the message will be

stored temporarily by the client until a prepareQC for theNewView

message with a matching hash is received. The NewView and the

prepareQC together form the desired proof; the intersection of the

prepareQC and the commitQC provides at least 𝑡 + 1 culprits.

Forensic proofs. The following theorems characterize the forensic

support capability of HotStuff-view and HotStuff-hash. As long

as 𝑚 ≤ 2𝑡 , HotStuff-view can achieve the best possible forensic

support (i.e., 𝑘 = 1 and 𝑑 = 𝑡 + 1). HotStuff-hash can achieve a

medium forensic support (i.e., 𝑘 = 𝑡 + 1 and 𝑑 = 𝑡 + 1). Conversely,
if𝑚 > 2𝑡 then no forensic support is possible for both protocols

(i.e., 𝑘 = 𝑛 − 𝑓 and 𝑑 = 0).

Theorem 5.1. With 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting values, HotStuff-view provides (2𝑡, 1, 𝑡+1)-forensic
support. Further (2𝑡 + 1, 𝑛 − 𝑓 , 𝑑)-forensic support is impossible with
𝑑 > 0.

Proof. We prove the forward part of the theorem below. The

proof of converse (impossibility) is the same as §C.1. Suppose two

conflicting values 𝑣, 𝑣 ′ are output in views 𝑒 , 𝑒 ′ respectively.

Case 𝑒 = 𝑒 ′.
Culpability. The commitQC of 𝑣 and commitQC of 𝑣 ′ intersect in
𝑡 + 1 replicas. These 𝑡 + 1 replicas should be Byzantine since the

protocol requires a replica to vote for at most one value in a view.

Witnesses. Client can obtain a proof based on the two Reply mes-

sages, so additional witnesses are not necessary in this case.

Case 𝑒 ≠ 𝑒 ′.
Culpability. If 𝑒 ≠ 𝑒 ′, then WLOG, suppose 𝑒 < 𝑒 ′. Since 𝑣 is output
in view 𝑒 , it must be the case that 2𝑡+1 replicas are locked on (𝑣, 𝑒) at
the end of view 𝑒 . Now consider the first view 𝑒 < 𝑒∗ ≤ 𝑒 ′ in which

a higher lock (𝑣 ′′, 𝑒∗) is formed where 𝑣 ′′ ≠ 𝑣 (possibly 𝑣 ′′ = 𝑣 ′).
Such a view must exist since 𝑣 ′ is output in view 𝑒 ′ > 𝑒 and a lock

will be formed in at least view 𝑒 ′. For a lock to be formed, a higher

prepareQC must be formed too. Consider the first view 𝑒 < 𝑒# ≤ 𝑒 ′
in which the corresponding prepareQC for 𝑣 ′′ is formed. The leader

in 𝑒# broadcasts the NewView message containing a highQC on

(𝑣 ′′, 𝑒 ′′). Since this is the first time a higher prepareQC is formed and

there is no higher prepareQC for 𝑣 ′′ formed between view 𝑒 and 𝑒#,

we have 𝑒 ′′ ≤ 𝑒 . The formation of the higher prepareQC indicates

that 2𝑡 + 1 replicas received the NewView message proposing 𝑣 ′′

with highQC on (𝑣 ′′, 𝑒 ′′) and consider it a valid proposal, i.e., the

view number 𝑒 ′′ is larger than their locks because the value is

different.



Recall that the output value 𝑣 indicates 2𝑡 + 1 replicas are locked
on (𝑣, 𝑒) at the end of view 𝑒 . In this case, the 2𝑡 + 1 votes in

prepareQC in view 𝑒# intersect with the 2𝑡 +1 votes in commitQC in

view 𝑒 at 𝑡 + 1 Byzantine replicas. These replicas should be Byzan-

tine because they were locked on the value 𝑣 in view 𝑒 and vote for

a value 𝑣 ′′ ≠ 𝑣 in a higher view 𝑒# when the NewView message

contained a highQC from a view 𝑒 ′′ ≤ 𝑒 . Thus, they have violated

the voting rule.

Witnesses. Client can obtain a proof by storing a prepareQC formed

between 𝑒 and 𝑒 ′, whose value is different from 𝑣 and whose 𝑒𝑞𝑐 ≤ 𝑒 .
So only one witness is needed (𝑘 = 1), the prepareQC and the first

commitQC act as the irrefutable proof. □

Theorem 5.2. With 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting values, HotStuff-hash provides (2𝑡, 𝑡 + 1, 𝑡 + 1)-
forensic support. Further (2𝑡+1, 𝑛− 𝑓 , 𝑑)-forensic support is impossible
with 𝑑 > 0.

Proof. We prove the forward part of the theorem below. The

proof of converse (impossibility) is the same as §C.1. Suppose two

conflicting values 𝑣, 𝑣 ′ are output in views 𝑒 , 𝑒 ′ respectively.

Case 𝑒 = 𝑒 ′. Same as Theorem 5.1.

Case 𝑒 ≠ 𝑒 ′.
Culpability. Same as Theorem 5.1.

Witnesses. Since prepareQC of HotStuff-hash only has the hash

of highQC, the irrefutable proof contains the NewView message

that includes the highQC and the corresponding prepareQC with

the matching hash Hash(highQC). The client may need to store

all NewView messages between 𝑒 and 𝑒 ′ whose value is different
from 𝑣 and the whose highQC is formed in 𝑒𝑞𝑐 ≤ 𝑒 , until receiving
a prepareQC for some NewView message with a matching hash. In

the best case, some replica sends both the NewView message and

the corresponding prepareQC so the client only needs to store 𝑘 = 1

replica’s transcript. In the worst case, we can prove that any 𝑡 + 1
messages of transcript are enough to get the proof. Consider the

honest replicas who receive the first prepareQC and the NewView

message. 2𝑡 + 1 replicas have access to the prepareQC and 2𝑡 + 1
replicas have access to theNewViewmessage. Among them at least

𝑡 + 1 replicas have access to both messages, and we assume they are

all Byzantine. Then at least 𝑡 honest replicas have the prepareQC
and at least 𝑡 honest replicas have the NewViewmessage. The total

number of honest replicas 𝑛 − 𝑓 ≤ 2𝑡 . Thus among any 𝑡 + 1 honest
replicas, at least one have NewView message and at least one have

prepareQC. Therefore, 𝑡 + 1 transcripts from honest replicas ensure

the access of both NewView message and prepareQC and thus

guarantee the irrefutable proof.

□

Communication complexity. In line 13 of Algorithm 2, the client

needs to receive one message from 𝑘 = 1 replica and the message

size is ( |𝑣 | + |𝑠𝑖𝑔 |) where |𝑣 | and |𝑠𝑖𝑔| stand for the size of a value and
an aggregate signature. Therefore the complexity of the client re-

ceiving messages is𝑂 ( |𝑣 | + |𝑠𝑖𝑔|) for HotStuff-view. As for HotStuff-
hash, theorem 5.2 shows that in the worst case, the client needs

to receive messages from 𝑘 = 𝑡 + 1 replicas. Each of those replicas

sends one message of size𝑂 ( |𝑣 | + |𝑠𝑖𝑔 | + |ℎ𝑎𝑠ℎ |) where |ℎ𝑎𝑠ℎ | stands

for the size of a hash value. Therefore the complexity of the client

receiving messages is 𝑂 (𝑛( |𝑣 | + |𝑠𝑖𝑔| + |ℎ𝑎𝑠ℎ |)) for HotStuff-hash.

5.4 Impossibility for HotStuff-null

Compared to the other two variants, in HotStuff-null, Prepare

message and prepareQC are not linked to the NewView message.

We show that this lack of information is sufficient to guarantee

impossibility of forensics.

Intuition.When 𝑓 = 𝑡 + 1, from the forensic protocols of HotStuff-

view andHotStuff-hash, we know that given across-view commitQC
1

and commitQC
2
(ordered by view) and the first prepareQC higher

than commitQC
1
, the intersection of prepareQC and commitQC

1

contains at least 𝑑 = 𝑡 + 1 Byzantine replicas. The intersection

argument remains true for HotStuff-null, however, it is impossible

for a client to decide whether prepareQC is the first one only with

the transcripts sent by 2𝑡 honest replicas (when 𝑓 = 𝑡 + 1). In an

execution where there are two prepareQC in view 𝑒∗ and 𝑒 ′ respec-
tively (𝑒∗ < 𝑒 ′), the Byzantine replicas (say, set 𝑃 ) may not respond

with the prepareQC in 𝑒∗. The lack of information disallows a client

from separating this world from another world 𝑃 is indeed honest

and sharing all the information available to them. We formalize

this intuition in the theorem below.

Theorem 5.3. With 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting values, (𝑡 + 1, 2𝑡, 𝑑)-forensic support is impossible
with 𝑑 > 1 for HotStuff-null. Further, (𝑡 +2, 𝑛− 𝑓 , 𝑑)-forensic support
is impossible with 𝑑 > 0.

The theorem is proved in §C.2.

