
unic.ac.cy/iff

BLOC-521 Digital Currency Programming
How Bitcoin works, Part 1
Konstantinos Karasavvas

Digital Currency Programming How Bitcoin Works, Part 1

Learning objectives

• Introduce transactions and how they are propagated

• Explain how transactions become blocks and how mining works

2

Digital Currency Programming How Bitcoin Works, Part 1

Session outline

• The Story of a Transaction

• From Transactions to Blocks

• Mining

• Conclusions

• Further reading

3

unic.ac.cy/iff

Section 1: The Story of a Transaction

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Basics (1)

5

Transactions specify the transfer of bitcoin ownership. Assume Alice has 1.5 bitcoins (BTCs) and wants
to send 1 BTC* to Bob. The transaction history will already have an entry of how Alice got her bitcoins
(e.g. from Zed as seen in TX

x
).

At some point in the future Alice will create a transaction TX
y
 that sends 1 BTC to Bob. We know that

Alice has at least 1.5 BTC from TX
x
.

 TXx: 1Zed transfers 1.5 BTC to 1Alice
TXy: 1Alice transfers 1 BTC to 1Bob

The names 1Zed, 1Alice and 1Bob are short for the actual bitcoin addresses of Zed, Alice and Bob
respectively. So Alice will send 1BTC from her 1Alice bitcoin address to Bob to his 1Bob address.

Note that Alice has to prove that she is indeed the owner of the address 1Alice when she creates the
TX. Bob does not need to do anything to receive the bitcoins.

* Internally satoshis are sent. 1 satoshi = 0.00000001 BTC

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Basics (2)

A transaction can consist of several inputs (addresses to get bitcoins from) and several outputs
(addresses to send bitcoins to). When an input is used it is completely consumed; i.e. all the bitcoins
that the TX contained need to be spent.

The amount of all the inputs needs to be greater or equal to the amounts of outputs. If greater
(recommended) the difference is an implied transaction fee that goes to the miners.

TXy

(signed by Alice)
Input 0: From 1Alice

Output 0: 1 BTC
To 1Bob

Output 1: 0.49 BTC
To 1Alice

…

…

Output 0: 1.5BTC
To 1Alice

TXx

1 BTC +
0.49 BTC +
0.01 BTC =

1.5 BTC

6

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Basics (3)

A typical transaction transfer some bitcoins to another user and returns the remaining bitcoins as
change to the originating address or another address that the sender controls.

Another common transaction aggregates several inputs into a single output. This represents the
real-world equivalent of exchanging a pile of coins and currency notes for a single larger note.
Transactions like these are sometimes generated by wallet applications to cleanup lots of smaller
amounts that were received as change for payments.

TX

Output 0

Input 0

Input 1

Input 2

7

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Basics (4)

Another transaction that is seen often on the Bitcoin network is a transaction that distributes one
input to multiple outputs representing multiple recipients. This type of transaction is sometimes used
by commercial entities to distribute funds, such as when processing payroll payments to multiple
employees.

TX

Output 0

Input 0 Output 1

Output 2

8

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Basics (5)

Finally any combination of inputs and outputs is possible.

TX

Output 0

Output 1

Output 2

Input 0

Input 1

Input 2

9

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Basics (6)

Note that outputs that haven’t been spent yet are called Unspent Transaction Outputs (UTXO) and the
set of UTXOs is essentially all the available bitcoins in the system.

So for our initial example Alice creates TXy to send 1 BTC to Bob. What next?

TXy

(signed by Alice)
Input 0: From 1Alice

Output 0: 1 BTC
To 1Bob

Output 1: 0.49 BTC
To 1Alice

…

…

Output 0: 1.5BTC
To 1Alice

TXx

10

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

The transaction is
sent to a bitcoin

node.

11

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

valid?

The node checks if it
is valid.

12

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx
valid!

And propagates to
other nodes if it is.

13

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx

And so on and so
forth until all nodes

receive the
transaction.

14

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx

tx

tx

15

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx

tx

tx

16

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx

tx

tx

tx

tx

tx

tx

17

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx

tx

tx

tx

tx

tx

tx

18

Digital Currency Programming How Bitcoin Works, Part 1

Transaction Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
tx

tx

tx

tx

tx

tx

tx

tx tx

tx

19

unic.ac.cy/iff

Section 2: From Transactions to Blocks

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

From a Bitcoin’s
node perspective.

21

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1

Mempool

The node receives a
transaction which

goes into its memory
pool (mempool).

22

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1
tx2

Mempool

It keeps receiving
transactions …

23

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1
tx2
tx3 Mempool

...

24

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1
tx2

tx4
tx3 Mempool

…

25

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1 block

tx2

tx4
tx3

At some point it will
decide that it will

group these txs into a
block.

26

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1 block

tx2

tx4
tx3

cb

It will add the
coinbase tx which

rewards 6.25BTC to
a node’s BTC

address.

27

Digital Currency Programming How Bitcoin Works, Part 1

From Transactions to Blocks

node

tx1 block

tx2

tx4
tx3

cb
H

Finally it adds the
block’s header

containing important
information.

28

unic.ac.cy/iff

Section 3: Mining

Digital Currency Programming How Bitcoin Works, Part 1

After a node creates a block it will attempt to
make it final by propagating it to all other nodes in
the network.

Multiple nodes will receive the same transactions
and will create blocks; nodes choose which TXs to
include. They can create and propagate a block at
any time.

How do we avoid spam?
Which blocks are accepted by the network?

A very difficult computational problem needs to
be solved in order to accept a block as valid. The
process of finding the solution requires work
(Proof-of-Work) and is called mining. The mining
problem has the fundamental property of being
difficult to calculate but trivial to validate its
correctness.

Mining a Block (1)

node 2

node 1

block

tx2

tx4
tx3

cb
H

block

tx2
tx1

tx3

cb
H

tx1

30

Digital Currency Programming How Bitcoin Works, Part 1

Mining a Block (2)

node 2

The Proof-of-Work puzzle is to compute a
cryptographic hash* of the new block that we
want to create which should be less than a given
number. Since a hash is random it will take several
attempts to find a proper hash but other nodes
will verify with only one attempt.

SHA256(SHA256(block_header))

* A cryptographic hash function is a hash function
that takes an arbitrary block of data and returns a
fixed-size bit string, the cryptographic hash value,
such that any (accidental or intentional) change to
the data will also change the hash value
significantly.

node 1

block

tx2

tx4
tx3

cb
H

block

tx2
tx1

tx3

cb
H

tx1

31

Digital Currency Programming How Bitcoin Works, Part 1

Mining a Block (3)

node 2

The puzzle’s difficulty automatically adjusts so
that it requires approximately 10 minutes to solve.
As more miners join the blocks will be created
faster. The difficulty of the puzzle is then
increased to require ~10 minutes again

This difficulty adjustment is happening every 2016
blocks (approximately 2 weeks if each block takes
10 minutes to mine).

The coinbase transaction is added by the miner
and is a reward of 6.25 BTC (the current
agreed-upon reward) to an address that the miner
controls. I.e. if his block is accepted he will get the
reward.

node 1

block

tx2

tx4
tx3

cb
H

block

tx2
tx1

tx3

cb
H

tx1

32

Digital Currency Programming How Bitcoin Works, Part 1

Mining a Block (4)

The reward started at 50 bitcoins and is halved
every 210000 blocks (approximately 4 years).

Additionally, the transaction fees of all the TXs in a
block are also awarded to the miner that creates
the new block.

The header of a block contains, among other
things, a link to the previously created block .

A block always contains a coinbase transaction
which is used to pay the mining reward to the
miner.

The mining reward is available to the miner after
100 confirmations.

node 2

node 1

block

tx2

tx4
tx3

cb
H

block

tx2
tx1

tx3

cb
H

tx1

33

Digital Currency Programming How Bitcoin Works, Part 1

Block Header

Field Description Size (bytes)

version Block version number 4

hashPrevBlock 256-bit hash of the previous block 32

hashMerkleRoot 256-bit hash representing all the TXs in the block 32

timestamp Seconds since 1970-01-01T00:00 UTC 4

target (bits) the target that the hash should be less than 4

nonce 32-bit number 4

34

Digital Currency Programming How Bitcoin Works, Part 1

hashMerkleRoot

Since we only hash the block header to link
blocks together, a header needs to represent
the whole block, including all its transactions
(coinbase and normal). The transactions are
indirectly hashed via using a merkle root.

A merkle tree is constructed by concatenating
all the transaction hashes, in pairs. The
resulting hashes are again concatenated and
hashed until only a single hash remains, the
merkle root.

A merkle proof consists of the hashes and their
position in order to reach from a leaf TX hash to
the merkle root, thus proving that that TX hash
is indeed part of the merkle tree.

3c143 ba3c1fa424 5f331

10bc4 cc3f1

4b1ff

cb tx1 tx2 tx3

Merkle root

35

Digital Currency Programming How Bitcoin Works, Part 1

Target (1)

Target bits or just bits is represented as an 8 hex-digit number. The first 2 digits are the exponent and
the rest the coefficient.

Target bits can be used to calculate the actual target with the following formula:

target = coefficient * 2^(8 * (exponent – 3))

The resulting target would be a 64 hexadecimal number (256-bits), e.g.
0x00000000ffff00

If hashing the block header produces a hash that begins with 0x00000000e (or less) then we have
found a solution. That would require, statistically ~232 (4,294,967,296) attempts on average. The
smaller the target the more difficult the solution, the more attempts on average.

36

Digital Currency Programming How Bitcoin Works, Part 1

$./bitcoin-cli getbestblockhash
00000000000000000149df9c7bd55689c0d34fd55361a430d8858f1fc559105c

That would require 268 (295,147,910,000,000,000,000) attempts on average.

The highest possible target (easiest target, difficulty 1) is defined as 0x1d00ffff and gives a hex target
of: 0x00000000ffff00

Another representation of target, easier for humans to understand, is difficulty which represents the
ratio between the highest target and the current target (D = max / current).

The easiest target (difficulty 1) requires ~232 attempts thus a difficulty of 10 requires 232 * 10 attempts.

Target (2)

37

Digital Currency Programming How Bitcoin Works, Part 1

nonce

The nonce is just a number used to differentiate the hash while trying to reach the target. Given that it
is only 4 bytes it can only handle ~4.2B combinations, while we need quadrillions nowadays.

When the limit was reached miners started modifying the timestamp (e.g. -1 sec) to allow for an
additional of ~4.2B combinations. However, there is a limit of seconds that a node can deviate from
the rest of the network so that did not suffice either.

Then miners started to use the coinbase transaction as an extra nonce allowing an immense amount of
extra nonces to be used.

38

Digital Currency Programming How Bitcoin Works, Part 1

• Gather valid TXs into blocks
• Get the longest chain’s top block hash and add it in hashPrevBlock
• Add timestamp, nonce and extra nonce in the first TX (coinbase)
• Calculate the merkle root of valid TXs and add it to hashMerkleRoot
• Hash the header to find a solution smaller than the specified target

• modify timestamp, nonce or extra nonce as appropriate
• rehash until a solution is found or the longest chain changed

• Meanwhile:
• If more TXs are included in the block or the extra nonce is modified

• recalculate merkle root and update it
• If the longest chain changed we want to build on that chain from now on

• update the valid TX set
• recalculate the merkle root
• use the new block as hashPrevBlock

Mining Process in a nutshell

39

Digital Currency Programming How Bitcoin Works, Part 1

Difficulty adjustment

The difficulty to find the proper hash is expected to take approximately 10 minutes. However, Bitcoin is
an open system and anyone can join (or leave) the network as a miner. Thus, the network’s hashrate
can increase (or decrease) with time.

With more hashing power blocks will be issued faster than 10 minutes and thus the network has to
adjust the difficulty of the problem accordingly.

Specifically, Bitcoin nodes, check every 2016 blocks (~2 weeks) the timestamps between consecutive
blocks and sums them to find out how much time t it took. We want t to take two weeks and thus the
new difficulty will be:

difficulty * (2 weeks / t)

40

Digital Currency Programming How Bitcoin Works, Part 1

Hash Rate vs Difficulty (2017-07-14)

41

unic.ac.cy/iff

Conclusions

Digital Currency Programming How Bitcoin Works, Part 1

Conclusions

• We went through the process of how a transaction is created in the Bitcoin
network, the basic structure of a transaction and common types.

• We explained how transactions are propagated between nodes and how
blocks are created from transactions.

• We have seen how a block is mined and the process of mining.

43

unic.ac.cy/iff

Further reading

Digital Currency Programming How Bitcoin Works, Part 1

Self-assessment exercises

• Prepare a bitcoin environment by installing a Bitcoin node configured for testnet.
• Using bitcoin-cli create a new address

• use a testnet faucet to get some test coins
• Using bitcoin-cli to send some test bitcoins to some of your classmates

• share your testnet addresses via the forums
• Backup your wallet
• Go through the rest of the API and get familiar with more commands

You are welcome to use the forums to report issues, questions or your thoughts in general!

45

Digital Currency Programming How Bitcoin Works, Part 1

Bitcoin Programming Textbook (Ch.1), Kostas Karasavvas
https://kkarasavvas.com/assets/bitcoin-textbook.pdf

Mastering Bitcoin (Ch.2, Ch.10), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch02.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch10.asciidoc

Mining Difficulty and how it is calculated
https://en.bitcoin.it/wiki/Difficulty

Further Reading

46

https://kkarasavvas.com/assets/bitcoin-textbook.pdf
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch02.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch10.asciidoc
https://bitcoin.org/en/developer-examples

47

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
How Bitcoin works, Part 2
Konstantinos Karasavvas

Digital Currency Programming How Bitcoin Works, Part 2

Learning objectives

• Show block propagation and how blocks are confirmed

• Explain Nakamoto Consensus

• Introduce the Bitcoin software and basic interactions with a node

2

Digital Currency Programming How Bitcoin Works, Part 2

Session outline

• The Story of a Block

• Nakamoto Consensus

• Basic interaction with a node

• Conclusions

• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 4: The Story of a Block

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

Node 2 found a
solution to the
puzzle! Let’s
propagate!

5

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

valid?

Block is sent to
connected peers

where it is checked
for validity.

6

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

B

B

valid!

If valid it is
propagated further.

7

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

B

B

Note that an
inventory (inv)

message is sent to
notify of a new block.

8

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

B

B

B

B

B

B

If peer node doesn’t
have the block it
requests it with a

getdata message.

9

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

B

B

B

B

B

B

Sending invs
instead of the block
itself saves a lot of

bandwidth.

10

Digital Currency Programming How Bitcoin Works, Part 2

Block Network Propagation

node 1

node 4

node 3

node 5

node 7

node 6

node 9

node 8

node 2
B

B

B

B

B

B

B B

B

11

Digital Currency Programming How Bitcoin Works, Part 2

Forming a chain of Blocks

The new block is being added on top of the
existing blocks (every ~10 minutes). This occurs
on every single node on the network thus the
blocks are the same in all nodes.

node

B1

12

Digital Currency Programming How Bitcoin Works, Part 2

Forming a chain of Blocks

The new block is being added on top of the
existing blocks (every ~10 minutes). This occurs
on every single node on the network thus the
blocks are the same in all nodes.

Blocks are linked with cryptographic hashes
forming a chain of blocks, called Blockchain.

node

B1

B2~10’

13

Digital Currency Programming How Bitcoin Works, Part 2

Forming a chain of Blocks

The new block is being added on top of the
existing blocks (every ~10 minutes). This occurs
on every single node on the network thus the
blocks are the same in all nodes.