6 FORENSIC SUPPORT FOR ALGORAND

Algorand [14] is a synchronous consensus protocol which tolerates

up to one-third fraction of Byzantine users. At its core, it uses a

BFT protocol from [13, 24]. However, Algorand runs the protocol

by selecting a small set of replicas, referred to as the committee,

thereby achieving consensus with sub-quadratic communication.

The protocol is also player replaceable, i.e., different steps of the

protocol have different committees, thus tolerating an adaptive

adversary. Each replica uses cryptographic self-selection using a

verifiable random function (VRF) [25] to privately decide whether

it is selected in a committee. The VRF is known only to the replica

until it has sent a message to other parties thus revealing and

proving its selection in the committee. In this section, we present

an overview of the BFT protocol and then showwhy it is impossible

to achieve forensic support for this protocol.

6.1 Overview

We start with an overview of the single-shot version of Algo-

rand [14]. The protocol assumes synchronous communication, where

messages are delivered within a known bounded time. The proto-

col proceeds in consecutive steps, each of which lasts for a fixed

amount of time that guarantees message delivery. Each step has

a self-selected committee, and a replica can compute its VRF, a

value that decides whether it is selected in the committee, and it

is known only by the replica itself until it has sent the value. All

messages sent by a committee member is accompanied by a VRF

thus allowing other replicas to verify its inclusion in the committee.



Parameters such as committee size 𝜅 are chosen such that the num-

ber of honest parties in the committee is greater than a threshold

𝑡𝐻 ≥ 2𝜅/3 with overwhelming probability.

The BFT protocol is divided into two sub-protocols: Graded Con-
sensus and 𝐵𝐵𝐴∗. In Graded Consensus, which forms the first three

steps of the protocol, each replica 𝑟 inputs its value 𝑣𝑟 . Each replica

𝑟 outputs a tuple containing a value 𝑣out𝑟 and a grade 𝑔𝑟 . In an ex-

ecution where all replicas start with the same input 𝑣 , 𝑣out𝑟 = 𝑣

and 𝑔𝑟 = 2 for all replicas 𝑟 . The replicas then enter the next sub-

protocol, denoted 𝐵𝐵𝐴∗. If 𝑔𝑟 = 2, replica 𝑟 inputs value 𝑏𝑟 = 0,

otherwise it inputs 𝑏𝑟 = 1. At the end of 𝐵𝐵𝐴∗, the replicas agree
on the tuple (0, 𝑣) or (1, 𝑣⊥).3 The 𝐵𝐵𝐴∗ sub-protocol also uses a

random coin; for simplicity, we assume access to an ideal global

random coin. Our forensic analysis in the next section only depends

on 𝐵𝐵𝐴∗ and thus, we only provide an overview for 𝐵𝐵𝐴∗ here.
The protocol proceeds in the following steps,

• Steps 1-3 are Graded Consensus. At the end of Graded Con-
sensus, each replica inputs a value 𝑣𝑟 and a binary value 𝑏𝑟
to 𝐵𝐵𝐴∗.
• Step 4. Each replica in the committee broadcasts its vote for

(𝑏𝑟 , 𝑣𝑟 ) along with its VRF.

• Step 𝑠 (𝑠 ≥ 5, 𝑠 ≡ 2 mod 3) is the Coin-Fixed-To-0 step of

𝐵𝐵𝐴∗. In this step, a replica checks Ending Condition 0: if it
has received ≥ 𝑡𝐻 valid votes on (𝑏, 𝑣) from the previous

step, where 𝑏 = 0, it outputs (𝑏, 𝑣) and ends its execution.

Otherwise, it updates 𝑏𝑟 as follows:

𝑏𝑟 ←
{

1, if ≥ 𝑡𝐻 votes on 𝑏 = 1

0, otherwise

If the replica is in the committee based on its VRF, it broad-

casts its vote for (𝑏𝑟 , 𝑣𝑟 ) along with the VRF.

• Step 𝑠 (𝑠 ≥ 6, 𝑠 ≡ 0 mod 3). Symmetric to the previous step

but for bit 1 instead of 0. Also, the votes need not be for the

same 𝑣 in the ending condition.

• Steps 𝑠 (𝑠 ≥ 7, 𝑠 ≡ 1 mod 3) is the Coin-Genuinely-Flipped

step of 𝐵𝐵𝐴∗. In this step, it updates its variable 𝑏𝑟 as follows:

𝑏𝑟 ←


0, if ≥ 𝑡𝐻 votes on 𝑏 = 0

1, if ≥ 𝑡𝐻 votes on 𝑏 = 1

random coin of step 𝑠, otherwise

If the replica is in the committee based on its VRF, it broad-

casts its vote for (𝑏𝑟 , 𝑣𝑟 ) along with the VRF.

Safety of 𝐵𝐵𝐴∗ within a step. If all honest replicas reach an agree-

ment before any step, the agreement will hold after the step. If the

agreement is on binary value 0 (1 resp.) then the opposite Ending

Condition 1 (0 resp.) will not be satisfied during the step. This is be-

cause synchronous communication ensures the delivery of at least

𝑡𝐻 votes on the agreed value and there are not enough malicious

votes on the other value.

Safety of𝐵𝐵𝐴∗ across steps. For the step Coin-Fixed-To-0 (1 resp.),
if any honest replica ends due to Ending Condition 0 (1 resp.), all

honest replicas will agree on binary value 0 and value 𝑣 (1 and 𝑣⊥
resp.) at the end of the step, because there could only be less than

𝑡𝐻 votes on binary value 1 (0 resp.). Hence, together with safety

3𝑣⊥ is considered external valid in Algorand.

within a step, binary value 1 and value 𝑣⊥ (0 and 𝑣 resp.) will never

be output.

6.2 Impossibility of Forensics

When the Byzantine fraction in the system is greater than one-third,

with constant probability, a randomly chosen committee of size

𝜅 < 𝑛 will have 𝑡𝐻 < 2𝜅/3. In such a situation, we can have a

safety violation. Observe that since only 𝜅 < 𝑛 committee members

send messages in a round, the number of culpable replicas may be

bounded by 𝑂 (𝜅). However, we will show an execution where no

Byzantine replica can be held culpable.

Intuition. The safety condition for 𝐵𝐵𝐴∗ relies on the following:

if some honest replica commits to a value 𝑏, say 𝑏 = 0, in a step and

terminates, then all honest replicas will set 𝑏 = 0 as their local value.

In all subsequent steps, there will be sufficient (> 2/3 fraction) votes
for 𝑏 = 0 due to which replicas will never set their local value 𝑏 = 1.

Thus, independently of what Byzantine replicas send during the

protocol execution, honest replicas will only commit on 𝑏 = 0. On

the other hand, if replicas do not receive > 2/3 fraction of votes for

𝑏 = 0, they may switch their local value to 𝑏 = 1 in the Coin-Fixed-

To-1 or Coin-Genuinely-Flipped step. This can result in a safety

violation. When the Byzantine fraction is greater than one-third,

after some replicas have committed 0, the Byzantine replicas can

achieve the above condition by selectively not sending votes to

other replicas (say set 𝑄), thereby making them switch their local

value to 𝑏 = 1. There is no way for an external client to distinguish

this world from another world where the set 𝑄 is Byzantine and

states that it did not receive these votes. We formalize this intuition

in the theorem below. Observe that our arguments work for the

𝐵𝐵𝐴∗ protocol with or without player-replaceability.

Theorem 6.1. When the Byzantine fraction exceeds 1/3, if two
honest replicas output conflicting values, (𝑡+1, 2𝑡, 𝑑)-forensic support
is impossible with 𝑑 > 0 for Algorand.

The theorem is proved in §C.3.

7 LIBRABFT AND DIEM
In this paper, we have focused on forensics for single-shot consen-

sus. Chained BFT protocols are natural candidates for consensus on

a sequence with applications to blockchains. LibraBFT is a chained

version of Hotstuff and is the core consensus protocol in Diem, a

new cryptocurrency supported by Facebook [5]. In this section, we

show that LibraBFT has the strongest forensic support possible (as

in Hotstuff-view). Further, we implement the corresponding foren-

sic analysis protocol as a module on top of an open source Diem
client. We highlight the system innovations of our implementation

and associated forensic dashboard; this has served as a reference

implementation presently under active consideration for deploy-

ment (due to anonymity imperativs we are unable to document this

more concretely).

Diem blockchain. Diem Blockchain uses LibraBFT [30], a variant

of HotStuff protocol for consensus. In LibraBFT, the replicas are

called validators, who receive transactions from clients and propose

blocks of transactions in a sequence of rounds.



HotStuff-hash LibraBFT

Prepare

⟨Prepare, 𝑒, 𝑣,
Hash(highQC)⟩

⟨Prepare, 𝑒,
Hash(𝑏 = (𝑣, highQC))⟩

𝑘 𝑡 + 1 1

𝑚 2𝑡 𝑛 − 2
extra

condition

-

must receive the

preimage of hash

Table 4: Comparison of HotStuff-hash and LibraBFT

LibraBFT forensics. The culpability analysis for LibraBFT is sim-

ilar to Theorem 5.2. However, for the witnesses, the blockchain

property of LibraBFT makes sure that any replica (validator) has ac-

cess to the full blockchain and thus provides (𝑛−2, 1, 𝑡 +1)-forensic
support. The formal result is below (proof in §C).

Theorem 7.1. For 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting blocks, LibraBFT provides (𝑛 − 2, 1, 𝑡 + 1)-forensic
support.

The aforementioned three variants of HotStuff in §5 are described

under the VBA setting to reach consensus on a single value, and

the value can be directly included in the vote message (cf. Table 4, 𝑣

is contained in the Prepare message). In this setting, once a replica

receives the commitQC for the value, it will output the value and

send a reply to the client, even if the commitQC is the only message

it receives in the current view so far. So when two honest replicas

output conflicting values, it is possible that the client receives only

the commit messages and extra communication is needed. And

when𝑚 > 2𝑡 , Byzantine replicas are able to formQCs by themselves

so that no other honest replicas can get access to the first prepareQC.
Thus the bound on𝑚 for HotStuff-view and HotStuff-hash is 2𝑡 .

However, the setting is slightly different in practice, when the

value 𝑣 is no longer a single value, but actually a block with more

fields and a list of transactions/commands, as in LibraBFT. In single-

shot consensus, a block includes the transactions (value) and the

highQC. In this case, the block is too heavy to include directly in a

vote message, so the replicas add the hash of the block to the vote

message (see Table 4, Hash(𝑏 = (𝑣, highQC)) is contained in the

Prepare message). And since only the NewView message has the

block’s preimage, replicas cannot vote/output until receiving the

original blocks. Thus when two honest replicas output conflicting

values, the client can obtain the full blockchain from one of them

(𝑘 = 1) and all prepareQC are part of the blocks. In this case, even if

𝑚 > 2𝑡 the client can still enjoy non-trivial forensic support.

Forensic module. Our prototype consists of two components, a

database Forensic Storage used to store quorum certificates re-

ceived by validators, which can be accessed by clients through

JSON-RPC requests or consensus API; and an independent Detec-

tor run by clients to analyze the forensic information.

• Forensic Storage maintains a map from the view num-

ber to quorum certificates and its persistent storage. It is

responsible for storing forensic information and allows ac-

cess by other components, including clients (via JSON-RPC

requests or consensus API).

CLIENT JSON-RPC
SERVICE MEMPOOL CONSENSUS

VIRTUAL 
MACHINE EXECUTION

STORAGE

OTHER VALIDATORS

VALIDATORS

FORENSIC
STORAGE

DETECTOR

Figure 3: Forensic module integrated with Diem.

• Detector is run by clients manually to send requests pe-

riodically to connected validators. It collates information

received from validators, using it as the input to the forensic

analysis protocol.

Testing using Twins [6]. To test the correctness of forensic proto-

cols, we build a testbed to simulate Byzantine attacks and construct

different types of safety violations. Ideally, for modularity purposes,

our testbed should not require us to modify the underlying consen-

sus protocol to obtain Byzantine behavior. We leverage Twins [6],

an approach to emulate Byzantine behaviors by running two in-

stances of a node (i.e. replica) with the same identity. Consider a

simple example setting with four nodes (denoted by 𝑛𝑜𝑑𝑒0 ∼ 3),

where 𝑛𝑜𝑑𝑒0 and 𝑛𝑜𝑑𝑒1 are Byzantine so they have twins called

𝑡𝑤𝑖𝑛0 and 𝑡𝑤𝑖𝑛1. The network is split into two partitions, the first

partition 𝑃1 includes nodes {𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2} and the second

partition 𝑃2 includes nodes {𝑡𝑤𝑖𝑛0, 𝑡𝑤𝑖𝑛1, 𝑛𝑜𝑑𝑒3}. Nodes in one

partition can only receive the messages sent from the same parti-

tion. The double voting attack can be simulated when Byzantine

leader proposes different valid blocks in the same view, and within

each partition, all nodes will vote for the proposed block. The net-

work partition is used to drop all messages sent from a set of nodes.

However, it can only help construct the safety violation within the

view. To construct more complicated attacks, we further improve

the framework and introduce another operation called “detailed

drop”, which drops selected messages with specific types.

Visualization. The Detector accepts the registration of different

views to get notified once the data is updated. We built a dashboard

to display the information received by the detector and the analysis

results output by the forensic protocol. Figure 4 shows a snapshot

of the dashboard which displays information about the network

topology, hashes of latest blocks received at different validators,

conflicting blocks, detected culprit keys and raw logs. Interactions

with end-users, including Diem core-devs, has guided our design

of the dashboard.

8 CONCLUSION

In this paper, we have embarked on a systematic study of the foren-

sic properties of BFT protocols, focusing on 4 canonical examples:

PBFT (classical), Hotstuff and VABA (state-of-the-art protocols on

partially synchronous and asynchronous network settings) and

Algorand (popular protocol that is adaptable to proof of stake



View of
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View of
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Forensic Information

Figure 4: Forensic module dashboard.

blockchains). Our results show that minor variations in the BFT

protocols can have outsized impact on their forensic support.

We exactly characterize the forensic support of each protocol,

parameterized by the triplet (𝑚,𝑘, 𝑑). The forensic support char-
acterizations are remarkably similar across the protocols: if any

non-trivial support is possible (i.e., at least one culpable replica can

be implicated; 𝑑 > 0), then the largest possible forensic support,

(2𝑡, 1, 𝑡 + 1), is also possible; the one exception to this result is the

Hotstuff-hash variant. Although the proof of forensic support is

conducted for each protocol and its variant individually, we observe

common trends:

• For each of the protocols with strong forensic support, as

a part of the protocol execution, there exist witnesses who

hold signed messages from Byzantine parties indicating that

they have not followed some rule in the protocol.

• On the other hand, for protocols with no forensic support,

the Byzantine parties are able to break safety without leaving

any evidence, although the mechanism to achieve this is dif-

ferent for each of PBFT-MAC, Algorand, and HotStuff-null.

With PBFT-MAC, Byzantine parties are able to construct

arbitrary transcripts due to the absence of signatures. Hence,

message transcripts cannot be used as evidence. With Al-

gorand, they can utilize a rule which relies on the absence

of messages (under synchrony) to set an incorrect protocol

state without leaving a trail. With HotStuff-null, due to the

lack of links between messages across views, Byzantine par-

ties can present fake message transcripts and thus, pretend

to be honest.

Conceptually, the burning question is whether these common in-

gredients can be stitched together to form an overarching theory of

forensic support for abstract families of secure BFT protocols: First,

from an impossibility standpoint, is there a relationship between

the need to use synchrony or the absence of PKI in a protocol and

absence of forensic support? Second, for the positive results, can

one argue strong forensic support for an “information-complete”

variant of any BFT protocol? This is an active area of research.

From a practical stand point, forensic analysis for existing blockchain

protocols is of great interest; our forensic protocol for LibraBFT

and its reference implementation has made strong inroads towards

practical deployment. However, one shortcoming of the approach

in this paper is that forensic analysis is conducted only upon fatal
safety breaches. It is of great interest to conduct forensics with

other forms of attacks: liveness attacks, censorship, small number

of misbehaving replicas that impact performance. We note that

liveness attacks do not afford, at the outset, undeniable complicity

of malicious replicas and an important research direction is in for-

malizing weaker notions of culpability proofs (perhaps including

assumptions involving external forms of trust). This is an active

area of research.
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A VABA HAS STRONG FORENSIC SUPPORT

Validated Asynchronous Byzantine Agreement (VABA) is a state-of-

the-art protocol [2] in the asynchronous setting with asymptotically

optimal 𝑂 (𝑛2) communication complexity and expected 𝑂 (1) la-
tency for 𝑛 ≥ 3𝑡 + 1.

A.1 Overview

At a high-level, the VABA protocol adapts HotStuff to the asynchro-

nous setting. There are three phases in the protocol:

- Proposal promotion. In this stage, each of the 𝑛 replicas run 𝑛

parallel HotStuff-like instances, where replica 𝑖 acts as the leader

within instance 𝑖 .