Blocks are linked with cryptographic hashes
forming a chain of blocks, called Blockchain.

When Block B1 is accepted by the network we
say that a transaction on that block has one
confirmation. When B3 is accepted we say that
our transaction has 3 confirmations.

The more confirmations the more final and
secure a transaction is (detailed later in
Blockchain and Trust).

node

B1

B2

B3

~10’

~10’

14

unic.ac.cy/iff

Section 5: Nakamoto Consensus

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (1)

Each node receives blocks and builds its own blockchain in
isolation. A fundamental innovation that bitcoin introduced is the
Nakamoto consensus, i.e. how do different nodes come to
agreement on what is the current state of the blockchain.

If two miners find a block (almost) at the same time then network
peers will get a different block first. They will then start building
the next block based on the one they received first. That means
that the network at that time has two possible states.

In Nakamoto consensus the basic rule is that miners should
follow the longer chain (the one with the most computation).
Thus, when one of the miners finds the next block all miners will
choose the longer chain and consensus is achieved.

16

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

Current network is
sync’ed.

17

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

A new block is found
and is propagated.

18

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

All nodes are in sync
again.

19

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

Two nodes find a
solution at about the

same time.

20

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

They propagate the
blocks and some
peers get one first

and some the other.

21

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

They start mining the
next block on top of
their current block.

22

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

Node F finds a
solution and

propagates the new
block.

23

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

The nodes based on
orange get the new

block.

24

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

The nodes based on
green get the new

block and realize that
there is a longer

chain.

25

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

The shortest chain is
ignored.

26

Digital Currency Programming How Bitcoin Works, Part 2

Nakamoto Consensus (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

All nodes are again
in sync.

27

Digital Currency Programming How Bitcoin Works, Part 2

Blockchain and Trust (1)

Blocks are linked together by including the hash
of the previous block* on the new block. E.g.
the hash of B1 is included in the header of B2.

In our example a transaction in B1 (represented
with the cyan box) has 3 confirmations. If an
attacker wishes to attempt a double spend
attack they will need to create and new B1'
block with the modified transaction.

However, there are two more blocks on top of
B1 and thus the attackers block will be ignored
since B1' will not be the longer chain. The
attacker also needs to create B2', B3' and B4' to
succeed in a double spend.

* More precisely it is the hash of the header,
which represents the whole block.

28

B3

B2

B1

B0

B3'

B2'

B1'

B0

B4'

(i) (ii)

Digital Currency Programming How Bitcoin Works, Part 2

Blockchain and Trust (2)

To achieve that, the attacker will need to have
the majority of the network's hash rate, which
is what is typically called the 51% attack.

Achieving this kind of hash rate and sustaining
it would require extravagant amounts of funds
to accommodate for the mining hardware and
operational costs and thus it would not be
easily feasible.

This is even more evident when one considers
what is possible with such an attack: potential
censorship and double spends. Even with such
an attack the funds on all the Bitcoin addresses
are safe as is the historical records of the
transactions; the former are secured by strong
cryptography while the latter would require
much more hash rate to modify them.

29

B3

B2

B1

B0

B3'

B2'

B1'

B0

B4'

(i) (ii)

Digital Currency Programming How Bitcoin Works, Part 2

Blockchain and Trust (3)

Bitcoin security model is based on game theory
principles and proper incentives. Economically
speaking only a very irrational entity would
make such an attack since setting up the
environment for the attack would position the
attacker in a very economically advantageous
position, i.e. they will be earning a lot of money
with the mined bitcoins.

Even though Bitcoin and Nakamoto Consensus
provide us with some of the strongest
probabilistic guarantees it is theoretically
possible to be influenced by malevolent actors.

Until now the network had been extremely
resilient to any kind of attack and has proven its
robustness and stability demonstrating that is
currently the most immutable structure
constructed by humans.

30

B3

B2

B1

B0

B3'

B2'

B1'

B0

B4'

(i) (ii)

unic.ac.cy/iff

Section 5: Basic interaction with a node

Digital Currency Programming How Bitcoin Works, Part 2

Bitcoin software

The Bitcoin software includes several executables, one providing the core functionality and the other
utility tools:

bitcoind:
The daemon server provides full peer functionality; includes a wallet. It provides a
JSON-RPC API to talk to the node (ports: mainnet: 8332, testnet: 18332, regtest: 18443).

bitcoin-cli:
Provides a command-line interface to talk to the daemon server

bitcoin-qt:
Provides a graphical user interface to the Bitcoin peer and wallet (subset of the
API as part of GUI but also provides a console for all calls)

bitcoin-tx:
Allows to create, parse or modify transactions

bitcoin-wallet:
Wallet related utilities

32

Digital Currency Programming How Bitcoin Works, Part 2

Bitcoin software configuration and dev. Environments (1)

The configuration file is bitcoin.conf and its default location depends on the operating system used
(e.g. in linux system it is located at ~/.bitcoin/bitcoin.conf). An example config gives several possible
options but some important ones for development and testing your application follow:

daemon=1
Runs the Bitcoin node in the background.

server=1
Allows JSON-RPC commands but only from localhost.

prune=1000
Only keep more recent blocks that fit in 1000 MiB. Pruning is not compatible with txindex
and rescan.

33

https://github.com/bitcoin/bitcoin/blob/master/share/examples/bitcoin.conf
https://developer.bitcoin.org/examples/testing.html

Digital Currency Programming How Bitcoin Works, Part 2

Bitcoin software configuration and dev. Environments (2)

testnet=1
The Bitcoin node uses the testnet network for development (i.e. fake funds). If the option
is missing or if it is ‘0’ then mainnet (the real network) is used.

regtest=1
This is a local test environment. The blockchain starts at height 0 (genesis block) and we
can trivially mine new blocks with the generatetoaddress command. This allows
developers to also control the block creation and get fake funds immediately. Regtest uses
testnet’s network parameters (e.g. address prefixes, etc).

signet=1
New test network for development that adds an additional signature requirement for block
validation. Signet is similar in nature to testnet, but more reliable and centrally controlled.
Anyone can run their own unique signet for their testing purposes.

34

Digital Currency Programming How Bitcoin Works, Part 2

Bitcoin software configuration and dev. Environments (3)

35

Other important options include:

addnode=12.23.34.56
Also connect to specific peer (multiple addnode 's can be used). If no network is specified it will
only apply to mainnet.

connect=98.76.54.32

Only connect to specific node (multiple connect 's can be used). If no network is specified it
will only apply to mainnet.

rpcallowip=12.34.56.78
Allows JSON-RPC connections from this IP (default is localhost).

[testnet]
Specifies a testnet section. All options after this heading will apply only to testnet. Other
sections are mainnet and regtest . Some options, like addnode and connect need to be
defined in a section otherwise they only apply on mainnet .

Digital Currency Programming How Bitcoin Works, Part 2

$./bitcoin-cli help

$./bitcoin-cli getblockcount
1128802

$./bitcoin-cli getbalance
1.51815479

$./bitcoin-cli getnewaddress "" legacy
mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS

$./bitcoin-cli encryptwallet MyPaSsWoRd
wallet encrypted; Bitcoin server stopping, restart
to run with encrypted wallet. The keypool has been
flushed, you need to make a new backup.

$./bitcoin-cli walletpassphrase MyPaSsWoRd 120

$./bitcoin-cli backupwallet wallet.backup

$./bitcoin-cli importwallet wallet.backup

JSON-RPC API Calls (1)

$ bitcoin-cli getnetworkinfo
{
 "version": 200000,
 "subversion": "/Satoshi:0.20.0/",
 "protocolversion": 70015,
 "localservices": "0000000000000409",
 "localservicesnames": [
 "NETWORK",
 "WITNESS",
 "NETWORK_LIMITED"
],
 ...
}

$ bitcoin-cli getblockchaininfo
{
 "chain": "test",
 "blocks": 1887283,
 "headers": 1887283,
 "Bestblockhash": "0000000000074e...9d44e05b4",
 "difficulty": 1420477.254893854,
 "mediantime": 1604662239,
 "verificationprogress": 0.9999999194957088,
 "initialblockdownload": false,
 "chainwork": "000000000000...a2762e8",
 "size_on_disk": 28640545955,
 "pruned": false,
 ...
}

36

Next week we are going to examine the different kind
of addresses. Bitcoin v0.20+ uses bech32 (or native
segwit) addresses by default. The example above
explicitly creates a legacy address.

Digital Currency Programming How Bitcoin Works, Part 2

JSON-RPC API Calls (2)

$ bitcoin-cli getmininginfo
{
 "blocks": 1887283,
 "difficulty": 1420477.254893854,
 "networkhashps": 131251268159888.9,
 "pooledtx": 9,
 "chain": "test",
 "warnings": "Warning: unknown new rules activated (versionbit 28)"
}

$ bitcoin-cli getwalletinfo
{
 "walletname": "",
 "walletversion": 130000,
 "balance": 3.22457944,
 "unconfirmed_balance": 0.00000000,
 "immature_balance": 0.00000000,
 "txcount": 353,
 "keypoololdest": 1597237767,
 "keypoolsize": 999,
 "hdseedid": "df71b88eac9079d73b3e9b3aa088952e487b9ae5",
 "unlocked_until": 0,
 "paytxfee": 0.00000000,
 "private_keys_enabled": true,
 "avoid_reuse": false,
 "scanning": false
}

37

Digital Currency Programming How Bitcoin Works, Part 2

JSON-RPC API Calls (3)

$./bitcoin-cli sendtoaddress mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS 0.01
ff8322626c21c5bdfa1d27f75a55a1cb1d3b764bb34063f64b38f0803c370c08

$./bitcoin-cli listunspent 2
[
 {
 "txid": "30d98980c56a139438f0c969ca30d4be2c7f865d098b905362263c5daca2afa7",
 "vout": 0,
 "address": "mgs9DLttzvWFkZ46YLSNKSZbgSNiMNUsdJ",
 "amount": 1.01452015,
 "confirmations": 20183,
 ...
 }
 ...
]

$ bitcoin-cli listlabels
[
 "",
 "Test1",
 ...
]

$./bitcoin-cli getaddressesbylabel ""
[“mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS”, ...]

38

Digital Currency Programming How Bitcoin Works, Part 2

JSON-RPC API Calls (4)

$./bitcoin-cli createwallet "testwallet"

$./bitcoin-cli help createwallet

Use help with any command to get details and examples of how to invoke them!

39

Digital Currency Programming How Bitcoin Works, Part 2

Blockchain Explorer: Transaction Example

40

unic.ac.cy/iff

Conclusions

Digital Currency Programming How Bitcoin Works, Part 2

Conclusions

• We went through the process of how a transaction is created in the Bitcoin
network, the basic structure of a transaction and common types.

• We explained how transactions are propagated between nodes and how
blocks are created from transactions.

• We have seen how a block is mined and how the mined block is
propagated again through all the nodes to validate it and, if valid, add it to
the blockchain.

• Finally, we saw some basic commands that we can give to a bitcoin node to
create new addresses and send bitcoins to other addresses.

42

unic.ac.cy/iff

Self-assessment exercises and further reading

Digital Currency Programming How Bitcoin Works, Part 2

Self-assessment exercises

• Prepare a bitcoin environment by installing a Bitcoin node configured for testnet.
• Using bitcoin-cli create a new address

• use a testnet faucet to get some test coins
• Using bitcoin-cli to send some test bitcoins to some of your classmates

• share your testnet addresses via the forums
• Backup your wallet
• Go through the rest of the API and get familiar with more commands

You are welcome to use the forums to report issues, questions or your thoughts in general!

44

Digital Currency Programming How Bitcoin Works, Part 2

Bitcoin Programming Textbook (Ch.1), Kostas Karasavvas
https://kkarasavvas.com/assets/bitcoin-textbook.pdf

Mastering Bitcoin (Ch.2, Ch.10), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch02.asciidoc

Bitcoin Developer Examples
https://bitcoin.org/en/developer-examples
(API calls with examples)

Bitcoin API calls
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
(A list of Bitcoin JSON-RPC API calls)

Running Bitcoin
https://en.bitcoin.it/wiki/Running_Bitcoin
(Running and configuring Bitcoin)

Further Reading

45

https://kkarasavvas.com/assets/bitcoin-textbook.pdf
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch02.asciidoc
https://bitcoin.org/en/developer-examples
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
https://en.bitcoin.it/wiki/Running_Bitcoin

46

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Cryptographic Keys
Konstantinos Karasavvas

Digital Currency Programming Cryptographic Keys

Objectives of Session

• Introduce cryptographic primitives used in Bitcoin

• Explain private/public keys and how to generate them

In this session we go through some basic cryptography needed to explain the keys used in Bitcoin
and the rationale behind the process of their creation.

2

Digital Currency Programming Cryptographic Keys

Agenda

• Hashing Algorithms
• Asymmetric Cryptography
• Bitcoin’s Private keys
• Bitcoin’s Public keys
• Conclusions
• Further reading

3

unic.ac.cy/iff

Section 1: Hashing Algorithms

Digital Currency Programming Cryptographic Keys

Cryptographic Hash Function (1)

A cryptographic hash function is a hash function that takes an arbitrary block of data and returns a
fixed-size bit string, the cryptographic hash value, such that any (accidental or intentional) change to
the data will also change the hash value significantly.

Properties of a good cryptographic hash function:

• It is deterministic, i.e. the same block of data always returns the same hash
• It is quick to compute
• It is impossible to generate the block of data from the hash (one-way Fn)
• A small change to the data will change the hash so that it appears uncorrelated to the old hash

value
• It is close to impossible to find two different blocks of data with the same hash value

Bitcoin is primarily using the SHA-256 function. The hash value is 256 bits or 32 bytes long. Each byte is
usually represented by 2 hexadecimal numbers, and thus a SHA-256 function can be represented by 64
hexadecimal numbers.

5

Digital Currency Programming Cryptographic Keys

Cryptographic Hash Function (2)

$ sha256sum
Bitcoin
deb10ca6fd85a5eba792ea8561da390635242f0c37c376f8eb7d7859adbffca9 -

$ sha256sum
bitcoin
61d520ccb74288c96bc1a2b20ea1c0d5a704776dd0164a396efec3ea7040349d -

Cryptographic hash functions are very important in information security systems. They are used in
digital signatures, message authentication codes and as ordinary (but more secure) hash functions to
index data in hash tables, to uniquely identify files (bittorrent, IPFS), as checksums to detect accidental
(or not) corruption of data, etc.

The result of a hash function is referred to as digital fingerprints or hash values or just hashes.

6

Digital Currency Programming Cryptographic Keys

Cryptographic Hash Function (3)

In Bitcoin the SHA-256 hash function is used for:

• Block chaining & Integrity verification
• When a new block is created its header contains the

hash of the previous block, thus chaining the two
blocks together.

• Since peers follow the longest chain a Tx with more
confirmations (chained blocks on top of the block
that contains it) is much more difficult to
alter/remove since to change the Tx successfully an
attacker has to modify that block as well as all the
blocks on top of it (or else the tampering will be
detected immediately)

• This is computationally infeasible to sustain (i.e. a
51% attack)

7

Digital Currency Programming Cryptographic Keys

Cryptographic Hash Function (4)

In Bitcoin the SHA-256 hash function is used for:

• Proof-of-Work (hashcash) cost-function (mining)
• The Proof-of-Work puzzle involves finding a hash of the new block that is less than a

certain value

• Generation of Bitcoin addresses
• Used to improve security and privacy
• For creating addresses another hashing algorithm, RIPEMD-160, is also used

8

https://en.wikipedia.org/wiki/RIPEMD

unic.ac.cy/iff

Section 2: Asymmetric Cryptography

Digital Currency Programming Cryptographic Keys

Asymmetric cryptography or public key cryptography is a
cryptographic system that uses pairs of keys with a specific
mathematical relation. In each pair there is a private key that
should remain private and a public key that can be freely shared.
Between two participants this allows:

Encryption
Alice can encrypt a message with Bob’s public key
and send it to Bob. Only the owner of the corresponding
private key can decrypt and view the message.