Algorithm 4 Forensic protocol for VABA

1: as a replica running VABA

2: for 𝑒 ≥ 1 initialize:

3: for 𝑗 ∈ [𝑛] do
4: ledger[𝑒] [ 𝑗] ← {}
5: 𝑐𝑜𝑖𝑛[𝑒] ← {}
6: upon receiving ⟨𝑖,NewView, 𝑒, 𝑣, 𝐿⟩ in view 𝑒 in

Proposal-Promotion instance 𝑖 do

7: (𝑒 ′, 𝑣 ′, 𝜎, 𝑒𝑞𝑐 ) ← 𝐿⊲ Note that 𝐿 has selectors 𝑒, 𝑣, 𝜎, 𝑒𝑞𝑐
8: ledger[𝑒 ′] [𝑖] ← ledger[𝑒 ′] [𝑖] ∪ {(𝑣 ′, 𝜎, 𝑒𝑞𝑐 )}
9: upon receiving ⟨𝑖, Prepare, 𝑒, 𝑣, 𝜎, 𝑒𝑞𝑐 ⟩ in view 𝑒 in

Proposal-Promotion instance 𝑖 do

10: ledger[𝑒] [𝑖] ← ledger[𝑒] [𝑖] ∪ {(𝑣, 𝜎, 𝑒𝑞𝑐 )}
11: if 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒] is elected then

12: discard ledger[𝑒] [ 𝑗] for 𝑗 ≠ 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒]
13: 𝑐𝑜𝑖𝑛[𝑒] ← inputs to threshold-coin for electing

𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒]
14: upon receiving ⟨ViewChange, 𝑒, prepareQC,

precommitQC, commitQC⟩ in view 𝑒 do

15: (𝑒 ′, 𝑣 ′, 𝜎, 𝑒𝑞𝑐 ) ← prepareQC ⊲ Note that prepareQC has

selectors 𝑒, 𝑣, 𝜎, 𝑒𝑞𝑐
16: ledger[𝑒 ′] [𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒 ′]] ← ledger[𝑒 ′] [𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒 ′]] ∪
{(𝑣 ′, 𝜎, 𝑒𝑞𝑐 )}

17: upon receiving ⟨Reqest-Proof-of-Leader, 𝑒, 𝑒 ′⟩ from
a client do

18: for all 𝑒 ≤ 𝑒∗ ≤ 𝑒 ′ do
19: send ⟨Proof-of-Leader, 𝑒∗, 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒∗], 𝑐𝑜𝑖𝑛[𝑒∗]⟩

to client

20: upon receiving ⟨Reqest-Proof, 𝑒, 𝑣, 𝜎, 𝑒 ′⟩ with a collec-

tion of 𝐿𝑒𝑎𝑑𝑒𝑟𝑀𝑠𝑔 from a client do

21: for all 𝑒 < 𝑒# ≤ 𝑒 ′ do
22: if 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒#] is not elected yet then

23: ⟨Proof-of-Leader, 𝑒#, 𝑙𝑒𝑎𝑑𝑒𝑟, 𝑐𝑜𝑖𝑛⟩ ←
𝐿𝑒𝑎𝑑𝑒𝑟𝑀𝑠𝑔 of view 𝑒#

24: check 𝑙𝑒𝑎𝑑𝑒𝑟 is the leader generated by 𝑐𝑜𝑖𝑛 in

view 𝑒# (otherwise don’t reply to the client)

25: 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒#] ← 𝑙𝑒𝑎𝑑𝑒𝑟

26: for 𝑞𝑐 ∈ ledger[𝑒#] [𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒#]] do
27: if (𝑞𝑐.𝑣 ≠ 𝑣) ∧ (𝑞𝑐.𝑒𝑞𝑐 ≤ 𝑒) then
28: send ⟨Proof-across-View, 𝑒#, 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒#], 𝑞𝑐⟩

to the client



Algorithm 4 Forensic protocol for VABA

29: as a client

30: upon receiving two conflicting Reply messages do

31: 𝑒 ← the view number of Reply from lower view

32: 𝑒 ′ ← the view number of Reply from higher view

33: for all 𝑒 ≤ 𝑒∗ ≤ 𝑒 ′ initialize:
34: 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒∗] ← {}
35: 𝐿𝑒𝑎𝑑𝑒𝑟𝑀𝑠𝑔[𝑒∗] ← {}
36: send ⟨Reqest-Proof-of-Leader, 𝑒, 𝑒 ′⟩ to the replica

of Reply message from higher view

37: for all 𝑒 ≤ 𝑒∗ ≤ 𝑒 ′ do
38: wait for ⟨Proof-of-Leader, 𝑒∗, 𝑙𝑒𝑎𝑑𝑒𝑟, 𝑐𝑜𝑖𝑛⟩ s.t.

𝑙𝑒𝑎𝑑𝑒𝑟 is the leader generated by 𝑐𝑜𝑖𝑛 in view 𝑒∗ (otherwise
the Reply message is not considered valid)

39: 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒∗] ← 𝑙𝑒𝑎𝑑𝑒𝑟

40: 𝐿𝑒𝑎𝑑𝑒𝑟𝑀𝑠𝑔[𝑒∗] ←
⟨Proof-of-Leader, 𝑒∗, 𝑙𝑒𝑎𝑑𝑒𝑟, 𝑐𝑜𝑖𝑛⟩

41: if the two Reply messages are from different views

then

42: ⟨𝑖, Reply, 𝑒, 𝑣, 𝜎⟩ ← the message from lower view

43: ⟨𝑖 ′, Reply, 𝑒 ′, 𝑣 ′, 𝜎 ′⟩ ← the message from higher

view

44: check 𝑖 = 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒] and 𝑖 ′ = 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒 ′] (otherwise
the Reply message is not considered valid)

45: broadcast ⟨Reqest-Proof, 𝑒, 𝑣, 𝜎, 𝑒 ′⟩ with

𝐿𝑒𝑎𝑑𝑒𝑟𝑀𝑠𝑔[𝑒∗] for all 𝑒 < 𝑒∗ ≤ 𝑒 ′
46: wait for ⟨Proof-across-View, 𝑒#, 𝑙𝑒𝑎𝑑𝑒𝑟, 𝑞𝑐⟩ s.t.

(1) 𝑒 < 𝑒# ≤ 𝑒 ′, and
(2) (𝑞𝑐.𝑣 ≠ 𝑣) ∧ (𝑞𝑐.𝑒𝑞𝑐 ≤ 𝑒), and
(3) 𝑙𝑒𝑎𝑑𝑒𝑟 = 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒#]

47: output 𝑞𝑐.𝜎 ∩ 𝜎
48: else

49: ⟨𝑖, Reply, 𝑒, 𝑣, 𝜎⟩ ← first Reply message

50: ⟨𝑖 ′, Reply, 𝑒, 𝑣 ′, 𝜎 ′⟩ ← second Reply message

51: check 𝑖 = 𝑖 ′ = 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒] (otherwise the Reply mes-

sage is not considered valid)

52: output 𝜎 ∩ 𝜎 ′

- Leader election. After finishing the previous stage, replicas run

a leader election protocol using a threshold-coin primitive [9]

to randomly elect the leader of this view, denoted as 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒]
where 𝑒 is a view number. At the end of the view, replicas adopt

the “progress” from 𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒]’s proposal promotion instance,

and discard values from other instances.

- View change.Replicas broadcast quorum certificates from𝐿𝑒𝑎𝑑𝑒𝑟 [𝑒]’s
proposal promotion instance and update local variables and/or

output value accordingly.

Within a proposal promotion stage, the guarantees provided are

the same as that of HotStuff, and hence we do not repeat it here.

The leader election phase elects a unique leader at random – this

stage guarantees (i) with ≥ 2/3 probability, an honest leader is

elected, and (ii) an adaptive adversary cannot stall progress (since

a leader is elected in hindsight). Finally, in the view-change phase,

every replica broadcasts the elected leader’s quorum certificates to

all replicas.

A.2 Forensic Support for VABA

The key difference between forensic support for HotStuff and VABA

is the presence of the leader election stage – every replica/client

needs to know which replica was elected as the leader in each view.

Importantly, the threshold-coin primitive ensures that there is a

unique leader elected for each view. Thus, the forensic analysis boils

down to performing an analysis similar to the HotStuff protocol,

except that the leader of a view is described by the leader election

phase.

We present the full forensic protocol in Algorithm 4 for com-

pleteness. We make the following changes to VABA:

• Storing information for forensics. Each replica main-

tains a list of ledgers for all instances, containing all re-

ceived prepareQC from Prepare messages, NewView mes-

sages, and ViewChange messages (lines 8,10,16). When the

leader of a view is elected, a replica keeps the ledger from
the leader’s instance and discards others (line 12). A replica

also stores the random coins from the leader election phase

for client verification (line 13).

• Bringing proposal promotion closer to HotStuff-view.

There are minor differences in the proposal promotion phase

of VABA [2] to the description in HotStuff (§5). We make

this phase similar to that in the description of our HotStuff

protocol with forensic support. In particular: (i) the 𝐿𝑂𝐶𝐾

variable stores both the view number and the value (denoted

by 𝐿𝑂𝐶𝐾.𝑒 and 𝐿𝑂𝐶𝐾.𝑣), (ii) the voting rule in a proposal

promotion phase is: vote if 𝐾𝐸𝑌 has view and value equal

to 𝐿𝑂𝐶𝐾 , except when 𝐾𝐸𝑌 ’s view is strictly higher than

𝐿𝑂𝐶𝐾.𝑒 , (iii) assume a replica’s own ViewChange message

arrives first so that others’ ViewChange messages do not

overwrite local variables 𝐾𝐸𝑌 and 𝐿𝑂𝐶𝐾 , and (iv) add 𝑒𝑞𝑐
into Prepare.

A client first verifies leader election (lines 36-40). Then, it fol-

lows steps similar to the HotStuff forensic protocol (lines 41-52)

except that there are added checks pertaining to leader elections

(lines 44,46,51).

We prove the forensic support in Theorem A.1.

Theorem A.1. For 𝑛 = 3𝑡 + 1, when 𝑓 > 𝑡 , if two honest replicas
output conflicting values, VABA protocol provides (2𝑡, 1, 𝑡+1)-forensic
support. Further (2𝑡 + 1, 𝑛 − 𝑓 , 𝑑)-forensic support is impossible with
𝑑 > 0.

Proof. We prove the forward part of the theorem below. The

proof of converse (impossibility) is the same as §C.1.

The leader of a view is determined by the threshold coin-tossing

primitive threshold-coin and Byzantine replicas cannot forge the

result of a leader election by the robustness property of the thresh-

old coin. Suppose two conflicting outputs happen in view 𝑒, 𝑒 ′ with
𝑒 ≤ 𝑒 ′. The replica who outputs in view 𝑒 ′ has access to the proof

of leader election of all views ≤ 𝑒 ′. Therefore, a client can verify

the leader election when it receives messages from this replica.

Even if other replicas have not received messages corresponding

to the elections in views ≤ 𝑒 ′, the client can send the proof of

leader to them. The remaining forensic support proof follows from

Theorem 5.1 in a straightforward manner, where any witness will



receive the proof of leader from the client (if leader is not elected)

and send the proof of culprits to the client. □

Communication complexity. The client needs to first receive all

leader election results from view 𝑒 to view 𝑒 ′, and each result is of

size |𝑐𝑜𝑖𝑛 | (the size of the coin in the threshold-coin primitive). Then,

the client shares leader election results with all replicas. This step

incurs receiving message complexity 𝑂 (𝑙 |𝑐𝑜𝑖𝑛 |) where 𝑙 = 𝑒 ′ − 𝑒 .
Next, the client needs to receive one message from 𝑘 = 1 replica

and the message size is ( |𝑣 | + |𝑠𝑖𝑔|). Therefore the complexity for

the client receiving messages is𝑂 ( |𝑣 | + |𝑠𝑖𝑔| +𝑙 |𝑐𝑜𝑖𝑛 |). However, the
procedure of sharing leader election is irrelevant to forensic support,

and we could assign it to replicas. (This procedure is included

in the forensic protocol because we do not want to change the

consensus protocol itself.) In that case, the client needs to receive

just one leader election result, so the receiving message complexity

is 𝑂 ( |𝑣 | + |𝑠𝑖𝑔| + |𝑐𝑜𝑖𝑛 |).

B IMPOSSIBILITY OF FORENSIC SUPPORT

FOR 𝑛 = 2𝑡 + 1
A validated Byzantine agreement protocol allows replicas to obtain

agreement, validity, and termination so far as the actual number of

faults 𝑓 ≤ 𝑡 where 𝑡 is a Byzantine threshold set by the consensus

protocol. A protocol that also provides forensic support with pa-

rameters𝑚 and 𝑑 allows the detection of 𝑑 Byzantine replicas when

≤ 𝑚 out of 𝑛 replicas are Byzantine faulty. In particular, in §4 and

§5, we observed that when 𝑡 = ⌊𝑛/3⌋, 𝑚 = 2𝑡 , and 𝑘 = 1, we can

obtain (2𝑡, 1, 𝑑)-forensic support for 𝑑 = 𝑡 + 1. This section presents

the limits on the number of Byzantine replicas detected (𝑑), given

the total number of Byzantine faulty replicas available in the system

(𝑚). In particular, we show that if the total number of Byzantine

faults are too high, in case of a disagreement, the number of corrupt

(Byzantine) replicas that can be deemed undeniably culpable will

be too few.

Intuition. To gain intuition, let us consider a specific setting with

𝑛 = 2𝑡 + 1,𝑚 = 𝑛 − 𝑡 = 𝑡 + 1, and 𝑑 > 1. Thus, such a protocol pro-

vides us with agreement, validity, and termination if the Byzantine

replicas are in a minority. If they are in the majority, the protocol

transcript provides undeniable guilt of more than one Byzantine

fault. We show that such a protocol does not exist. Why? Suppose

we split the replicas into three groups 𝑃 ,𝑄 , and 𝑅 of sizes 𝑡 , 𝑡 , and 1

respectively. First, observe that any protocol cannot expect Byzan-

tine replicas to participate in satisfying agreement, validity, and

termination. Hence, if the replicas in 𝑄 are Byzantine, replicas in

𝑃∪𝑅 may not receive anymessages from𝑄 . However, if, in addition,

the replica 𝑅 is also corrupt, then 𝑅 ∪ 𝑄 can separately simulate

another world where 𝑃 are Byzantine and not sending messages,

and 𝑄 ∪ 𝑅 output a different value. Even if an external client ob-

tains a transcript of the entire protocol execution (i.e., transcripts of

𝑘 = 𝑛− 𝑓 honest replicas and 𝑓 Byzantine replicas), the only replica
that is undeniably culpable is 𝑅 since it participated in both worlds.

For all other replicas, neither 𝑃 nor 𝑄 have sufficient information

to prove the other set’s culpability. Thus, an external client will

not be able to detect more than one Byzantine fault correctly. Our

lower bound generalizes this intuition to hold for 𝑛 > 2𝑡 ,𝑚 = 𝑛 − 𝑡 ,
𝑘 = 𝑛 − 𝑓 , and 𝑑 > 𝑛 − 2𝑡 .

Theorem B.1. For any validated Byzantine agreement protocol
with 𝑡 < 𝑛/2, when 𝑓 > 𝑡 , if two honest replicas output conflicting
values, (𝑛−𝑡, 𝑛− 𝑓 , 𝑑)-forensic support is impossible with 𝑑 > 𝑛−2𝑡 .

Proof. Suppose there exists a protocol that achieves agreement,

validity, termination, and forensic support with parameters 𝑛, 𝑡 <

𝑛/2, 𝑚 = 𝑛 − 𝑡, 𝑘 = 𝑛 − 𝑓 and 𝑑 > 𝑛 − 2𝑡 . Through a sequence of

worlds, and through an indistinguishability argument we will show

the existence of a world where a client incorrectly holds at least

one honest replica as culpable. Consider the replicas to be split into

three groups 𝑃, 𝑄 , and 𝑅 with 𝑡 , 𝑡 , and 𝑛 − 2𝑡 replicas respectively.
We consider the following sequence of worlds:

World 1. [𝑡 Byzantine faults, satisfying agreement, validity, and

termination]

Setup. Replicas in 𝑃 and 𝑅 are honest while replicas in 𝑄 have

crashed. 𝑃 and 𝑅 start with a single externally valid input 𝑣1. All

messages between honest replicas arrive instantaneously.

Output. Since there are |𝑄 | = 𝑡 faults, due to agreement, validity

and termination properties, replicas in 𝑃 and 𝑅 output 𝑣1. Sup-

pose replicas in 𝑃 and 𝑅 together produce a transcript 𝑇1 of all the

messages they have received.

World 2. [𝑡 Byzantine faults, satisfying agreement, validity, and

termination]

Setup. Replicas in 𝑄 and 𝑅 are honest while replicas in 𝑃 have

crashed. 𝑄 and 𝑅 start with an externally valid input 𝑣2. All mes-

sages between honest replicas arrive instantaneously.

Output. Since 𝑡 replicas are Byzantine faulty, due to agreement,

validity and termination properties, replicas in 𝑄 and 𝑅 output 𝑣2.

Suppose replicas in 𝑄 and 𝑅 together produce a transcript 𝑇2 of all

the messages they have received.

World 3. [𝑛 − 𝑡 Byzantine faults satisfying validity, termination,

forensic support]

Setup. Replicas in 𝑃 are honest while replicas in𝑄 and 𝑅 are Byzan-

tine. Replicas in 𝑃 start with input 𝑣1. Replicas in 𝑄 and 𝑅 have

access to both inputs 𝑣1 and 𝑣2. 𝑄 behaves as if it starts with input

𝑣2 whereas 𝑅 will use both inputs 𝑣1 and 𝑣2. Replicas in 𝑄 and 𝑅

behave with 𝑃 exactly like in World 1. In particular, replicas in 𝑄

do not send any message to any replica in 𝑃 . Replicas in 𝑅 per-

form a split-brain attack where one brain interacts with 𝑃 as if

the input is 𝑣1 and it is not receiving any message from 𝑄 . Also,

separately, replicas in 𝑄 and the other brain of 𝑅 start with input

𝑣2 and communicate with each other exactly like in World 2. They

ignore messages arriving from 𝑃 .

Output. For replicas in 𝑃 , this world is indistinguishable from that

of World 1. Hence, they output 𝑣1. Replicas in 𝑃 and the first brain

of 𝑅 output transcript𝑇1 corresponding to the output. Replicas in𝑄

and the other brain of 𝑅 behave exactly like in World 2. Hence, they

can output transcript𝑇2. Since the protocol provides (𝑛−𝑡, 𝑛− 𝑓 , 𝑑)-
forensic support for 𝑑 > 𝑛 − 2𝑡 , the transcript of messages should

hold 𝑑 > 𝑛 − 2𝑡 Byzantine replicas undeniably corrupt. Suppose the
client can find the culpability of > 𝑛 − 2𝑡 replicas from 𝑄 ∪ 𝑅, i.e.,
≥ 1 replica from 𝑄 .