Authentication / Digital Signatures
Alice can sign a message using her private key and
send it to Bob. Anyone can view the contents and verify
the signature using Alice’s public key, thus ensuring that it
was indeed Alice that send the message.

Asymmetric Cryptography

Large Random
Number

Asymmetric
Cryptography

Algorithm

fe1ef539d0dda3... 15be0f3a1b1f33...

10

https://en.wikipedia.org/wiki/Public-key_cryptography

Digital Currency Programming Cryptographic Keys

Encryption / Decryption

Alice Bob

Hi Bob!

ff3e1b1...

Encrypt

Bob’s Public Key ff3e1b1... Bob’s Private Key

Decrypt

Hi Bob!

11

Digital Currency Programming Cryptographic Keys

Digital Signatures / Verification

Alice Bob

Hi Bob!

e4c1ff1..

Sign

Alice’s Private Key e4c1ff1.. Alice’s Public Key

Verify

1a1e5c..

Hash 1a1e5c..

1a1e5c..

Hi Bob! Hash 1a1e5c..

12

Digital Currency Programming Cryptographic Keys

Public Key Cryptography in Bitcoin

Encryption is not used at all.

Digital signatures are used to sign transactions in order to authenticate that you are the
owner of the coins you wish to transfer.

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to create its
private-public key pairs. The exact elliptic curve parameters used in Bitcoin are defined by
secp256k1.

In ECDSA a private key can be used to calculate the corresponding public key, and since
the address is calculated from the public key, if you hold a private key securely you
effectively have everything.

13

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Secp256k1

unic.ac.cy/iff

Section 3: Bitcoin Private Keys

Digital Currency Programming Cryptographic Keys

Private Keys

The ECDSA private key in Bitcoin is just a random number consisting of 256 bits or 32
bytes or 64 hexadecimal digits. Nearly all 256-bit numbers can be valid private keys as
specified in secp256k1.

The most common format used to display a private key is Wallet Import Format (WIF) or a
WIF-compressed (WIFC); both are a Base58Check encoding of the ECDSA key; Base58 with
version prefix to specify the network and a 32-bit checksum.

A WIF-compressed adds an extra byte (0x01) at the end of the ECDSA key before the
Base58Check encoding. It specifies whether the public key (and by extension addresses)
will be compressed or not. By default most wallets use WIFC format in order to reduce the
size of the blockchain.

$./bitcoin-cli dumpprivkey mg6KkpbdyyFkwzCFzmnza3yZAUj2yPhoKd
cNg68oFh99vkg5FRkegvx11jq5w9bxzBaDan9ZLUfZeMr4Vn6dii

15

https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.wikipedia.org/wiki/Base58

Digital Currency Programming Cryptographic Keys

Private Keys: formats (1)

Check it out by entering a testnet private key on “Wallet Details” at: https://www.bitaddress.org or
https://www.bitaddress.org?testnet=true

Mainnet Testnet

ECDSA HEX 64 digits number 64 digits number

ECDSA HEX-C Above number + “01” Above number + “01”

Version Prefix Base58 Prefix Version Prefix Base58 Prefix

WIF 128 | 0x80 5 239 | 0xef 9

WIF-Compressed 128 | 0x80 K or L 239 | 0xef c

16

https://www.bitaddress.org?testnet=true
https://www.bitaddress.org?testnet=true

Digital Currency Programming Cryptographic Keys

Private Keys: formats (2)

Use libbitcoin-explorer to experiment with private keys’ formats. Decimal prefixes 128 (0x80) and 239
(0xef) are used for private keys of mainnet and testnet respectively.

$./bx base58check-encode --version 239 0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b
91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p

$./bx base58check-encode --version 239
0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b01
cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo

ECDSA in HEX 0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b

ECDSA in HEX-C 0dde70823a4bb0ca3bd75a2010e8d5dc091185e73d8b4257a981c695a3eba95b01

WIF 91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p

WIFC cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo

17

https://github.com/libbitcoin/libbitcoin-explorer
https://en.bitcoin.it/wiki/List_of_address_prefixes

Digital Currency Programming Cryptographic Keys

Calculate WIF/WIFC

To calculate to WIF/WIFC we need to apply the following algorithm:

key_bytes = (32 bytes number) [+ 0x01 if compressed]

network_prefix = (1 byte version number)

data = network_prefix + key_bytes

data_hash = SHA-256(SHA-256(data))

checksum = (first 4 bytes of data_hash)

wif = Base58CheckEncode(data + checksum)

All byte sequences should be treated as big-endian.
To validate a WIF/WIFC key one can Base58CheckDecode, remove the checksum and double SHA-256
the reminder, which should be equal to the checksum.

18

https://en.bitcoin.it/wiki/Base58Check_encoding

unic.ac.cy/iff

Section 4: Bitcoin Public Keys

Digital Currency Programming Cryptographic Keys

Public Keys

A public key is generated from the private key
using elliptic curve multiplication, a one-way
function, that generates the public key.

Effectively the public key is a point P in the elliptic
curve (y2 = x3 + 7), P = (x,y). Both x and y are 32
bytes, thus the key is 64 bytes.

An encoded uncompressed public key is 65 bytes
long since it has the two points (32 bytes each)
concatenated and a prefix of 0x04 to specify an
uncompressed public key.

An encoded compressed public key is 33 bytes
long and has only the x coordinate with a prefix of
0x02 (y) or 0x03 (-y). It turns out that the y
coordinate can only take 2 values
(positive/negative) for a specific x.

20

Digital Currency Programming Cryptographic Keys

Public Keys: example

$./bx wif-to-public 91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p
04c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7addc4cbba6656a4be4bc6933a6af712b897a543a0
9c4b899e5f7b943d38108a8

$./bx wif-to-public cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo
02c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7

WIF 91h2ReUJRwJhTNd828zhc8RRVMU4krX9q3LNi4nVfiVwkMPfA9p

Uncompressed Public Key 04c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7ad
dc4cbba6656a4be4bc6933a6af712b897a543a09c4b899e5f7b943d38108a8

WIFC cN3fHnPVw4h7ZQSRz2HgE3ko69LTaZa5y3JWpFhoXtAke4MiqVQo

Compressed Public Key 02c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7

21

unic.ac.cy/iff

Conclusions

Digital Currency Programming Cryptographic Keys

Conclusions

• We introduced basic cryptography required to understand Bitcoin

• We explained what are private keys and public keys in Bitcoin, how they
are generated

unic.ac.cy/iff

Further Reading

Digital Currency Programming Cryptographic Keys

Further Reading

Cryptographic Hashes
https://en.wikipedia.org/wiki/Cryptographic_hash_function

Asymmetric Cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography

Understanding Elliptic Curves
https://eng.paxos.com/blockchain-101-elliptic-curve-cryptography

Mastering Bitcoin (Ch.4), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc
(Bitcoin keys and addresses)

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Public-key_cryptography
https://eng.paxos.com/blockchain-101-elliptic-curve-cryptography
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc

26

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Addresses and Wallets
Konstantinos Karasavvas

Digital Currency Programming Addresses and Wallets

Objectives of Session

• Explain addresses and how to generate them

• Describe the different types of Bitcoin wallets

• Setup programming environment and create first programs

In this session we introduce Bitcoin’s addresses and describe the rationale behind the process of their
creation. Finally go through the different wallet types.

2

Digital Currency Programming Addresses and Wallets

Agenda

• Bitcoin’s Addresses
• Vanity Addresses

• Wallets
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Bitcoin Addresses

Digital Currency Programming Addresses and Wallets

Addresses

Addresses can be shared to anyone who wants to sent you money. They are typically generated from
the public key, consist of a sequence of characters and digits and start with 1 for the mainnet and with
m or n for testnet.

An address typically represents the owner of a private/public pair but it can also represent a more
complex script as we will see in future sessions.

Notice that we do not share the public key as one would expect in public key cryptography but rather
the address, which derives from the public key. Some benefits are:

• shorter addresses
• quantum computer resistant

• until you spend from an address your public key will never be visible from an outsider and
since the address is hashed from the public key not even quantum computers could brute
force to get the public key and then the private key…

5

Digital Currency Programming Addresses and Wallets

Calculate Address

To calculate an address we need to apply the following algorithm:

version = (1 byte version number)
keyHash = RIPEMD-160(SHA-256(publicKey))
data = version + keyHash
dataHash = SHA-256(SHA-256(data))
checksum = (first 4 bytes of dataHash)
address = Base58CheckEncode (data + checksum)

All byte sequences should be treated as big-endian.
To validate a bitcoin address one can Base58CheckDecode, remove the checksum and double SHA-256
the reminder, which should be equal to the checksum.

6

https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Base58Check_encoding

Digital Currency Programming Addresses and Wallets

Another Python library example

from bitcoinutils.setup import setup
from bitcoinutils.keys import PublicKey

setup('testnet')
pub = PublicKey.from_hex(‘04c1acdac799fb0308b4b6475ddf7967676759d31484ab555554’\
 ‘82472f3bc7c3e7addc4cbba6656a4be4bc6933a6af712b897a543a09c4’\
 ‘b899e5f7b943d38108a8’)
pubc = PublicKey.from_hex(‘02c1acdac799fb0308b4b6475ddf7967676759d31484ab55555’\
 ‘482472f3bc7c3e7’)

print(pub.get_address(compressed=False).to_string())
print(pubc.get_address().to_string())

$ python addr.py
n2JjAgC6UqFf8DvsZXhWcyNzm8w8YKj7MQ
n42m3hGC52QTChUbXq3QAPVU6nWkG9xuWj

$ pip install bitcoin-utils

7

Digital Currency Programming Addresses and Wallets

Addresses and prefixes

Mainnet Testnet

Version prefix Base58 prefix Version prefix Base58 prefix

P2PKH Address 0 | 0x00 1 111 | 0x6f m or n

P2SH Address 5 | 0x05 3 196 | 0xc4 2

Uncompressed Public Key 04c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7ad
dc4cbba6656a4be4bc6933a6af712b897a543a09c4b899e5f7b943d38108a8

Uncompressed Address n2JjAgC6UqFf8DvsZXhWcyNzm8w8YKj7MQ

Compressed Public Key 02c1acdac799fb0308b4b6475ddf7967676759d31484ab55555482472f3bc7c3e7

Compressed Address n42m3hGC52QTChUbXq3QAPVU6nWkG9xuWj

8

Digital Currency Programming Addresses and Wallets

Bech32 Encoding addresses

Segregated Witness (segwit) is a consensus change that was activated in August 2017 and introduces
an update on how transactions are constructed. It introduces two new transaction types,
Pay-to-Witness-Public-Key-Hash (P2WPKH) and Pay-to-Witness-Script-Hash (P2WSH). These new
transaction types are going to be explained in detail in the following sessions.

With regard to addresses, these new transaction types use Bech32 encoding instead of Base58Check.
This new encoding is defined in BIP-173 where an explanation is provided of why it was introduced and
what its benefits are.

Bech32 addresses start with “bc” on mainnet and “tb” on testnet, e.g:

bc1qw508d6qejxtdg4y5r3zarvary0c5xw7kv8f3t4

tb1qw508d6qejxtdg4y5r3zarvary0c5xw7kxpjzsx

or

bc1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3qccfmv3

tb1qrp33g0q5c5txsp9arysrx4k6zdkfs4nce4xj0gdcccefvpysxf3q0sl5k7

9

https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

Digital Currency Programming Addresses and Wallets

Vanity Addresses (1)

These are normal addresses that contain a specific string. They are calculated randomly by creating
random private keys and then check if the corresponding address starts with that string, e.g. 1KK.

import random
from bitcoinutils.setup import setup
from bitcoinutils.keys import PrivateKey

setup('mainnet')
vanity_string = '1KK'
found = False
attempts = 0

while(not found):
 p = PrivateKey(secret_exponent = random.getrandbits(256))
 a = p.get_public_key().get_address()
 print('.', end='', flush=True)
 attempts += 1
 if(a.to_string().startswith(vanity_string)):
 found = True

print("\nAttempts: {}".format(attempts))
print("Address: {}".format(a.to_string()))
print("Secret Key: {}".format(p.to_wif()))

Can you spot any
potential issues?

10

Digital Currency Programming Addresses and Wallets

Vanity Addresses (2)

You will notice that it takes some time even for a short string. Legacy addresses always start with 1 so
we can disregard that. Since addresses use base58 each character will take an average of 58 attempts
to be found. The next character an addition 58 attempts (thus 58*58). We can generalize with 58n
where n is the number of characters the vanity address should start with.

There are efficient implementations for calculating vanity addresses in C, Go, Rust or other compiled
system languages that will calculate much faster than our simple example above but still to create
1Kostas it will require 38,068,692,544 attempts (586). That will take considerable time regardless of
the efficiency of the program or the hardware used.

In practice, these large vanity addresses are created via vanity address pools. Such pools have
specialized hardware (i.e. mining hardware) that can create vanity addresses fast, albeit for a fee.
However, how can they send you your private key that corresponds to the vanity address without them
knowing it?

11

Digital Currency Programming Addresses and Wallets

Vanity Address Pools

Vanity address pools take advantage of an elliptic curve cryptography property in which the public key
of the sum of two public keys corresponds to the private key of the sum of the corresponding public
keys. For example consider Alice having the key pair a-A and Bob the key pair b-B, then:

A+B will produce the public key of the a+b private key.

Consider that Alice wants to use a pool operated by Bob to get a vanity address.

Alice Bob

a-A
A

A+B1

b1-B1 (generates a key pair)

(checks if address of A+B1 matches the vanity string)

A+B9

...
(when there is a match the corresponding private key
is send back to Alice)

b2-B2 (generates a nother key pair)

b9(Alice calculates the
private key)

a+b9

12

unic.ac.cy/iff

Section 2: Wallets

Digital Currency Programming Addresses and Wallets

Wallets

A wallet is software that allows us to manage the private and public keys as well as our Bitcoin
addresses. They usually have functionality to send bitcoins, check balances, create contact lists and
other. Usually a key (i.e. address) is used only once.

Depending on how the private keys are handled there are two types of wallets:

Nondeterministic
All the private keys on the wallet are just randomly generated. Several private keys
are pre-generated and new keys are created if needed. If you backup your wallet and
then create new keys, you will need to backup your wallet again.

Deterministic
A seed is used to create a master private key, which can be used to create all other
private keys (thus public keys and addresses as well). If you backup your seed you
are safe no matter how many keys you use since all can be generated from the seed.

14

Digital Currency Programming Addresses and Wallets

Deterministic wallets are defined in Bitcoin Improvement Proposals* (BIPs) 32, 43 and 44.

Creating the master keys requires a root seed comprising of either 128, 256 or 512 bits as generated by
a (Pseudo) Random Number Generator or (P)RNG. The seed is passed as input to HMAC-SHA512
algorithm to create a 512 bit hash which is split in half. The first 256 bits (I

L
) is the master private key

and the last (I
R
) 256 bits is the master chain code.

I = HMAC-SHA512(Key = “Bitcoin Seed”, Data = root_seed)
mprivkey = IL

mchaincode = IR

As expected, m
pubkey

 can be generated by m
privkey

.

* BIPs are design documents that provide a way of communicating and discussing new ideas. They are
used to introduce/specify new features for Bitcoin.

HD Wallets

15

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Digital Currency Programming Addresses and Wallets

As expected the master private key can be used to generate the master public key. Then the master
key can be used to derive 232 number of child keys by appending a 4 bytes index to the Data parameter
of HMAC-SHA512. The chain code is used as the Key (entropy/salt).

The process to create child private keys is the following:

I = HMAC-SHA512(Key = mchaincode, Data = mpubkey || index)
k = IL + mprivkey

c = IR

The number of children depends on the size of index; 232 private keys. For each child private key we
can repeat the process to produce an immense amount of keys. Derived keys are indistinguishable
from random keys. However, if you need to use the key to further derive more keys you also need the
chain code. The combination of key with chain code is called extended private key.

Extended private keys start with xprv (mainnet) or tprv (testnet) and are 78 bytes.

HD Wallets: Child Private Key Derivation (CKD)

|| is string
concatenation

+ is point addition
according to elliptic

curve operations

16

Digital Currency Programming Addresses and Wallets

Interestingly, it is also possible to create child public keys only with the extended public key.

The process to create child public keys does not involve the parent private key and is the following:

I = HMAC-SHA512(Key = mchaincode, Data = mpubkey || index)
k = IL + mpubkey

c = IR

The number of children depends on the size of index; 231 public keys (only non-hardened keys can be
used to derive child public keys - see next slide). For each child public key we can repeat the process to
produce an immense amount of keys. Derived keys are indistinguishable from random keys. However,
if you need to use the key to further derive more public keys you also need the chain code. The
combination of key with chain code is called extended public key.

Extended public keys start with xpub (mainnet) or tpub (testnet) and are 78 bytes.

HD Wallets: Child Public Key Derivation (CKD)

17

Digital Currency Programming Addresses and Wallets

Accessing an xpub only allows the creation of child public keys but the xpub contains the chain code.
Unfortunately there is a security risk in case a child private key is compromised. The latter together
with the parent chain code can be used to generate all the child private keys. To circumvent this issue
we can use a hardened CKD function which “breaks” the relationship between parent public key and
child chain code; thus extended public keys cannot be used to derive child public keys.

I = HMAC-SHA512(Key = mchaincode, Data = 0x00 || mprivkey || index)
k = IL + mprivkey

c = IR

where 232 > index >= 231.

The resulting chain code is different than the normal and cannot be used to compromise other private
keys. The derived hardened keys can be used with normal derivation to create normal keys once again.
The hardened key provides a barrier even if the normal keys below have been compromised.

HD Wallets: Hardened Child Private Key Derivation

18

Digital Currency Programming Addresses and Wallets

To specify the derivation path we typically use the following notation:

m: master private key
M: master public key
/i: non-hardened derivation at index i (from 0 to 231-1)
/i’ hardened derivation at index i’ (from 231 to 232-1)

Examples:

M/0 : the first child public key
m/0’/9 : the 10th child of the first hardened child
m/0’/11/2/5/1 : …

BIP 43 defines the structure of m/purpose’ to act as namespaces for later uses. The first index (0) is
already taken as the default account from BIP 32.

HD Wallets: Derivation Paths and BIP 43

19

Digital Currency Programming Addresses and Wallets

BIP 44 defines the structure:

m / purpose' / coin_type' / account' / change / address_index
Where:

purpose’ is 44’ (complying to BIP 43)

coin_type’ specifies the type of cryptocurrency coin (Bitcoin: 0’, Testnet Bitcoin: 1’, Litecoin: 2’)

account’ allows for sub-accounts per coin type

change can be either 0 for external chains (visible like payment addresses) and 1 for internal
 chains (not visible like change addresses)

address_index is the actual address index

Examples:

M/44’/1’/0’/0/0 : the first receiving public key for the first Bitcoin testnet account
m/44’/0’/2’/1/31 : the 32nd private key of the third Bitcoin change account
m/44’/2’/1’/0/2 : …

HD Wallets: Derivation Paths and BIP 44

20

Digital Currency Programming Addresses and Wallets

As a reminder, the main difference between non-hardened and hardened keys is that the former
allows for extended public keys to generate child public keys but the latter does not.

The following use cases are irrespective of BIPs 43 and 44.

Wallet sharing:
When two systems both need to access a single shared wallet (same pool of addresses)

Audits:
Providing an extended public key will allow to audit all public addresses (of that sub-tree)

Per-office balances:
Each office will have its own extended private key and the company owners the master key

Unsecure web server:
E-commerce server is only given an extended public key so it can create receiving addresses but
even if it is compromised there are no private keys.

Business-2-Business:
When business partners often transfer money between them one can provide an extended
public key to the other so that the latter can create addresses on his own.

HD Wallets: Use Cases

21

Digital Currency Programming Addresses and Wallets

xpriv and xpub are used to denote that the final addresses are legacy P2PKH and will be prefixed with
1

ypriv and ypub are used to denote that the final addresses are nested segwit P2SH(P2WPKH) and will
be prefixed with 3

zpriv and zpub are used to denote that the final addresses are native segwit P2WPKH and will be
prefixed with bc1

ypub and zpub

22

Digital Currency Programming Addresses and Wallets

Mnemonic codes are just a sequence of English words that are typically used to create the root seed of
deterministic wallets, e.g. by hashing them. It is easier to memorize or write down those words than a
sequence of random hexadecimal numbers.

Mnemonic codes are defined in BIP-39 which includes several wordlists (2048 words per language).

• a PRNG will produce a random sequence of data (128-256 bits)
• the sequence will be hashed and the first bits will be added as a checksum
• the resulting sequence will be split every 11-bits
• each 11-bits correspond to a specific word from the wordlist
• the result will be the mnemonic which will be 12-24 words
• the words plus some salt will then be passed to a key-stretching function (PBKDF2 using

HMAC-SHA512), to produce the final 512-bit seed.

Mnemonic codes

23

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039/bip-0039-wordlists.md

Digital Currency Programming Addresses and Wallets

Mnemonic codes (cont.)

Random bits (128) SHA256
SHA256

* from Mastering Bitcoin book

Random bits (128)
4-bits (128/32)

split into 12 segments of 11-bits (132/11)

00000000000 abandon
00000000001 ability
 …
11111111111 zoo

zoo accident buddy
shop wet road verb
run fun nest spatial
purchase

…

Salt: “mnemonic” + (optional) passphrase

PBKDF2 using HMAC-SHA512

512-bit seed 2048 rounds

24

Digital Currency Programming Addresses and Wallets

Hardware Wallets

Hardware wallets is a secure and easy way to store to
store bitcoins. The hardware wallet creates a mnemonic
code itself. It uses associated software in a computer or
a mobile phone to interact with a user for creating
transactions.

Interaction is achieved using the Bitcoin Hardware
Wallet Interface (HWI), a Python library and
command-line tool that provides an ad-hoc standard for
achieving this in a consistent way. Most hardware
wallets are using this.

Using the software a user requests a transaction from
the hardware wallet. The wallet receives the request
and asks the user to confirm using a simple UI in the
device. If confirmed, the hardware wallet signs the
transaction with the corresponding private key.

Private keys never leave the wallet and are never
dispayed.

25

https://github.com/bitcoin-core/HWI
https://github.com/bitcoin-core/HWI

Digital Currency Programming Addresses and Wallets

Paper Wallets and Encryption (1)

Paper wallets is a way to store bitcoins offline in a
physical document. It usually contains only the private
key and the Bitcoin address together with their
respective QR codes.

Paper wallets can be created and printed using sites
like: www.bitaddress.org and bitcoinpaperwallet.com.

The private key is in plain sight, thus stealing a paper
wallet is enough to get access to the funds. To increase
security the private key can be encrypted using BIP-38
proposal.

While a WIF key begins with ‘5’ an encrypted WIF
begins with ‘6P’ so it is easy to differentiate between
them.

26

https://www.bitaddress.org
https://bitcoinpaperwallet.com
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki

Digital Currency Programming Addresses and Wallets

Paper Wallets and Encryption (2)

Paper Wallets where frequently used in the past as a cold storage mechanism. Nowadays, they are not
recommended and most users will use hardware wallets for security. The reason being that it caused
confusion to new users.

New users are thinking of paper wallets as an (offline) account. When they import the key to a, say,
mobile wallet to spend from, they assume it will behave as an account. In reality, if you import and
send funds from a mobile wallet the latter will send the change to another address of the mobile
wallet's (not the paper wallet's). From then on the paper wallet is useless and the remaining funds are
in the mobile wallet. This was confusing to users.

As a purely cold storage mechanism the idea of paper wallets is quite good if you understand the
above. A mnemonic code backup written in paper for a backup could effectively be considered an
offline wallet (or cold storage wallet) if you don't have it imported to any device.

Paper wallets and mnemonic code backups could be destroyed relative easy if they are in 'paper' form,
e.g. by fire or water or mice! To remedy this, 'steel' wallets are used; same idea but with steel instead
of paper. There are several companies that offer customizable steel wallets.

27

unic.ac.cy/iff

Conclusions

Digital Currency Programming Addresses and Wallets

• We explained what addresses are and how they are generated

• We differentiated between deterministic and non-deterministic wallets
and explained what paper wallets and mnemonic codes are

Conclusions

unic.ac.cy/iff

Further Reading

Digital Currency Programming Addresses and Wallets

Self-assessment exercises

• Setup a Python environment and go through the examples of the tutorial
(BasicPythonBitcoin-tutorial.pdf)

• Describe possible outcomes of mistyping a Bitcoin address when trying to send some bitcoins.
• What are the disadvantages of deterministic wallets?
• Use a vanity generator to create some addresses
• Experiment with the generation of HD keys and mnemonic codes using an online generator
• Write a program that creates 10 random private keys together with their addresses

(compressed)
• Write a function that creates a Bitcoin address given a public key

• Use the pseudocode that we provided in the lectures as a basis
• Write a function that expects a WIF private key and a passphrase and encrypts it using BIP-38

https://github.com/samr7/vanitygen
https://iancoleman.github.io/bip39/

Digital Currency Programming Addresses and Wallets

Further Reading

Mastering Bitcoin (Ch.4), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc
(Bitcoin keys and addresses)

Hierarchical Deterministic Wallets - BIP-32 and BIP-44
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Mnemonic Codes - BIP-39
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

33

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Bitcoin Scripting 1
Konstantinos Karasavvas

Digital Currency Programming Bitcoin Scripting 1

Objectives of Session

• Understand transactions in more detail

• Explore how transaction signing works

In this session we go deeper into what constitutes a transaction and different ways of how
transactions can be signed.

2

Digital Currency Programming Bitcoin Scripting 1

Agenda

• Transactions
• Signatures
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Transactions

Digital Currency Programming Bitcoin Scripting 1

A transaction consists of 1+ inputs and 1+ outputs. When an output is spend it can never be used
again. All the bitcoins are transferred elsewhere (to a recipient, back to yourself as change, etc.).
Outputs that are available to be spend are called Unspent Transaction Outputs (UTXO) and Bitcoin
nodes keep track of the complete UTXO set.

When a UTXO is created we also specify the conditions under which this output can be spend. When
you specify an input (the UTXO of a previous transaction) to spend you have to prove that you satisfy
the conditions set by the UTXO.

The conditions and the proof that authorizes transfer are not fixed. A scripting language is used to
define them. When a new output is created a script is placed in the UTXO called scriptPubKey or more
informally locking script.

When we want to spend that UTXO we create a new transaction with an input that references the
UTXO that we wish to spend together with an unlocking script or more formally a scriptSig.

Transactions and Scripting

5

Digital Currency Programming Bitcoin Scripting 1

Transaction Types

The scripting language used in Bitcoin consists of several operations. Each operation is specified in
hexadecimal by an opcode. It is a simple stack-based language that uses reverse polish notation (e.g. 2
3 +) that does not contain potentially dangerous programming constructs, like loops; it is a
domain-specific language.

The most common transaction output type offering a standard way of transferring bitcoins around is
Pay-To-Public-Key-Hash (P2PKH), which is effectively “pay to a Bitcoin address”. It is also possible, and
used in the past, to pay directly to a public key with type Pay-To-Public-Key (P2PK).

Another transaction output type, Pay-To-Script-Hash (P2SH), allows for more complex scripts to be
created.

6

https://en.bitcoin.it/wiki/Script
https://en.wikipedia.org/wiki/Stack-oriented_programming_language
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Domain-specific_language

Digital Currency Programming Bitcoin Scripting 1

P2PKH (1)

This is the standard transaction type to transfer bitcoins.

transaction

Previous tx: ffdfa1de5…
Index: 0
scriptSig: (Alice’s sig) +

(Alice’s public key)

Value: 1
scriptPubKey: opcodes

(include pubkey Hash160 of
1Bob bitcoin address)

Input(s) Output(s)

tx (ffdfa1de5…)

Value: 2
scriptPubKey: opcodes

(include pubkey
Hash160 of 1Alice
bitcoin address)

Alice “owns” bitcoin
address 1Alice and
wants to sent 1BTC
to Bob.

7

Digital Currency Programming Bitcoin Scripting 1

P2PKH (2)

The locking script (scriptPubKey) looks like this:

OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG

The public key hash (PKHash) can be derived from the Bitcoin address that we want to transfer coins to
by Base58Decoding the address and then removing the version and the checksum bytes.

The unlocking script (scriptSig) looks like this:

<Signature> <PublicKey>

The signature is the ECDSA signature of the hash of part of Tx that we create.

The validation to spend a UTXO consists of running the script of scriptSig plus scriptPubKey. Both
scripts are added in the stack and executed as one script.

8

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

9

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

<PublicKey>

10

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

<PublicKey>

OP_DUPDuplicates the top stack item

11

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

<PublicKey>

<PublicKey>

OP_HASH160RIPEMD(SHA256(top item))

12

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

<PublicKey>

<PKHash>

<PKHash>

13

Digital Currency Programming Bitcoin Scripting 1

OP_EQUAL checks 2 top items
and replaces them with true or
false
OP_VERIFY checks top item
and if true removes it and if
false it terminates the script

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

<PublicKey>

<PKHash>

<PKHash>

OP_EQUALVERIFY

If the two <PKHash>es are
equal the <PublicKey>
provided was correct!

14

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: <Signature>

<PublicKey>

OP_CHECKSIG

OP_CHECKSIG consumes a
public key and a signature. The
Tx that we wish to spend is
hashed and then the system
validates the signature using
the verified public key.

Signatures Reminder:
The sender hashes parts of the
Tx (the message) and signs it.

The system then gets the Tx as
well (the message) and hashes
it. It then verifies that the
signature and public key
produce the same hash !

15

Digital Currency Programming Bitcoin Scripting 1

P2PKH (3)

SCRIPT: <Signature> <PublicKey> OP_DUP OP_HASH160 <PKHash>
OP_EQUALVERIFY OP_CHECKSIG

STACK: true

Success !

The system validated the
ownership of the UTXO which
is about to be spent.

16

Digital Currency Programming Bitcoin Scripting 1

Addresses, Locking Scripts and UTXOs (again!)

To help clarify how addresses, locking scripts and UTXOs relate look at the following diagram.
Addresses 1Zed, 1Alice and 1Bob are short for the actual bitcoin addresses of Zed, Alice and Bob
respectively. The diagram emphasises what happens when funds are sent to an address.