World 4. [𝑛 − 𝑡 Byzantine faults satisfying validity, termination,

forensic support]



Setup. Replicas in𝑄 are honest while replicas in 𝑃 and 𝑅 are Byzan-

tine. Replicas in 𝑄 start with input 𝑣2. Replicas in 𝑃 and 𝑅 have

access to both inputs 𝑣1 and 𝑣2. 𝑃 behaves as if it starts with input

𝑣1 whereas replicas in 𝑅 use both 𝑣1 and 𝑣2. Replicas in 𝑃 and 𝑅

behave with 𝑄 exactly like in World 2. In particular, replicas in 𝑃

do not send any message to any replica in 𝑄 . Replicas in 𝑅 per-

form a split-brain attack where one brain interacts with 𝑄 as if

the input is 𝑣2 and it is not receiving any message from 𝑃 . Also,

separately, replicas in 𝑃 and the other brain of 𝑅 start with input

𝑣1 and communicate with each other exactly like in World 1. They

ignore messages arriving from 𝑄 .

Output. For replicas in 𝑄 , this world is indistinguishable from that

of World 2. Hence, they output 𝑣2. Replicas in 𝑄 and the first brain

of 𝑅 output transcript 𝑇2 corresponding to the output. Replicas in

𝑃 and the other brain of 𝑅 behave exactly like in World 1. Hence,

they can output transcript 𝑇1.

Observe that the transcript and outputs produced by replicas in

𝑃 , 𝑄 , and 𝑅 are exactly the same as in World 3. Hence, the client

will hold > 𝑛 − 2𝑡 replicas from 𝑄 ∪ 𝑅, i.e., ≥ 1 replica from 𝑄 as

culpable. However, all replicas in 𝑄 are honest in this world. This

is a contradiction. □

C PROOF OF THEOREMS

C.1 Proof of Theorem 4.1

Proof. Suppose there are 𝑓 = 2𝑡 + 1 Byzantine replicas, and let

there be three replica partitions 𝑃,𝑄, 𝑅, |𝑃 | = |𝑄 | = 𝑡 , |𝑅 | = 𝑡 + 1.
To prove the result, suppose the protocol has forensic support for

𝑑 > 0, we construct two worlds where a different set of replicas are

Byzantine in each world.

World 1. Let 𝑅,𝑄 be Byzantine replicas in this world. During the

protocol, replicas in 𝑄 behave like honest parties. Suppose in view

𝑒, 𝑒 ′ (𝑒 < 𝑒 ′), two honest replicas 𝑝1, 𝑝2 ∈ 𝑃 output two conflicting

values 𝑣, 𝑣 ′ after receiving two commitQC. The commitQC for 𝑣

contains the Commit messages from 𝑃 and 𝑅, the commitQC for

𝑣 ′ contains the Commit messages from 𝑅 and 𝑄 . All the other

messages never reach 𝑃 . During the forensic protocol, replicas in 𝑃

send their transcripts to the client. Since the protocol has forensic

support for 𝑑 > 0, using these transcripts (two commitQC), the
forensic protocol determines some subset of 𝑅 are culpable (since

𝑄 behave like honest).

World 2. Let 𝑃,𝑄 and some replica 𝑟 ∈ 𝑅 are Byzantine replicas

and replicas in 𝑟 behave honestly. Again, in view 𝑒, 𝑒 ′ (𝑒 < 𝑒 ′), two
replicas 𝑝1, 𝑝2 ∈ 𝑃 output two conflicting values 𝑣, 𝑣 ′ after receiving
two commitQC. The commitQC for 𝑣 contains theCommitmessages

from 𝑃 and 𝑅, the commitQC for 𝑣 ′ contains the Commit messages

from 𝑅 and 𝑄 . Replicas in 𝑅 unlock themselves due to receiving a

higher prepareQC formed in 𝑒∗ (𝑒 < 𝑒∗ < 𝑒 ′). During the forensic

protocol, replicas in 𝑃 send the same transcripts as of World 1 to the

client (only two commitQC). Thus, the forensic protocol outputs
some subset of 𝑅 as culpable replicas. However, this is incorrect

since replicas in 𝑅 are honest (𝑟 is indistinguishable with replicas

in 𝑅/{𝑟 }). This complete the proof. □
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Figure 5: World 1 of Theorem 5.3. Replicas are represented

as colored nodes. Replica partitions are 𝑃 , {𝑥} (Byzantine), 𝑅
(Byzantine), and 𝑄 from top to bottom.

viewse

< i, Reply, v, σ >
No higher 

formed
σ

⋯

 for  formedσ* v′ 

σt

t

σold

e*

< j, Reply, v′ , σ′ >

e′ ⋯

t

         

       

        

(v, e) Locked on (v, e) :=  ( )(eold, v′ , σold, ∅) eold < eσ QC

(_, _)

(v, e)

(v′ , eold)

< NewView, e*, v′ , L > < NewView, e′ , v′ , L >
⋯

σ′ 

⋯
L

Pick highest σ*
< NewView, e′ , v′ , L* >

:=(e*, v′ , σ*, ∅)L*

Figure 6: World 2 of Theorem 5.3. Replicas are represented

as colored nodes. Replica partitions are 𝑃 (Byzantine), {𝑥}
(Byzantine), 𝑅, and 𝑄 from top to bottom.

C.2 Proof of Theorem 5.3

Proof. Suppose the protocol provides forensic support to detect

𝑑 > 1 Byzantine replicas with irrefutable proof and the proof can

be constructed from the transcripts of all honest replicas. To prove

this result, we construct two worlds where a different set of replicas

are Byzantine in each world. We will fix the number of Byzantine

replicas 𝑓 = 𝑡+1, but the following argument works for any 𝑓 ≥ 𝑡+1.
Let there be four replica partitions 𝑃,𝑄, 𝑅, {𝑥}. |𝑄 | = |𝑃 | = |𝑅 | =

𝑡 , and 𝑥 is an individual replica. In both worlds, the conflicting

outputs are presented in view 𝑒, 𝑒 ′ (𝑒 + 1 < 𝑒 ′) respectively. Let
commitQC

1
be on value 𝑣 in view 𝑒 , and signed by 𝑃, 𝑅, 𝑥 . And let

commitQC
2
(and a precommitQC) be on value 𝑣 ′ in view 𝑒 ′, and

signed by 𝑄, 𝑅, 𝑥 . Suppose the leader of view 𝑒, 𝑒∗, 𝑒 ′ (𝑒 < 𝑒∗ < 𝑒 ′)
is replica 𝑥 .

World 1 is presented in Figure 5. Let 𝑅 and 𝑥 be Byzantine repli-

cas in this world. In view 𝑒∗, the leader proposes value 𝑣 ′ and 𝑄
sends Prepare on it, but a prepareQC is not formed. In view 𝑒 ′, the
Byzantine parties, together with 𝑄 , sign prepareQC on 𝑣 ′. 𝑒 ′ is the
first view where a prepareQC for 𝑣 ′ is formed.



During the forensic protocol, all honest replicas in 𝑃 and 𝑄 send

their transcripts. Byzantine 𝑅 and 𝑥 do not provide any information.

Since the protocol has forensic support, the forensic protocol can

output 𝑑 > 1 replicas in 𝑅 and 𝑥 as culprits.

World 2 is presented in Figure 6. Let 𝑃 and 𝑥 be Byzantine replicas

in this world. Here, in view 𝑒∗ > 𝑒 , 𝑃 and 𝑥 , together with 𝑄

sign prepareQC on 𝑣 ′. In this world, 𝑒∗ is the first view where a

prepareQC for 𝑣 ′ is formed. View 𝑒 ′ > 𝑒∗ is similar to that ofWorld 1

except that honest 𝑅 receives aNewViewmessage with prepareQC∗

(rather than prepareQC𝑜𝑙𝑑 ).
During the forensic protocol, 𝑄 sends their transcripts, which

are identical to those in World 1. Byzantine 𝑃 can provide the same

transcripts as those in World 1. Observe that the transcripts from 𝑃

and 𝑄 presented to the forensic protocol are identical to those in

World 1. Thus, the forensic protocol can also outputs 𝑑 > 1 replicas

in 𝑅 and 𝑥 as culpable. In World 2, this is incorrect since replicas in

𝑅 are honest.

Based on 2𝑡 transcripts, World 1 and World 2 are indistinguish-

able. To obtain an irrefutable proof of 𝑑 > 1 culprits, the client

needs to collect more than 2𝑡 transcripts, more than the number of

honest parties available. This completes the proof. □

Remark. The above proof can be easily modified to work with

parameters 𝑑 > 0 when𝑚 = 𝑡 + 2.

C.3 Proof of Theorem 6.1

Proof. We construct two worlds where a different set of repli-

cas are Byzantine in each world. Let replicas be split into three

partitions 𝑃 , 𝑄 , and 𝑅, and |𝑃 | = (𝑛 − 2𝜖)/3, |𝑄 | = |𝑅 | = (𝑛 + 𝜖)/3
and 𝜖 > 0 is a small constant. Denote the numbers of replicas from

𝑃,𝑄, 𝑅 in a committee by 𝑝, 𝑞, 𝑟 . Let 𝜅 denote the expected com-

mittee size; 𝑡𝐻 = 2𝜅/3. With constant probability, we will have

𝑝 < 𝜅/3, 𝑞 > 𝜅/3 and 𝑟 > 𝜅/3 and 𝑝 + 𝑞 < 2𝜅/3 in steps 4 to 8.

World 1. Replicas in 𝑅 are Byzantine in this world. We have 𝑝 +𝑞 <

𝑡𝐻 and 𝑞 + 𝑟 > 𝑡𝐻 . The Byzantine parties follow the protocol in

Graded Consensus. Thus, all replicas in step 4 hold the same tuple

of 𝑏 = 0 and 𝑣 (𝑣 ≠ 𝑣⊥). Then, the following steps are executed.

Step 4 Honest committee members that belong to 𝑃 and 𝑄 broad-

cast their votes on (𝑏 = 0, 𝑣) whereas Byzantine committee

members that belong to 𝑅 send votes to replicas in 𝑃 and not

𝑄 .

Step 5 Replicas in 𝑃 satisfy Ending Condition 0, and output 𝑏 = 0

and the value 𝑣 . Replicas in 𝑄 do not receive votes from

committee members in 𝑅, so they update 𝑏 = 0 and broadcast

their votes on (𝑏 = 0, 𝑣). Byzantine committee members that

belong to 𝑅 pretend not to receive votes from committee

members in 𝑄 , and also update 𝑏 = 0. And they send votes

to replicas in 𝑃 and not 𝑄 .

Step 6 Replicas in𝑄 update𝑏 = 1 since they receive 𝑝+𝑞 < 𝑡𝐻 votes.

Replicas in 𝑅 pretend not to receive votes from committee

members in 𝑄 , and also update 𝑏 = 1. Committee members

in 𝑄 and 𝑅 broadcast their votes.

Steps 7-8 Committeemembers that belong to𝑄 and𝑅 receive𝑞+𝑟 > 𝑡𝐻
votes, so they update 𝑏 = 1 and broadcast their votes.

Step9 Replicas in 𝑄 and 𝑅 satisfy Ending Condition 1, and output

𝑏 = 1 and 𝑣⊥, a disagreement with replicas in 𝑃 .

During the forensic protocol, replicas in 𝑃 send their transcripts

and state that they have output 𝑏 = 0.𝑄 and 𝑅 send their transcripts

claiming in steps 4 and 5 they do not hear from the other partition,

and they state that output 𝑏 = 1.

If this protocol has any forensic support, then it should be able

to detect some replica in 𝑅 as Byzantine.

World 2. This world is identical to World 1 except (i) Replicas in 𝑄

are Byzantine and replicas in 𝑅 are honest, and (ii) the Byzantine

set𝑄 behaves exactly like set 𝑅 in World 1, i.e., replicas in𝑄 do not

send any votes to 𝑅 in steps 4 and 5 and ignore their votes. During

the forensic protocol, 𝑃 send their transcripts and state that they

have output 𝑏 = 0. 𝑄 and 𝑅 send their transcripts claiming in steps

4 and 5 they do not hear from the other partition, and they state

that output 𝑏 = 1.

From an external client’s perspective, World 2 is indistinguish-

able from World 1. In World 2, the client should detect some replica

in 𝑅 as Byzantine as in World 1, but all replicas in 𝑅 are honest. □

C.4 Proof of Theorem 7.1

Proof. Suppose two conflicting blocks 𝑏, 𝑏 ′ are output in views

𝑒 , 𝑒 ′ respectively.

Case 𝑒 = 𝑒 ′.
Culpability. The commitQC of 𝑏 (the QC in 𝑒 + 3) and commitQC of

𝑏 ′ intersect in 𝑡 +1 replicas. These 𝑡 +1 replicas should be Byzantine
since the protocol requires a replica to vote for at most one value

in a view.

Witnesses. Client can get the proof based on the two blocks in 𝑒 + 3,
so additional witnesses are not necessary in this case.

Case 𝑒 ≠ 𝑒 ′.
Culpability. If 𝑒 ≠ 𝑒 ′, then WLOG, suppose 𝑒 < 𝑒 ′. Since 𝑏 is output
in view 𝑒 , it must be the case that 2𝑡 + 1 replicas are locked on (𝑏, 𝑒)
at the end of view 𝑒 . Now consider the first view 𝑒 < 𝑒∗ ≤ 𝑒 ′ in
which a higher lock (𝑏 ′′, 𝑒∗) is formed where 𝑏 ′′, 𝑏 are not on the

same chain (possibly 𝑏 ′′ is on the chain of 𝑏 ′). Such a view must

exist since 𝑏 ′ is output in view 𝑒 ′ > 𝑒 and a lock will be formed in

at least view 𝑒 ′. For a lock to be formed, a higher prepareQC must

be formed too.

Consider the first view 𝑒 < 𝑒# ≤ 𝑒 ′ in which a prepareQC in

chain of 𝑏 ′′ is formed. The leader in 𝑒# broadcasts the block con-

taining a highQC on (𝑏 ′′, 𝑒 ′′). Since this is the first time a higher

prepareQC is formed and there is no prepareQC for chain of 𝑏 ′′

formed between view 𝑒 and 𝑒#, we have 𝑒 ′′ ≤ 𝑒 . The formation

of the higher prepareQC indicates that 2𝑡 + 1 replicas received the

block extending 𝑏 ′′ with highQC on (𝑏 ′′, 𝑒 ′′) and consider it a valid
proposal, i.e., the view number 𝑒 ′′ is larger than their locks because

the block is on another chain.

Recall that the output block 𝑏 indicates 2𝑡 + 1 replicas are locked
on (𝑏, 𝑒) at the end of view 𝑒 . In this case, the 2𝑡 + 1 votes in

prepareQC in view 𝑒# intersect with the 2𝑡 +1 votes in commitQC in

view 𝑒 at 𝑡+1 Byzantine replicas. These replicas should be Byzantine
because they were locked on the block 𝑏 in view 𝑒 and vote for a

conflicting block in a higher view 𝑒# whose highQC is from a view

𝑒 ′′ ≤ 𝑒 . Thus, they have violated the voting rule.

Witnesses. Client can get the proof by storing a prepareQC formed

in 𝑒# between 𝑒 and 𝑒 ′ in a different chain from 𝑏. The prepareQC



is for the previous block in 𝑒# whose highQC is formed in a view

𝑒 ′′ < 𝑒 . For the replicas who have access to the prepareQC, they
must have access to all blocks in the same blockchain. Thus only

one witness is needed (𝑘 = 1) to provide the prepareQC and its

previous block containing the highQC on (𝑏 ′′, 𝑒 ′′), the prepareQC,
highQC and the first commitQC act as the irrefutable proof. □

D DESCRIPTION OF BFT PROTOCOLS

In the protocols in this paper, we assume that replicas and clients

ignore messages with invalid signatures and messages containing

external invalid values. When searching for an entity (e.g. lock or

prepareQC) with the highest view, break ties by alphabetic order of

the value. Notice that ties only occur when 𝑓 > 𝑡 and Byzantine

replicas deliberately construct conflicting quorum certificates in a

view.

With 𝑛 = 3𝑡 + 1, the descriptions of the PBFT protocol and

HotStuff protocol are presented in Algorithm 5 and 6.

D.1 A Forensic Attack on HotStuff-view

Compared to HotStuff [32, Algorithm 2], Algorithm 6 highlights a

slightly different voting rule in line 6. In addition to check whether

(𝐿𝑂𝐶𝐾.𝑒 < highQC.𝑒) ∨ (𝐿𝑂𝐶𝐾.𝑣 = 𝑣) holds as in HotStuff [32,

Algorithm 2], when the value in NewView is the same as the value

in lock, our voting rule requires 𝐿𝑂𝐶𝐾.𝑒 = highQC.𝑒 .
We argue that the lack of this additional check on the view

number will not affect the safety and liveness for HotStuff, but pose

a threat for forensics. In the following, we exhibit a forensic attack

on HotStuff-view protocol with the original voting rule.

• 𝑒 = 𝑖 > 0 : An honest replica 𝑅 receives a ⟨Commit, 𝑖, 𝑣, 𝜎⟩
from the leader and updates its lock to be (𝑖, 𝑣, 𝜎). 𝑅 sends

⟨Commit, 𝑖, 𝑣⟩ to leader, which is contained in a commitQC
denoted as 𝑞𝑐1. 𝑣 is output in this view.

• 𝑒 = 𝑖 + 1 : 𝑅 receives ⟨Commit, 𝑖 + 1, 𝑣 ′, 𝜎 ′⟩ and updates its

lock to be (𝑖 + 1, 𝑣 ′, 𝜎 ′).
• 𝑒 = 𝑖 + 2 : A leader broadcasts ⟨NewView, 𝑖 + 2, 𝑣 ′, highQC⟩,
where highQC is a QC from 𝑖 − 1. Replica 𝑅 receives the mes-

sage and sends ⟨Prepare, 𝑖+2, 𝑣 ′, 𝑖−1⟩, because 𝐿𝑂𝐶𝐾.𝑣 = 𝑣 ′
by checking the original voting rule. This message is con-

tained into a prepareQC denoted as 𝑞𝑐2. Further, 𝑣
′
is output

in this view.