Address 1Zed...

20 bytes PKH

corresponds to

P2PKH Script

locks funds with
Bob unlocks funds from one UTXO
of address 1Bob and sends some
(one output) to 1Zed.

Alice unlocks funds from one
UTXO of address 1Alice and sends
some (one output) to 1Zed.

1. 2.

3. 4.

UTXO

UTXO is created that is
locked with a P2PKH
Script that requires the
private key of 1Zed.

UTXO
UTXO is created that is
locked with a P2PKH
Script that requires the
private key of 1Zed.

17

Digital Currency Programming Bitcoin Scripting 1

Example Transaction (1)

All transactions and blocks are available to examine. Let us examine the following mainnet transaction:
6575caba0d157f150f6cd7d1c7577c6d03640f0a2a0f759ff1011fc1d18a4f8b

It has one input and one output.

18

Digital Currency Programming Bitcoin Scripting 1

Example Transaction (2)

Transactions, at the network layer, are transferred as a sequence of bytes according to a specific
structure. We can see the byte sequence of this transaction by querying a mainnet node.

$./bitcoin-cli getrawtransaction
6575caba0d157f150f6cd7d1c7577c6d03640f0a2a0f759ff1011fc1d18a4f8b
01000000014655ecb69a2660ee381b5e2d8e616c97bde4144d9bf3aeb2b514428414
7e1ba9000000006a47304402200b113ac8ff3699aa213055e3dcacea8509b7ffa36d
2cdc6a278bd16b371dcb9802206d3dcc6f0e9d99fe14e10f7f7fa806a88cfe7bba20
360deef9e74229a1d562f50121027f922a3403503d143404d2cf18df94899070673b
4cdee3e08be3c8db7e6467aaffffffff012067b707000000001976a9142c142e0bc0
1f9cc4623f6b4613696d5c98b1141e88ac00000000

19

https://en.bitcoin.it/wiki/File:TxBinaryMap.png

Digital Currency Programming Bitcoin Scripting 1

Example Transaction (3)

./bitcoin-cli decoderawtransaction 01000000014655ecb … 41e88ac00000000
{
 "txid": "6575caba0d157f150f6cd7d1c7577c6d03640f0a2a0f759ff1011fc1d18a4f8b",
 "hash": "6575caba0d157f150f6cd7d1c7577c6d03640f0a2a0f759ff1011fc1d18a4f8b",
 "size": 191,
 "vsize": 191,
 "version": 1,
 "locktime": 0,

20

Digital Currency Programming Bitcoin Scripting 1

Example Transaction (3)

 "vin": [
 {
 "txid": "a91b7e14844214b5b2aef39b4d14e4bd976c618e2d5e1b38ee60269ab6ec5546",
 "vout": 0,
 "scriptSig": {
 "asm":
"304402200b113ac8ff3699aa213055e3dcacea8509b7ffa36d2cdc6a278bd16b371dcb9802206d3dcc6f0e9d99fe14e1
0f7f7fa806a88cfe7bba20360deef9e74229a1d562f5[ALL]
027f922a3403503d143404d2cf18df94899070673b4cdee3e08be3c8db7e6467aa",
 "hex":
"47304402200b113ac8ff3699aa213055e3dcacea8509b7ffa36d2cdc6a278bd16b371dcb9802206d3dcc6f0e9d99fe14
e10f7f7fa806a88cfe7bba20360deef9e74229a1d562f50121027f922a3403503d143404d2cf18df94899070673b4cdee
3e08be3c8db7e6467aa"
 },
 "sequence": 4294967295
 }
],

21

Digital Currency Programming Bitcoin Scripting 1

Example Transaction (3)

 "vout": [
 {
 "value": 1.29460000,
 "n": 0,
 "scriptPubKey": {
 "asm": "OP_DUP OP_HASH160 2c142e0bc01f9cc4623f6b4613696d5c98b1141e OP_EQUALVERIFY
OP_CHECKSIG",
 "hex": "76a9142c142e0bc01f9cc4623f6b4613696d5c98b1141e88ac",
 "reqSigs": 1,
 "type": "pubkeyhash",
 "addresses": [
 "1524uZcTYKiECrKkYZwvzDoxRtc1mU23sM"
]
 }
 }
]
}

22

unic.ac.cy/iff

Section 2: Signatures

Digital Currency Programming Bitcoin Scripting 1

Signatures

When we create a new transaction we need to
provide a signature for each UTXO that we want
to spent. The signature proves:

• that the signer is the owner of the private
key

• the proof of authorization is undeniable
• the parts of the tx that were signed

cannot be modified after it has been
signed

The digital signature algorithm used is ECDSA
and each signature is serialized using DER. At the
end of each signature we define its signature
hash type (SIGHASH) by a 1 byte suffix.

The SIGHASH type determines which parts of the
transaction are signed.

TX

Output 0

Output 1

Output 2

Input 0

Input 1

Input 2

24

https://en.wikipedia.org/wiki/X.690#DER_encoding

Digital Currency Programming Bitcoin Scripting 1

Signing Bitcoin Inputs

Address 1Zed...

Address 1Bob...

UTXO
1

New Transaction

UTXO
2

• Each transaction input has to be signed
separately

• The message to be signed is the transaction
itself with:

• all other inputs scriptSigs should be
empty

• the input’s scriptSig (the one that we sign)
should be set to the scriptPubKey of the
UTXO that we are trying to spend

• follow additional SIGHASH rules

25

Digital Currency Programming Bitcoin Scripting 1

SIGHASH flags

Flag Value Description

ALL 0x01 Signs all the inputs and outputs, protecting everything except the signature
scripts against modification.

NONE 0x02 Signs all of the inputs* but none of the outputs, allowing anyone to change
where the satoshis are going.

SINGLE 0x03 Signs all the inputs* and only one output, the one corresponding to this
input (the output with the same output index number as this input),
ensuring nobody can change your part of the transaction but allowing other
signers to change their part of the transaction. The corresponding output
must exist.

* The sequence numbers of other inputs are not included in the signature, and can be updated.

26

Digital Currency Programming Bitcoin Scripting 1

SIGHASH flags modifier: ANYONECANPAY

Flag Value Description

ALL|ANYONECANPAY 0x81 Signs all of the outputs but only this one input, and it also
allows anyone to add or remove other inputs, so anyone can
contribute additional satoshis but they cannot change how
many satoshis are sent nor where they go.

NONE|ANYONECANPAY 0x82 Signs only this one input and allows anyone to add or
remove other inputs or outputs, so anyone who gets a copy
of this input can spend it however they’d like.

SINGLE|ANYONECANPAY 0x83 Signs this one input and its corresponding output. Allows
anyone to add or remove other inputs.

With multiple inputs, each signature hash type can sign different parts of the transaction. If a 2-input
transaction has one input signed with NONE and the other with ALL, the ALL signer can choose where
to spend the funds without consulting the NONE signer.

27

unic.ac.cy/iff

Conclusions

Digital Currency Programming Bitcoin Scripting 1

Conclusions

• We explained how transactions really work in detail, including how
transaction signing happens to protect parts of a transactions

unic.ac.cy/iff

Further Reading

Digital Currency Programming Bitcoin Scripting 1

Further Reading

Mastering Bitcoin (Chapters 6-7), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc

Bitcoin’s Developer Guide
https://bitcoin.org/en/developer-guide

Signature Hash Types
https://bitcoin.org/en/developer-guide#signature-hash-types

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide#signature-hash-types

32

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Bitcoin Scripting 2
Konstantinos Karasavvas

Digital Currency Programming Bitcoin Scripting 2

Objectives of Session

• Explore how scripting is done in Bitcoin

• Examine several ways to create new transactions

In this session we go deeper into how scripting is used to lock bitcoins and later unlock them to
spend them. We then provide several examples on how to create transactions by calling a node’s API
or programmatically.

2

Digital Currency Programming Bitcoin Scripting 2

Agenda

• Scripting
• Creating Transactions
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Scripting

Digital Currency Programming Bitcoin Scripting 2

Script

Script is a simple scripting language used as Bitcoin’s transaction processing language. The friendly
notation we saw previously is the assembly equivalent. This is compiled to a byte sequence.

There are several assembly opcodes most of which are not used in the majority of scripts. However,
the scripting language has a lot more potential than the applications that we see available.

There are constants, like OP_3 and OP_8 that represent 3 and 8 respectively. There are a range of
arithmetic operations available, like OP_ADD or OP_SUB, boolean operators, cryptographic operators
and others.

We have already seen the script that scriptPubKey and scriptSig need to contain in the typical P2PKH
transaction type.

5

https://en.bitcoin.it/wiki/Script#Constants

Digital Currency Programming Bitcoin Scripting 2

Script: Example 1

Script: OP_3 OP_4 OP_ADD OP_5 OP_SUB

Hex: 53 54 93 55 94

Stack: []
[3]
[3, 4]
[7]
[7, 5]
[2]

Result is: 2

6

Digital Currency Programming Bitcoin Scripting 2

Script: Example 2

Script: OP_3 OP_4 OP_EQUAL OP_IF OP_5 OP_ELSE OP_10 OP_ENDIF

Hex: 53 54 87 63 55 67 60 68

Stack: []
[3]
[3, 4]
[0]
[10]

Result is: 10

7

Digital Currency Programming Bitcoin Scripting 2

Just for completeness the hex sequence for a scriptPubKey of a P2PKH is:

scriptSig: <Signature> <PublicKey>

Hex: 49 11..ff 01 41 11..ff

scriptPubKey: OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG

Hex: 76 a9 14 11..ff 88 ac

Notice that values are pushed into the stack with OPs that are implied (not visible in the script).

Script: Example 3

8

Digital Currency Programming Bitcoin Scripting 2

What would unlock the following scriptPubKey’s ?

OP_TRUE

OP_FALSE

OP_NOT

OP_NOP

OP_RETURN <20 bytes in hex>

OP_ADD OP_SUB OP_2 OP_EQUAL

OP_HASH256 <32 bytes in hex> OP_EQUAL

2 <pubkey A> <pubkey B> <pubkey C> 3 OP_CHECKMULTISIG

Script: More examples

9

Digital Currency Programming Bitcoin Scripting 2

Debugging Script

To practice with scripts you can use a Bitcoin Script IDE or a command-line tool called, btcdeb. Install
the latter locally and you will have btcc and btcdeb available.

$./btcc OP_1 OP_2 OP_ADD
515293

$./btcdeb '[OP_1 OP_2 OP_ADD]'
btcdeb -- type `./btcdeb -h` for start up options
valid script
3 op script loaded. type `help` for usage information
script | stack
--------+--------
1 |
2 |
OP_ADD |
#0000 1
btcdeb> step

10

https://siminchen.github.io/bitcoinIDE
https://github.com/kallewoof/btcdeb

Digital Currency Programming Bitcoin Scripting 2

OP_1ADD (0x8b) — Increment by one
OP_1SUB (0x8c) — Decrement by one
OP_NEGATE (0x8f) — Flip the sign of the number
OP_ABS (0x90) — Make the number positive
OP_NOT (0x91) — Flips 1 and 0, else 0
OP_ADD (0x93) — Add two numbers
OP_SUB (0x94) — Subtract two numbers
OP_MIN (0xa3) — Return the smaller of two numbers
OP_MAX (0xa4) — Return the larger of two numbers
OP_BOOLAND (0x9a) — 1 if both numbers are not 0, else 0
OP_BOOLOR (0x9b) — 1 if either number is not 0, else 0

More OP codes: Arithmetic and Boolean

11

Digital Currency Programming Bitcoin Scripting 2

OP_NUMEQUAL (0x9c) — 1 if both numbers are equal, else 0

OP_LESSTHAN (0x9f) — 1 if first number is less than second, else 0

OP_GREATERTHAN (0xa0) — 1 if first number is greater than second, else 0

OP_LESSTHANOREQUAL (0xa1) — 1 if first number is less than or equal to second, else 0

OP_GREATERTHANOREQUAL (0xa2) — 1 if first number is greater than or equal to second, else 0

OP_WITHIN (0xa5) — 1 if a number is in the range of two other numbers

OP_DEPTH (0x74) — Pushes the size of the stack

OP_PICK (0x79) — Duplicates the nth stack item as the top of the stack

OP_ROLL (0x7a) — Moves the nth stack item to the top of the stack

OP_SWAP (0x7c) — Swaps the top two stack items

More OP codes: Equality and Stack

12

Digital Currency Programming Bitcoin Scripting 2

OP_RIPEMD160 (0xa6) — RIPEMD-160
OP_SHA1 (0xa7) — SHA-1
OP_SHA256 (0xa8) — SHA-256
OP_HASH160 (0xa9) — SHA-256 + RIPEMD-160
OP_HASH256 (0xaa) — SHA-256 + SHA-256

OP_CHECKSIG (0xac) — Check a signature
OP_CHECKMULTISIG (0xae) — Check a m-of-n multisig

OP_IF (0x63) — If top stack item true execute block (up to OP_ELSE, if there)
OP_ELSE (0x67) — If OP_IF top stack item is false executes OP_ELSE block
OP_ENDIF (0x68) — Ends a if/else block

More OP codes: Cryptographic and Conditional

13

unic.ac.cy/iff

Section 2: Pay to Script Hash (P2SH)

Digital Currency Programming Bitcoin Scripting 2

P2SH is a type of transaction output (BIP-16) that moves the responsibility for supplying the conditions
to redeem a transaction (locking script) from the sender of the funds to the redeemer (receiver).

Consider the scenario where we accept funds in an address that is not controlled by one person. For
example it is typical for companies to allow spending from corporate accounts only if, say, 2 people
agree. These are called multi-signature accounts. A multi-signature account requires M-of-N signatures
in order to spend the funds. An address’ locking script could enforce that. For example a 2-of-3
multi-signature locking script would look like:

2 <Director’s Public Key> <CFO’s Public Key> <COO’s Public Key> 3 CHECKMULTISIG

If the company wanted to receive money in an address that multiple participants are needed to
redeem it, it would not suffice to send just the address to the customers but also the locking script.
This is impractical as a use case, has privacy implications and is also not efficient since the whole script
would be recorded on the blockchain for every transaction.

P2SH (1)

15

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki

Digital Currency Programming Bitcoin Scripting 2

A P2SH moves the responsibility for supplying the conditions to redeem a transaction (locking script)
from the sender of the funds to the redeemer (receiver).

The locking script of such a transaction is quite simple:

OP_HASH160 [20-byte-hash-value] OP_EQUAL

The 20-byte hash is the hash of the redeem script:

RIPEMD-160(SHA-256(2 <Director’s Public Key> <CFO’s Public Key> <COO’s Public
 Key> 3 CHECKMULTISIG))

Using this hash we create a Bitcoin address (same process but instead of OP_HASH160(pubkey)
we use OP_HASH160(redeem script)) using the version prefix of 0x05 that creates addresses
that start with 3.

We then disseminate only this address to the company’s customers to send the funds.

P2SH (2)

16

Digital Currency Programming Bitcoin Scripting 2

P2SH (3)

When the company needs to spend the funds it would send the following unlocking script:

<Director’s signature> <CFO’s signature> <2 <Director’s Public Key> <CFO’s Public
Key> <COO’s Public Key> 3 CHECKMULTISIG >

Validation occurs in 2 steps. First we confirm that the redeem script equals the hash in the locking
script:

<Director’s signature> <CFO’s signature> <2 <Director’s Public Key> <CFO’s Public
Key> <COO’s Public Key> 3 CHECKMULTISIG> OP_HASH160
[20-byte-hash-value] OP_EQUAL

And then just validating the redeem script:

<Director’s signature> <CFO’s signature> 2 <Director’s Public Key> <CFO’s Public
Key> <COO’s Public Key> 3 CHECKMULTISIG

17

Digital Currency Programming Bitcoin Scripting 2

• P2PK (TX_PUBKEY)
• P2PKH (TX_PUBKEYHASH)
• P2SH (TX_SCRIPTHASH)
• P2WPKH (TX_WITNESS_V0_KEYHASH)
• P2WSH (TX_WITNESS_V0_SCRIPTHASH)
• OP_RETURN (TX_NULL_DATA)
• Multisignature (TX_MULTISIG)
• Non-standard (TX_NONSTANDARD)

Non-standard transaction outputs are rejected (but not invalid) and not relayed by nodes. However,
they can be mined if it is arranged with a miner.

Transaction Output Types

18

unic.ac.cy/iff

Section 3: Creating Transactions

Digital Currency Programming Bitcoin Scripting 2

Using bitcoin-cli -- Node’s API, high-level

./bitcoin-cli listunspent 0
[
 {
 "txid": "b3b7464d3472a9e83da4d5c179620b71724a62eac8bc14ac4543190227183940",
 "vout": 0,
 "address": "n1jnMQCyt9DHR3BYKzdbmXWM8M5UvH9nMW",
 "account": "",
 "scriptPubKey": "76a914ddcf9faf5625d6a96790710bbcef98af9a8719e388ac",
 "amount": 1.30000000,
 "confirmations": 0,
 "spendable": true,
 "solvable": true
 }
 ...
]

./bitcoin-cli sendtoaddress mnB6gSoVfUAPu6MhKkAfgsjPfBWmEEmFr3 0.1

The wallet chooses which UTXOs will be spent and in which order.

20

Digital Currency Programming Bitcoin Scripting 2

Using bitcoin-cli -- Node’s API, low-level (1)

./bitcoin-cli createrawtransaction '''
> [
> {
> "txid": "b3b7464d3472a9e83da4d5c179620b71724a62eac8bc14ac4543190227183940",
> "vout": 0
> }
>]
> ''' '''
> {
> "mqazutWCSnuYqEpLBznke2ooGimyCtwCh8": 0.2
> }'''
01000000014039182702194345ac14bcc8ea624a72710b6279c1d5a43de8a972344d46b7b30000000
000ffffffff01002d3101000000001976a9146e751b60fcb566418c6b9f68bfa51438aefbe09488ac
00000000

Create a transaction while specifying the UTXO to be spent.

21

Digital Currency Programming Bitcoin Scripting 2

Using bitcoin-cli -- Node’s API, low-level (2)

./bitcoin-cli decoderawtransaction
01000000014039182702194345ac14bcc8ea624a72710b6279c1d5a43de8a972344d46b7b30000000000ffffffff01002d3
101000000001976a9146e751b60fcb566418c6b9f68bfa51438aefbe09488ac00000000
{
 "txid": "a7b54334096108e8f69ecfa19263cfbf2f12210165ef5fc2e98ef8e4e466392e",
 "hash": "a7b54334096108e8f69ecfa19263cfbf2f12210165ef5fc2e98ef8e4e466392e",
 "size": 85,
 "vsize": 85,
 "version": 1,
 "locktime": 0,
 "vin": [
 {
 "txid": "b3b7464d3472a9e83da4d5c179620b71724a62eac8bc14ac4543190227183940",
 "vout": 0,
 "scriptSig": {
 "asm": "",
 "hex": ""
 },
 "sequence": 4294967295
 }
],

22

Digital Currency Programming Bitcoin Scripting 2

Using bitcoin-cli -- Node’s API, low-level (3)

 "vout": [
 {
 "value": 0.20000000,
 "n": 0,
 "scriptPubKey": {
 "asm": "OP_DUP OP_HASH160 6e751b60fcb566418c6b9f68bfa51438aefbe094 OP_EQUALVERIFY OP_CHECKSIG",
 "hex": "76a9146e751b60fcb566418c6b9f68bfa51438aefbe09488ac",
 "reqSigs": 1,
 "type": "pubkeyhash",
 "addresses": [
 "mqazutWCSnuYqEpLBznke2ooGimyCtwCh8"
]
 }
 }
]
}

23

Digital Currency Programming Bitcoin Scripting 2

Using bitcoin-cli -- Node’s API, low-level (4)

./bitcoin-cli signrawtransactionwithwallet
01000000014039182702194345ac14bcc8ea624a72710b6279c1d5a43de8a972344d46b7b30000000
000ffffffff01002d3101000000001976a9146e751b60fcb566418c6b9f68bfa51438aefbe09488ac
00000000
{
 "hex":
"01000000014039182702194345ac14bcc8ea624a72710b6279c1d5a43de8a972344d46b7b3000000
006a4730440220404082ecae0b088e07647a5a4eb5c71626e001cbca9353bb6f7e6b212f0f95d0022
02cdadf64f31b11e1901134abe7917d74105953aa983db099504891696277b86d01210306a6ae64fb
b424a81260a6c47f3cb52eec39c4b40ded8b05e150458b95ea6465ffffffff01002d3101000000001
976a9146e751b60fcb566418c6b9f68bfa51438aefbe09488ac00000000",
 "complete": true
}

./bitcoin-cli decoderawtransaction 01000000014039..8ac00000000

...

./bitcoin-cli sendrawtransaction 01000000014039..8ac00000000
error code: -26, error message:, 256: absurdly-high-fee

24

Digital Currency Programming Bitcoin Scripting 2

JSON-RPC is a simple protocol that specifies how to communicate with remote procedure calls using
JSON as the format. It can be used with several transport protocols but most typically it is used over
HTTP.

A user name and password has to be provided in bitcoin.conf . By default only local connections
are allowed, but other connections can be allowed for trusted IPs with rpcallowip configuration
option.

Using HTTP JSON-RPC (1)

rpcuser=kostas
rpcpassword=too_long_to_guess

25

http://json-rpc.org/wiki/specification

Digital Currency Programming Bitcoin Scripting 2

$ curl --user kostas --data-binary '{"jsonrpc": "1.0", "id":"curltest", "method":
"getinfo", "params": [] }' -H 'content-type: text/plain;' http://127.0.0.1:18332/
Enter host password for user ‘kostas’:

{
 “result”:
 {
 “version”: 130100,
 “protocolversion”: 130000,
 “balance”: 2.27500000,
 ...
 }
 “error”: null,
 “id”: “curltest”
}

Using HTTP JSON-RPC (2)

Note that getinfo is not available from v0.16. Instead use getblockchaininfo ,
getnetworkinginfo , getmininginfo and getwalletinfo .

26

http://127.0.0.1:18332/

Digital Currency Programming Bitcoin Scripting 2

Using a library

A Python library that wraps Bitcoin’s API calls is python-bitcoinrpc . Install with pip and try it
out.

All API calls can be used, including the ones to create a transaction with either sendtoaddress or
createrawtransaction + signrawtransaction + sendrawtransaction .

from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException

user and pw are rpcuser and rpcpassword respectively
user = "kostas"
pw = "too_long_to_guess" # bad practice !!
rpc_connection = AuthServiceProxy("http://%s:%s@127.0.0.1:18332"%(user, pw))
block_count = rpc_connection.getblockcount()
print(block_count)

27

Digital Currency Programming Bitcoin Scripting 2

Using another library (1/2)

Another Python library that wraps Bitcoin’s API and is faithful to the programming types that the
original C++ library has is python-bitcoinlib . Install with pip and try it out.

Note that the result of sendtoaddress is a txid which is bytes so we have to convert to hex before
we display it (note that transactions are displayed in reversed or little-endian).

import bitcoin.rpc
from bitcoin import SelectParams
from bitcoin.core import COIN, b2lx
from bitcoin.wallet import CBitcoinAddress

SelectParams('testnet')

rpc = bitcoin.rpc.Proxy()
addr = CBitcoinAddress('mwtaAhm3Fdjnc525kMENrpP7zsqE8VvWdZ')

txid = rpc.sendtoaddress(addr, 0.001 * COIN)
print(b2lx(txid))

28

Digital Currency Programming Bitcoin Scripting 2

Using another library (2/2)

Using the same library we can construct the transaction from scratch! Please consult this example for a
P2PKH transaction.

• What does this example do?
• What is need to complete the transaction?
• Can you identify a problem with that example?

And here (or here) is another example for a P2SH transaction that contains the obsolete P2PK
transaction in the redeem script (<pubKey> OP_CHECKSIG).

29

https://github.com/petertodd/python-bitcoinlib/blob/master/examples/spend-p2sh-txout.py
https://github.com/petertodd/python-bitcoinlib/blob/master/examples/spend-p2sh-txout.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/spend_p2sh_transaction.py

Digital Currency Programming Bitcoin Scripting 2

Using yet another library

Using the python-bitcoin-utils (pip install bitcoin-utils) library we can also construct the
transaction from scratch! Please consult this example for a P2PKH transaction.

There is also example code for:

• Creating P2PKH with different SIGHASH
• Creating a P2SH address and how to spend it
• How to create and spend a non-standard tx
• Using a proxy to make calls directly to a Bitcoin node

Please note that the raw hexadecimal of the tx is created and this needs to be send to a node using a
proxy, either using the library or from the command line with sendrawtransaction .

30

https://github.com/karask/python-bitcoin-utils
https://github.com/karask/python-bitcoin-utils/blob/master/examples/p2pkh_transaction.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/multi_input_sighash_transaction.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/send_to_p2sh_transaction.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/spend_p2sh_transaction.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/create_non_std_tx.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/spend_non_std_tx.py
https://github.com/karask/python-bitcoin-utils/blob/master/examples/node_proxy.py

unic.ac.cy/iff

Conclusions

Digital Currency Programming Bitcoin Scripting 2

Conclusions

• We explained how scripting is used to lock/unlock funds

• Through examples we demonstrated how Bitcoin’s Script language works

• Learned how to create transactions with the Bitcoin API and via libraries

32

unic.ac.cy/iff

Further Reading

Digital Currency Programming Bitcoin Scripting 2

Self-assessment exercises

1. Write a program that creates and spends a transaction.
a. Allow the user to select which UTXOs to be used

2. In mainnet, how can we estimate what is an appropriate fee to include to a
transaction?
a. Using tools
b. Programmatically

3. Write a scriptPubKey script that requires both a key and password to unlock.
4. The Bitcoin white paper (PDF) is stored on the blockchain. The transaction id is:

54e48e5f5c656b26c3bca14a8c95aa583d07ebe84dde3b7dd4a78f4e4186e713. Can
you extract the data and reconstruct the PDF?

You are welcome to use the forums to report issues, questions or your thoughts in general!

34

Digital Currency Programming Bitcoin Scripting 2

Further Reading

Mastering Bitcoin (Chapters 6-7), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc

Bitcoin’s Developer Guide
https://bitcoin.org/en/developer-guide

Scripting Language and all opcodes
https://en.bitcoin.it/wiki/Script

35

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc
https://bitcoin.org/en/developer-guide
https://en.bitcoin.it/wiki/Script

36

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Bitcoin Scripting 3
Konstantinos Karasavvas

Digital Currency Programming Bitcoin Scripting 3

Objectives of Session

• Examine more advanced scripts

• Examine several ways to create more sophisticated transactions

In this session we explain more sophisticated scripts to lock funds as well as explain the segwit
upgrade and what it entails.

2

Digital Currency Programming Bitcoin Scripting 3

Agenda

• Segregated Witness (Segwit)
• P2MS (Multisignature outputs)
• Data Storage
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Segregated Witness (SegWit)

Digital Currency Programming Bitcoin Scripting 3

Segregated Witness (SegWit)

Segregated Witness is a consensus change that introduces an update on how transactions are
constructed. In particular it separates (segregates) the signatures or unlocking script (witness); a
transaction input does not contain an unlocking script anymore and the latter is found in another
structure that goes alongside the transaction.

The segwit upgrade is described in detail in BIPs 141, 143, 144 and 145 and provides several benefits.
We will examine two of them here: transaction malleability and effective block size increase.

5

TXy

(signed by Alice)
Input 0: From 1Alice

Output 0: 1 BTC
To 1Bob

Output 1: 0.49 BTC
To 1Alice

TXy

(signed by Alice)

Input 0: From 1Alice
Output 0: 1 BTC

To 1Bob

Output 1: 0.49 BTC
To 1Alice

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki
https://bitcoincore.org/en/2016/01/26/segwit-benefits/

Digital Currency Programming Bitcoin Scripting 3

Transaction malleability

Each transaction is uniquely identified by its transaction identifier or
txid. The txid is constructed by hashing the serialized transaction
(the blue part).

It is possible to slightly change the unlocking script, e.g. by a miner,
so that the resulting transaction is semantically identical to the
original, thus still valid. This can be accomplished, for example, by
slightly changing the encoding format of the signature.

That is a problem because given how the txid is created even the
slightest modification will change the txid. While the transaction is
identical, i.e. funds will be moved exactly as intended, our ability to
monitor this transaction is problematic given that we will be
checking for confirmations in a txid that is not valid anymore.

With segwit inputs, however, the unlocking script (the green part) is
not part of the txid construction and thus it is impossible to modify
it. A non-malleable txid is more reliable and allows for more
advanced scripts/solutions like the lightning network.

6

TXy

(signed by Alice)

TXy

(signed by Alice)

Digital Currency Programming Bitcoin Scripting 3

Effective Block Size Increase

The actual block size remains the same, at 1MB. However, the unlocking scripts are now not part of the
block and thus more transactions can fit into the 1MB limit.

Segwit introduces the concept of block weight, a new metric for the size of blocks. A block can have a
maximum weight of 4MBs. The non-witness part bytes of a transaction are now multiplied by 4 to get
its weight while the witness part bytes are multiplied by 1, a discount of 75%. This allows for an
effective maximum block size increase of ~1.8x, if all transactions use segwit.

The virtual size, or vsize of a transaction is the size in bytes of a transaction including the segwit
discount. For non-segwit transactions size and vsize are identical.

7

Digital Currency Programming Bitcoin Scripting 3

SegWit Transaction Output Types

Segwit introduces two new transaction types, Pay-to-Witness-Public-Key-Hash (P2WPKH) and
Pay-to-Witness-Script-Hash (P2WSH), which are the segwit equivalent of P2PKH and P2SH respectively.
They are sometimes called native segwit to differentiate from nested segwit.

The locking script (scriptPubKey) of these new types consists of two elements, a version byte and the
witness program. The version byte introduces versioning in the witness program of the script. That is
another benefit of segwit, since it allows for easy updates based on a new version.

Remember, that when signing to spend any output we need to provide the locking script, which is used
to substitute the scriptPubKey before we calculate the transaction digest and sign it. For segwit
transaction types each witness program corresponds to a predefined template script that is called
scriptCode.

For example the scriptCode for a P2WPKH output is:

OP_DUP OP_HASH160 <pubkey-hash> OP_EQUALVERIFY OP_CHECKSIG

where the pubkey-hash is substituted with the witness program. Note that this is used for calculating
the digest and not for validation (see next slide).