In this execution, replica 𝑅 follows the protocol, however, it will

be mistakenly blamed by Algorithm 2 if the client receives the 𝑞𝑐1
for 𝑣 and the 𝑞𝑐2 for 𝑣

′
. Since 𝑞𝑐2 .𝑣 ≠ 𝑞𝑐1 .𝑣 and 𝑞𝑐2 .𝑒𝑞𝑐 = 𝑖 − 1 ≤

𝑞𝑐1 .𝑒 = 𝑖 according to line 10.

While the actual prepareQC whose intersection with 𝑞𝑐1 should

be blamed is generated in 𝑒 = 𝑖 + 1, it is possible that some honest

replicas who have the same transcripts as 𝑅 will be improperly held

culpable in this case. By adding the condition to check 𝐿𝑂𝐶𝐾.𝑒 =

highQC.𝑒 , honest replicas will not vote for a NewView with stale

highQC, which prevents them from the attack described above.



Algorithm 5 PBFT-PK protocol: replica’s initial value 𝑣𝑖

1: 𝐿𝑂𝐶𝐾 ← (0, 𝑣⊥, 𝜎⊥) with selectors 𝑒, 𝑣, 𝜎 ⊲ 0, 𝑣⊥, 𝜎⊥: default view, value, and signature

2: 𝑒 ← 1

3: while true do

⊲ Pre-prepare and Prepare Phase

4: as a leader

5: collect ⟨ViewChange, 𝑒 − 1, ·⟩ from 2𝑡 + 1 distinct replicas as status certificate𝑀 ⊲ Assume special ViewChange messages from

view 0

6: 𝑣 ← the locked value with the highest view number in𝑀

7: if 𝑣 = 𝑣⊥ then

8: 𝑣 ← 𝑣𝑖

9: broadcast ⟨NewView, 𝑒, 𝑣, 𝑀⟩
10: as a replica

11: wait for valid ⟨NewView, 𝑒, 𝑣, 𝑀⟩ from leader ⊲ Use function Valid(⟨NewView, 𝑒, 𝑣, 𝑀⟩)
12: send ⟨Prepare, 𝑒, 𝑣⟩ to leader

⊲ Commit Phase

13: as a leader

14: collect ⟨Prepare, 𝑒, 𝑣⟩ from 2𝑡 + 1 distinct replicas, denote the collection as Σ
15: 𝜎 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒-𝑠𝑖𝑔𝑛(Σ)
16: broadcast ⟨Commit, 𝑒, 𝑣, 𝜎⟩
17: as a replica

18: wait for ⟨Commit, 𝑒, 𝑣, 𝜎⟩ from leader ⊲ prepareQC
19: 𝐿𝑂𝐶𝐾 ← (𝑒, 𝑣, 𝜎)
20: send ⟨Commit, 𝑒, 𝑣⟩ to leader

⊲ Reply Phase

21: as a leader

22: collect ⟨Commit, 𝑒, 𝑣⟩ from 2𝑡 + 1 distinct replicas, denote the collection as Σ
23: 𝜎 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒-𝑠𝑖𝑔𝑛(Σ)
24: broadcast ⟨Reply, 𝑒, 𝑣, 𝜎⟩
25: as a replica

26: wait for ⟨Reply, 𝑒, 𝑣, 𝜎⟩ from leader ⊲ commitQC
27: output 𝑣 and send ⟨Reply, 𝑒, 𝑣, 𝜎⟩ to the client

28: call procedure ViewChange()
29: if a replica encounters timeout in any “wait for”, call procedure ViewChange()

30: procedure ViewChange()
31: broadcast ⟨Blame, 𝑒⟩
32: collect ⟨Blame, 𝑒⟩ from 𝑡 + 1 distinct replicas, broadcast them
33: quit this view

34: send ⟨ViewChange, 𝑒, 𝐿𝑂𝐶𝐾⟩ to the next leader

35: enter the next view, 𝑒 ← 𝑒 + 1
36: function Valid(⟨NewView, 𝑒, 𝑣, 𝑀⟩)
37: 𝑣∗ ← the locked value with the highest view number in𝑀

38: if (𝑣∗ = 𝑣 ∨ 𝑣∗ = 𝑣⊥)∧(𝑀 contains locks from 2𝑡 + 1 distinct replicas) then
39: return 𝑡𝑟𝑢𝑒

40: else

41: return 𝑓 𝑎𝑙𝑠𝑒



Algorithm 6 General HotStuff protocol: replica’s initial value 𝑣𝑖 , protocol variant indicator 𝑣𝑎𝑟 ∈{‘HotStuff-view’, ‘HotStuff-hash’, ‘HotStuff-
null’}
1: prepareQC← (0, 𝑣⊥, 𝜎⊥, Info⊥) with selectors 𝑒, 𝑣, 𝜎, Info
2: 𝐿𝑂𝐶𝐾 ← (0, 𝑣⊥) with selectors 𝑒, 𝑣 ⊲ 0, 𝑣⊥, 𝜎⊥, Info⊥: default view, value, signature, and info

3: 𝑒 ← 1

4: while true do

⊲ Pre-prepare and Prepare Phase

5: as a leader

6: collect ⟨ViewChange, 𝑒 − 1, ·⟩ from 2𝑡 + 1 distinct replicas as𝑀 ⊲ Assume special ViewChange messages from view 0

7: highQC← the highest QC in𝑀

8: 𝑣 ← highQC.𝑣
9: if 𝑣 = 𝑣⊥ then

10: 𝑣 ← 𝑣𝑖

11: broadcast ⟨NewView, 𝑒, 𝑣, highQC⟩
12: as a replica

13: wait for ⟨NewView, 𝑒, 𝑣, highQC⟩ from leader s.t. highQC.𝑣 = 𝑣 ∨ highQC.𝑣 = 𝑣⊥ ⊲ Validate 𝑣

14: if (𝐿𝑂𝐶𝐾.𝑒 < highQC.𝑒) ∨ (𝐿𝑂𝐶𝐾.𝑣 = 𝑣 ∧ 𝐿𝑂𝐶𝐾.𝑒 = highQC.𝑒) then ⊲ Voting rule, see Appendix D.1

15: send ⟨Prepare, 𝑒, 𝑣, Info(𝑣𝑎𝑟, highQC)⟩ to leader ⊲ Use function Info(𝑣𝑎𝑟, highQC)
⊲ Precommit Phase

16: as a leader

17: collect ⟨Prepare, 𝑒, 𝑣, Info⟩ from 2𝑡 + 1 distinct replicas, denote the collection as Σ
18: 𝜎 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒-𝑠𝑖𝑔𝑛(Σ)
19: broadcast ⟨Precommit, 𝑒, 𝑣, 𝜎, Info⟩
20: as a replica

21: wait for ⟨Precommit, 𝑒, 𝑣, 𝜎, Info⟩ from leader ⊲ prepareQC
22: prepareQC← (𝑒, 𝑣, 𝜎, Info)
23: send ⟨Precommit, 𝑒, 𝑣⟩ to leader

⊲ Commit Phase

24: as a leader

25: collect ⟨Precommit, 𝑒, 𝑣⟩ from 2𝑡 + 1 distinct replicas, denote the collection as Σ
26: 𝜎 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒-𝑠𝑖𝑔𝑛(Σ)
27: broadcast ⟨Commit, 𝑒, 𝑣, 𝜎⟩
28: as a replica

29: wait for ⟨Commit, 𝑒, 𝑣, 𝜎⟩ from leader ⊲ precommitQC
30: 𝐿𝑂𝐶𝐾 ← (𝑒, 𝑣)
31: send ⟨Commit, 𝑒, 𝑣⟩ to leader

⊲ Reply Phase

32: as a leader

33: collect ⟨Commit, 𝑒, 𝑣⟩ from 2𝑡 + 1 distinct replicas, denote the collection as Σ
34: 𝜎 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒-𝑠𝑖𝑔𝑛(Σ)
35: broadcast ⟨Reply, 𝑒, 𝑣, 𝜎⟩
36: as a replica

37: wait for ⟨Reply, 𝑒, 𝑣, 𝜎⟩ from leader ⊲ commitQC
38: output 𝑣 and send ⟨Reply, 𝑒, 𝑣, 𝜎⟩ to the client

39: call procedure ViewChange()
40: if a replica encounters timeout in any “wait for”, call procedure ViewChange()



41: procedure ViewChange()
42: broadcast ⟨Blame, 𝑒⟩
43: collect ⟨Blame, 𝑒⟩ from 𝑡 + 1 distinct replicas, broadcast them
44: quit this view

45: send ⟨ViewChange, 𝑒, prepareQC⟩ to the next leader

46: enter the next view, 𝑒 ← 𝑒 + 1
47: function Info(𝑣𝑎𝑟, highQC) ⊲ 𝑣𝑎𝑟 ∈ {‘HotStuff-view’, ‘HotStuff-hash’, ‘HotStuff-null’}
48: if 𝑣𝑎𝑟 =‘HotStuff-view’ then

49: return highQC.𝑒
50: if 𝑣𝑎𝑟 =‘HotStuff-hash’ then

51: return Hash(highQC)
52: if 𝑣𝑎𝑟 =‘HotStuff-null’ then

53: return ∅
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