8

Digital Currency Programming Bitcoin Scripting 3

Native Witness Program - P2WPKH

In segwit version 0, a P2WPKH witness program is just the 20-byte public key hash. The unlocking
script (scriptSig) should be empty and the witness structure contains the unlocking script.

scriptPubKey: 0 6b85f9a17492c691c1d861cc1c722ff683b27f5a

scriptSig: “”

witness: <signature> <pubkey>

Validation:

1. The ‘0’ in scriptPubKey specifies that the following is a version 0 witness program.
2. The length of the witness program (20-bytes) indicates that it is a P2WPKH type.
3. The witness must consist of exactly two items
4. The HASH160 of the <pubkey> must match the 20-bytes witness program
5. Finally, the signature is verified by: <signature> <pubkey> CHECKSIG

9

Digital Currency Programming Bitcoin Scripting 3

In segwit version 0, a P2WSH witness program is just the 32-byte script hash. The unlocking script
(scriptSig) should be empty and the witness structure contains the unlocking script as well as the witness
program script.

scriptPubKey: 0
6b85f9a17492c691c1d861cc1c722f92c691c1fa17492c691c1d861683b27f5a

scriptSig: “”

witness: 0 <signature1> < 1 <pubkey1> <pubkey2> 2 CHECKMULTISIG >

Validation:

1. The ‘0’ in scriptPubKey specifies that the following is a version 0 witness program.
2. The length of the witness program (32-bytes) indicates that it is a P2WSH type.
3. The witness must consist of an input stack followed by a serialized script (witness script)
4. The SHA256 of the witness script must match the 32-bytes witness program
5. Finally, the witness script is deserialized and executed after the remaining witness stack:

0 <signature1> 1 <pubkey1> <pubkey2> 2 CHECKMULTISIG

Native Witness Program - P2WSH

10

Digital Currency Programming Bitcoin Scripting 3

It is possible for a non-segwit aware wallet to pay to a segwit address by embedding P2WPKH or
P2WSH into a P2SH. The recipient will provide a P2SH address to the sender who can send funds as
usual. The recipient can then use the redeem script which is actually the witness script to spend the
funds.

P2SH(P2WPKH): Get the hash of the P2WPKH scriptPubKey and use it in P2SH as usual:
HASH160 <0 6b85f9a17492c691c1d861cc1c722ff683b27f5a>

HASH160 3e0547268b3b19288b3adef9719ec8659f4b2b0b EQUAL

P2SH(P2WSH): Get the hash of the P2WSH scriptPubKey and use it in P2SH as usual:
HASH160 <0 3b892c61cc15f9a17492c691c1d86a17492c61cc1c722ff683b27f5a>

HASH160 b3adef9719ec8659f4b2b0b3e0547268b3b19288 EQUAL

P2SH Witness Program

11

Digital Currency Programming Bitcoin Scripting 3

Segwit and soft-fork

Changing the transaction format is normally a hard-fork. The new transactions would not be accepted
by the nodes running the old software. To go around that and implement the new functionality as a
soft-fork additional effort was required. Without going into too much details:

• The original transaction format was not changed. The scriptSig would just be empty and the
witnesses would go in a new structure.

• The header should represent the whole block and thus a witness merkle root is calculated (from
all transactions’ witness scripts) and included in an OP_RETURN output (explained in detail
later) of the coinbase transaction. Being in the coinbase means that the witnesses are
represented in the header via the hashMerkleRoot.

• Witness data are provided only when nodes ask for them and thus old nodes will get blocks
without the witness data, i.e. new nodes will remove witness data before relaying the blocks to
old nodes. To old nodes, segwit blocks would look like blocks that contain some non-standard
transactions.

• Old nodes trying to spend a segwit output would violate the clean stack rule
• OP_0 <bytes in hex> will remain in the stack.

12

unic.ac.cy/iff

Section 2: P2MS (Multisignature outputs)

Digital Currency Programming Bitcoin Scripting 3

P2MS

Pay to multi-signature or Pay-to-Multisig is a standard output type that was introduced before P2SH.
Its aim was to provide a way for bitcoins to be locked by several public keys which could belong to
different people. Typically, only a subset of signatures would be required. For example for a 2-of-3
multisig would require at least 2 signatures from 2 of the corresponding private keys.

In the previous session we have seen an example of a 2-of-3 multisig wrapped in P2SH. This is the
typical way to use multisig after P2SH was created because P2MS has several drawbacks:

• It is limited to 3 public keys while P2SH allows up to 15.
• It has no address format. To send funds to a P2MS the sender needs to know the multisig script.
• The public keys are visible even before an output is spent.

To construct and lock funds in a P2MS output we use the exact script that we described for P2SH but
lock the funds there directly.

Note that the CHECKMULTISIG opcode has a bug where it pops an extra element from the stack. For
backward compatibility the bug cannot be fixed and thus to avoid the issue we add an additional
dummy value at the beginning of the unlocking script. Typically, OP_0 is used as a dummy but anything
is valid.

14

unic.ac.cy/iff

Section 3: Data Storage

Digital Currency Programming Bitcoin Scripting 3

Data Storage - Indirectly (1/3)

The blockchain ensures that all existing entries are tamper-proof resistant; modifications and deletions
are not allowed. This makes it quite useful for permanently storing data that will stand the test of time,
which is ideal for certain applications like notary services, certificate ownership and others.

However, Bitcoin’s blockchain was not designed for storage in general and data could only be stored
indirectly. Examples include adding data to coinbase transactions, to transaction outputs and to
multi-signature addresses.

Coinbase transactions have no typical inputs. Instead they have a special coinbase field that holds
arbitrary data up to 100 bytes. This field is used for extra nonce space but anything can be stored. For
example* in the genesis block we have:

PUSHDATA(04) FFFF001D
PUSHDATA(01) 04
PUSHDATA(45) 5468652054696D65732030332F4A616E2F32303039204368616E63656C6C6F72206
 F6E206272696E6B206F66207365636F6E64206261696C6F757420666F722062616E
 6B73

'The Times 03/Jan/2009 Chancellor on brink of second bailout for banks'
* example from Ken Shirriff’s Blog

16

Digital Currency Programming Bitcoin Scripting 3

Data Storage - Indirectly (2/3)

Note that only miners can store data to a coinbase field. An alternative for typical users would be to
store data in the outputs themselves in fake addresses. Remember that the output address is
represented as the public key hash of 20 bytes (40 hex characters). Those can be faked to represent the
data that we need to store.

The satoshis sent to such a fake address will be lost forever since there is no (known) private key that
corresponds to it. In the past, when the value of bitcoin was small it was easy to afford to store this
way.

For example*, fake address “15gHNr4TCKmhHDEG31L2XFNvpnEcnPSQvd” corresponds to hex
“334E656C736F6E2D4D616E64656C612E6A70673F” that is stored in the blockchain and if it is
converted to Unicode you have “3Nelson-Mandela.jpg?” which is the filename of an image of Nelson
Mandela that follows!

Storing data this way creates an overhead for the UTXO set in every node in the network. These
addresses will never be used (i.e. the satoshis there are lost) but the system is not aware so they need
to keep track of them as unspent outputs.

* example from Ken Shirriff’s Blog

17

Digital Currency Programming Bitcoin Scripting 3

Data Storage - Indirectly (3/3)

Similarly multi-signature addresses could be used to store data in a similar fashion as with fake
addresses. The script of a multi-sig contains all the public keys which can be faked to include arbitrary
hex data.

1
PUSHDATA(65)[204e00005cfccf40377abcaf271c0003c5f219041462270000000000260000000000000069469d04002392
44d42fe726b29b083ec863bb48f5c1765c23e5cf23f5]
PUSHDATA(65)[19204be9a427ced5afc27b4b9f80cf936c5cbfe298cd12b69edd0de82ed5baa8819ac53d0a003f68ac0db0
6562018288c011dfd4f0ce04e0b151e5c722c6e8b74e]
PUSHDATA(65)[9203dd005bca4ad7d701b935181ab33060f8e7a6471d3a1210490fae16e88a0401c5011d6cfece87599be8
ad82609e432b25c5b6c9c7942bb830e0fb919ae71481]
3 CHECKMULTISIG

For example* the wikileaks cablegate data, a 2.5MB file (cablegate-201012041811.7z) stored using
130 separate transactions. Each transaction was donating 1 satoshi to wikileaks.

As with fake addresses storing with this method also spams the UTXO set.

* example from Ken Shirriff’s Blog

18

Digital Currency Programming Bitcoin Scripting 3

Storing data on the blockchain with the above methods was frowned upon the community because of
the overhead it was placing on the running nodes. Others argued that as long as the transaction fee is
paid there is no reason why it should be considered spam. The compromise was the introduction of an
operator (OP_RETURN) specifically dealing with storing small amount of data on the blockchain.

The OP_RETURN was followed by a maximum of 80 bytes of data. No satoshis were required to be sent
(other than the transaction fees) and more importantly, OP_RETURN was not bloating the UTXO set.

Since 80 bytes is a very small amount of data it is usually used to store a hash (or digest or digital
fingerprint) of some data ensuring the integrity of the data rather than the immutable existence of the
data itself. Alternatively, it can be used to encode meta-protocol information, such as used by
Counterparty, the OMNI protocol, Colored Coins and University of Nicosia’s BDIP protocol.

Example of OP_RETURN:

OP_RETURN PDATA(20) 4f1edef24e9e2a169f56e1b08bac361f30ae936d32232652dc51be1860ecd714

 6a 20 4f1edef24e9e2a169f56e1b08bac361f30ae936d32232652dc51be1860ecd714

Data Storage - Directly

19

https://counterparty.io/
https://www.omnilayer.org/
https://en.bitcoin.it/wiki/Colored_Coins
https://ieeexplore.ieee.org/document/8525400

Digital Currency Programming Bitcoin Scripting 3

The Blockchain Document Issuing Protocol meta-protocol allows anchorage of files into the blockchain.
The files' integrity can then be verified independently the issuer, i.e. consulting only the blockchain. It
contains several operations that store appropriate data on the blockchain. While we will not elaborate
on the developed platform we will briefly illustrate how it was encoded (for more information check
here).

Operations:
OP_ISSUE (0x0004), OP_REVOKE_BATCH (0x0008), OP_REVOKE_CREDS (0x000c), …

Header:

Identifier: 43524544 (“CRED”)

Version: 0001

Operation: 0004

Example Data Storage - BDIP meta-protocol (1/2)

20

https://ieeexplore.ieee.org/document/8525400

Digital Currency Programming Bitcoin Scripting 3

Github: https://github.com/verifiable-pdfs/blockchain-certificates

Data Storage - BDIP meta-protocol (2/2)

21

Issue Files

Revoke Batch

Revoke File

unic.ac.cy/iff

Conclusions

Digital Currency Programming Bitcoin Scripting 3

Conclusions

• We explained what the segwit upgrade is, what changed and the
consequences of that change

• We explained how data can be stored in the blockchain

23

unic.ac.cy/iff

Further Reading

Digital Currency Programming Bitcoin Scripting 3

Self-assessment exercises

1. Explain why using segwit is expected to have an effective block size increase of x1.8.
2. Write a program that uses OP_RETURN to store a string on the blockchain (testnet).
3. Create a script the implements a simple 1-of-2 multisignature scheme.

You are welcome to use the forums to report issues, questions or your thoughts in general!

25

Digital Currency Programming Bitcoin Scripting 3

Further Reading

Mastering Bitcoin (Chapters 6-7), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc

Bitcoin’s Developer Guide
https://bitcoin.org/en/developer-guide

Scripting Language and all opcodes
https://en.bitcoin.it/wiki/Script

Ken Shirriff’s Blog article regarding stored data in Bitcoin’s blockchain
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html

Bitcoin wiki: OP_RETURN
https://en.bitcoin.it/wiki/OP_RETURN

26

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc
https://bitcoin.org/en/developer-guide
https://en.bitcoin.it/wiki/Script
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://en.bitcoin.it/wiki/OP_RETURN

27

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Bitcoin Scripting 4
Konstantinos Karasavvas

Digital Currency Programming Bitcoin Scripting 4

Objectives of Session

• Examine more advanced scripts

• Examine several ways to create more sophisticated transactions

In this session we explain more sophisticated scripts to lock funds as well as explain the taproot
upgrade and what it entails.

2

Digital Currency Programming Bitcoin Scripting 4

Agenda

• Timelocks
• RBF & CPFP
• Schnorr and Taproot
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Timelocks

Digital Currency Programming Bitcoin Scripting 4

Timelocks is a mechanism for postdating transactions or to lock funds for specific periods of time. It
applies only to version 2 transactions. There are two different types of locking, one for absolute and
one for relative time. In each one we can specify timelocks at transaction level or at script level.

This feature was part of the initial Bitcoin implementation. Every transaction can include a timelock
(nLocktime) to specify the earliest time that a transaction may be added to a block. Wallets were
setting this value to ‘0’ meaning that the transaction is valid anytime. Later on, a soft-fork allowed to
specify the time in terms of the block height. Possible values:

Timelocks - Absolute time (1/5)

Value Meaning

0 Transaction is always valid.

< 500 million Specifies the earliest block height that this transactions can be
added.

>= 500 million Specifies the block header time (Unix Epoch) after which the
transaction can be added to a block.

5

Digital Currency Programming Bitcoin Scripting 4

Absolute nLocktime is used in some wallets to prevent fee sniping. Fee sniping is a theoretical attack
that involves large miners/pools mining two (or possibly more) blocks in an attempt to reorganize past
blocks. The miner can then add the highest-fee transactions from the previously valid blocks plus any
high-fee transactions in the mempool.

The Bitcoin Core wallet (from 0.11.0) creates transactions that include an nLocktime of the current
best height plus one. Thus, the transaction is valid for the next block as normal but in the case of a
re-org a miner cannot add this transaction in a previous block. This means that, if all transactions use
this mechanism, the miner will not be able to gain any new fees by including new transactions to older
blocks.

nLocktime = current_best_height + 1
nSequence* = 0xFFFFFFFE

This will be more important as the miners’ reward is reduced further making transaction fees the
major source of income for miners.

* To enable timelocks. nSequence was intended for another use but it was never implemented and is
 now used to specify an active timelock. Typical transactions have nSequence of 0xFFFFFFFF.

Timelocks - Absolute time (2/5)

6

Digital Currency Programming Bitcoin Scripting 4

For example, if we want to spent a UTXO of transaction TX
x
 in block Y (a block in the future, say

600000) we need to create a transaction that spends it but also set nLocktime to Y. Then this new
transaction TX

x+1
 will be invalid until that block height.

Timelocks - Absolute time (3/5)

nLocktime=Y

TXx TXx+1

Valid after
block Y

7

Digital Currency Programming Bitcoin Scripting 4

Note that nLocktime creates a transaction that cannot be included in the blockchain until the specified
block/time. This means that the person who created the transaction could create another transaction
to spend the funds, invalidating the nLocktime transaction.

Absolute locktime is achieved at the script level using CHECKLOCKTIMEVERIFY (CLTV). In late 2015
BIP-65 soft-fork redefined OP_NOP2 as OP_CHECKLOCKTIMEVERIFY allowing timelocks to be specified
per transaction output. To spent the output, the signature and public key are required as usual but the
nLocktime field of the spending transaction also needs to be set to an equal or greater value of CLTV’s
timelock value. If not the script will fail immediately.

A scriptPubKey example that locks an output until ‘expiry_time’:

<expiry_time> OP_CHECKLOCKTIMEVERIFY OP_DROP
OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY OP_CHECKSIG

The nLocktime can be expressed in either block height or timestamp but it has to be the same type as
the one used in the expiry time. Timelocks need to be activated by setting nSequence to 0xFFFFFFFE.

Since a script with CHECKLOCKTIMEVERIFY becomes part of the blockchain it cannot be invalidated as
described above.

Timelocks - Absolute time (4/5)

8

Digital Currency Programming Bitcoin Scripting 4

For example, we can create a locking script with CLTV on block Y (a block in the future, say 600000) and
send some funds to it (and keep sending). If we want to spend it we need to create a transaction that
spends it but also set nLocktime to (at least) 600000. Then this new transaction TX

x+1
 will be invalid

until that block height.

Timelocks - Absolute time (5/5)

CLTV Y

nLocktime=Y

TXx TXx+1

Valid after
block Y

9

Digital Currency Programming Bitcoin Scripting 4

Using python-bitcoinlib library. The locking script is just the timelock plus the equivalent script
of a P2PKH. Key is the private key used to unlock the P2PKH. The funds are locked until block 200
(regtest) and they will be sent to 'mrAfR4SjMp2CRSgCYiPC88DZn4ULhBzXzF'.

Spending a CLTV + nLocktime P2SH

...
txin_redeemScript = CScript([200, OP_CHECKLOCKTIMEVERIFY, OP_DROP,
 OP_DUP, OP_HASH160, Hash160(key.pub),
 OP_EQUALVERIFY, OP_CHECKSIG])
...
txid = lx('ed38d54853c52c82cf0fc19e8c479898cf471a4d47297408a80ed9229402ed3a')
vout = 0
txin = CMutableTxIn(COutPoint(txid, vout), nSequence=0xfffffffe)
txout = CMutableTxOut(2*COIN, CBitcoinAddress('mrAfR4SjMp2CRSgCYiPC88DZn4ULhBzXzF')
 .to_scriptPubKey())
tx = CMutableTransaction([txin], [txout], nLockTime=200)
sighash = SignatureHash(txin_redeemScript, tx, 0, SIGHASH_ALL)
sig = key.sign(sighash) + bytes([SIGHASH_ALL])
txin.scriptSig = CScript([sig, key.pub, txin_redeemScript])
...

10

Digital Currency Programming Bitcoin Scripting 4

Relative timelocks where introduced in mid-2016 with BIPs 68, 112 and 113 as a soft-fork that made
use of the nSequence field of an input. The original idea behind nSequence was that a transaction in
the mempool would be replaced by using the same input with a higher sequence value. This assumes
that miners would prefer a higher sequence number transactions instead of a more profitable one…
so it was never implemented.

nSequence was repurposed (BIP-68) for relative timelocks. If the most significant bit of the nSequence
(32 bit) field was 0 (i.e. 0x7FFFFFFF) then it was interpreted as a relative timelock. Then for timelocks
bit 23 would specify the type (block height or Unix Epoch) and the last 16 bits the value.

Timelocks - Relative time (1/4)

Type (bit 23) Meaning of last (least significant) 16 bits

0 The number of blocks that need to pass based on the height of the
UTXO which the input spends.

1 The number of 512 seconds intervals that need to pass based on
the timestamp of the UTXO which the input spends.

11

Digital Currency Programming Bitcoin Scripting 4

Timelocks - Relative time (2/4)

nSequence=10

TXx TXx+1

In block Y
Valid after
block Y+10

For example, if we want to spent a UTXO of transaction TX
x
 after 10 blocks we need to create a

transaction that spends it but also set nSequence to 10. Then this new transaction TX
x+1

 will be invalid
until TX

x
 gets 10 confirmations.

12

Digital Currency Programming Bitcoin Scripting 4

The script-level equivalent of relative timelocks is using CHECKSEQUENCEVERIFY (CSV) defined in
BIP-112. It replaces OP_NOP3 with OP_CHECKSEQUENCEVERIFY. When we create a transaction that
spends a UTXO that contains a CSV, that input requires to have nSequence set with an equal or greater
value to the CSV parameter value. Otherwise it will fail immediately.

Expiry date can be expressed in either block height or timestamp (as previously discussed) but it has to
be the same type as the one used in the nSequence field. Note that in the script only the block height
or timestamp is included* and not the whole nSequence field.

* If timestamp the 23 bit has to exist and be set. Also note that integers in the script should be
serialized as signed integers in little-endian.

Timelocks - Relative time (3/4)

13

Digital Currency Programming Bitcoin Scripting 4

For example, we can create a locking script with CSV with a value of 10 blocks and send some funds to
it (and keep sending). If we want to spend it we need to create a transaction that spends it but also set
the nSequence of the input that spends it to 10. Then this new transaction TX

x+1
 will be invalid until TX

x

gets 10 confirmations.

Timelocks - Relative time (4/4)

CSV Y nSequence=10

TXx TXx+1

In block Y
Valid after
block Y+10

14

Digital Currency Programming Bitcoin Scripting 4

Timelocks - Summary

Type Location Time
specification

In
Blockchain Example

nLocktime Transaction Absolute No
Similar to a will. Your heirs could get the funds in
~2040 but you could spend them (changle will) in
between.

nLocktime
+ CLTV Script Absolute Yes

Lock funds as part of a deal that allows no one
access until ~1-Jan-2020.
Also CLTV-based payment channels.

nSequence Input Relative No
Lock funds as part of a deal that prohibits the
other party to spend funds until ~3 months have
passed but you can.

nSequence
+ CSV Script Relative Yes

Lock funds as part of a deal that allows no one
access until ~3 months have passed.
Payment channels, Lightning network

15

unic.ac.cy/iff

Section 2: RBF and CPFP

Digital Currency Programming Bitcoin Scripting 4

RBF (specified in BIP-125) is a mechanism for replacing a transaction that is still in the mempool. It is
primarily useful for re-sending a transaction of yours in case it was stuck, e.g. due to low fees.
However, it may be useful for other reasons.

It applies only to version 2 transactions. You need to set nSequence to a value of 0x01 upto 0xffffffff-2.
However, since that such a value could also enable relative timelocks one has to be careful. Typically,
for RBF you set the nSequence value to 1, which makes relative timelocks irrelevant, or from
0xf0000000 to 0xfffffffd which disables relative timelocks.

A replaceable transaction has the “bip125-replaceable” flag set to “yes” in its JSON display. Setting the
bitcoin node option -walletrbf makes all transactions to be replaceable.

To make it work, in addition to setting the nSequence the transaction needs to reuse one or more of
the same UTXOs and increase the fees (consult the BIP for more details).

There is an easy way to RBF a transaction (that is, of course, replaceable) by using bumpfee:

$ bitcoin-cli -named bumpfee txid=53fe...ffb4

Replace-By-Fee (RBF)

17

https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
https://bitcoincore.org/en/faq/optin_rbf/

Digital Currency Programming Bitcoin Scripting 4

Child-pays-for-parent or CPFP is a mechanism (or trick, if you wish) for including a previous transaction
(parent) in a block by creating a transaction (child) that spends one of the UTXOs of the parent. Miners
will notice that the new transaction uses another one and will consider both transactions' fees when
deciding whether to include it in the next block.

For example if someone sends you bitcoins but the transaction was stuck (e.g. due to low fees) you as
a recipient can create a transaction that tries to spend the bitcoins from your address from the
unconfirmed transaction. The fees of this transaction should be quite high to properly incentivize the
miner (e.g. proper fees for two transactions!).

If the fee is high enough the miner will want to include the new (child) transaction and in doing so he is
forced to include the initial transaction (parent) in the same block.

Can a sender of a transaction use CPFP to include it to a block?

Does it makes sense to do so?

Child-Pays-For-Parent (CPFP)

18

unic.ac.cy/iff

Section 3: Schnorr and Taproot

Digital Currency Programming Bitcoin Scripting 4

Schnorr Signatures (BIP-340) is another signature scheme that is compatible with ECDSA's secp256k1
that Bitcoin uses. It is introduced with the Taproot upgrade and it will be valid only in Segwit v1 output
scripts. All other transaction output types will be unaffected by the change and keep on using ECDSA.

Schnorr signatures improve over ECDSA in both privacy, scalability and efficiency. First off, they are 64
bytes long instead about 71 bytes that ECDSA has. That is immediately an 11% gain per signature
which saves space in the block itself as well as disk space.

Secondly, they have the mathematical property of allowing signature aggregation; several signatures
can be combined into one. This can make multi-signature outputs particularly efficient since a single
signature would be required irrespective of the m-of-m scheme. Moreover, validation is faster since a
single signature is validated. One protocol that can be used to orchestrate public key and signature
aggregation is Musig.

Finally, cross-input signature aggregation would also provide great benefits, i.e. if signatures of
different inputs could be combined into a single signature. However, this is work in progress since it
has additional complexities.

Schnorr Signatures

20

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Digital Currency Programming Bitcoin Scripting 4

Musig is a protocol that enables public key and
signature aggregation. With Musig users can
combine their public keys to generate a single
public key which is indistinguishable from any other
public key.

This public key can then be shared to others to
send funds.

When the time comes for the users to spend the
funds they will use their secret keys (private keys)
to create partial signatures. These, when
aggregated will correspond to the aggregated
public key.

Note that from the perspective of someone viewing
the blockchain, it will look like a single signature
verification.

Musig

21

Alice

Bob

Charlie

A
sk

A
pk

B
sk

B
pk

C
sk

C
pk

ABC
pk

add using
coefficients

Alice

Bob

Charlie

A
sk

A
s

B
sk

B
s

C
sk

C
s

ABC
s

combine
signatures

Digital Currency Programming Bitcoin Scripting 4

Taproot allows for different ways of spending an output. We can have two main spending paths. The
default spending path is a single public key (or multi-party key using Musig, since it is
indistinguishable). In addition, there is an alternative spending path, which can be a single script or
multiple scripts. Only the specific script that is used is revealed during spending. Thus, privacy is
improved in multi-party contracts.

Note, that if the default path is used there is no way for someone to know if there is an alternative
path with several scripts. That is revealed only when an alternative script is spend. Generally, the
default path would be the most common use case.

Taproot is also the most recent upgrade proposal for Bitcoin, which includes three BIPs:

• Schnorr Signatures (BIP-340)
• a new SegWit v1 output type based on Taproot, Schnorr and Merkle branches (BIP-341)
• Taproot script validation rules (BIP-342)

Taproot

22

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki

Digital Currency Programming Bitcoin Scripting 4

The taproot public key is
constructed by the actual public
key by tweaking it; typically just
by EC adding a number
(commitment) to the public key.

Then to spend from the taproot
public key the private key needs
to also be tweaked using the
same number (commitment).

Then we can use the tweaked
private key to sign the
transaction.

Taptweak

23

Default spending path

Alternative spending path(s)
(OR conditions)

Taproot public key

tweak

Internal public key

s1 s2 s3 s4

Digital Currency Programming Bitcoin Scripting 4

Tapscript is the Bitcoin Script that is allowed in Segwit v1 taproot outputs. Effectively it is a different
version of Script where:

• Signature opcodes now validate Schnorr signatures
• Multisig opcodes replaced with CHECKSIGADD opcode
• Allows versioning (alternative path scripts could be of different version)
• Has several reserved opcodes to add new functionality later

• Similar to NOP but will immediately succeed and return

New output descriptors are required to describe taproot outputs but these have not been finalized yet.
For example: ts(pk(key)) could describe a taproot output with a single public key

The hash of a tapscript is the number (commitment) used to tweak the internal public key!

The simple case is for the alternative path to have a single tapscript. In that case to spend it we would
need:

• the witness unlocking the tapscript
• the tapscript itself
• the internal public key

Tapscript

24

Digital Currency Programming Bitcoin Scripting 4

We have already mentioned that there can be several alternative paths or tapscripts and not just one.
This is accomplished by using a binary merkle tree with the leaf nodes being the tapscripts. When a
merkle tree or taptree is used we tweak the internal public key with the merkle tree root.

To spend an alternative path of a taproot output with multiple scripts we need to provide:

• the witness unlocking the tapscript
• the tapscript itself
• the internal public key
• the inclusion proof that verifies that the hash of the specific script is part of the merkle root

Note that the idea of using a merkle tree was first in other proposals like MAST (Merklized Abstract
Syntax Trees) but it evolved as part of Taproot. With MAST, like P2SH, one would be able to
differentiate between simple public key payments (e.g. P2PKH) and the pay to script payments from
the address. Taproot solves this by using Schnorr aggregate signatures and the tweaking we previously
mentioned.

Taptree

25

https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki

unic.ac.cy/iff

Conclusions

Digital Currency Programming Bitcoin Scripting 4

Conclusions

• We learned how we can enhance our scripts to lock funds that include
time constraints

• We explained what the taproot upgrade is, Schnorr signatures and the new
taproot outputs

27

unic.ac.cy/iff

Further Reading

Digital Currency Programming Bitcoin Scripting 4

Self-assessment exercises

1. Write a program that creates any timelock (testnet)
2. Are relative timelocks at a transaction level propagated through the network?

You are welcome to use the forums to report issues, questions or your thoughts in general!

29

Digital Currency Programming Bitcoin Scripting 4

Further Reading

Mastering Bitcoin (Chapters 6-7), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc

Bitcoin’s Developer Guide
https://bitcoin.org/en/developer-guide

Scripting Language and all opcodes
https://en.bitcoin.it/wiki/Script

Bitcoin wiki: Timelock
https://en.bitcoin.it/wiki/Timelock

Schnorr Signatures and Taproot
https://www.youtube.com/watch?v=1gRCVLgkyAE&list=PLPrDsP88ifOVTEJf_jQGunDUS05M9GdIC&index=1
https://hackernoon.com/excited-for-schnorr-signatures-a00ee467fc5f
https://bitcoinops.org/en/topics/musig/

30

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch06.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc
https://bitcoin.org/en/developer-guide
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Timelock
https://www.youtube.com/watch?v=1gRCVLgkyAE&list=PLPrDsP88ifOVTEJf_jQGunDUS05M9GdIC&index=1
https://hackernoon.com/excited-for-schnorr-signatures-a00ee467fc5f
https://bitcoinops.org/en/topics/musig/

31

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
P2P Network and Forking
Konstantinos Karasavvas

Digital Currency Programming P2P Network and Forking

Objectives of Session

• Overview of P2P network
• SPV and Bloom Filters
• Discuss blockchain forking and what it means
• Explain Soft-forks
• Explain Hard-forks

In this session we will look briefly introduce the P2P network and how SPV clients work. We also
discuss what forking is and how the network manages alternative implementations and changes.

2

Digital Currency Programming P2P Network and Forking

Agenda

• The P2P Network
• Simplified Payment Verification
• Forking
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: P2P Network

Digital Currency Programming P2P Network and Forking

P2P Network: Introduction

A Bitcoin full node serves several functions to the network.

• Routing Node; propagates transactions and blocks
• Full blockchain; also called archival node
• Wallet
• Miner

By default most nodes will have a wallet (irrespectively of its use) and will be able to propagate
information through the network. By default they are also archival nodes, i.e. they keep the complete
list of all blocks from genesis. However, lately, some nodes opt to prune the size of the blockchain for
storage purposes. Finally, only a few of those will provide mining services.

There are currently (mid 2020) more than 10400 nodes in the network with ~99% of them using the
Bitcoin Core implementation while the rest consists of alternatives like Bcoin, Bitcoin Unlimited, Bitcoin
Classic, etc. A significant number of nodes (~21%) are using the Tor network.

5

Digital Currency Programming P2P Network and Forking

When a node is run for the first time it needs to discover other peers so that it joins the P2P network.
This is accomplished with several methods:

DNS seeds: A list of (hardcoded) DNS servers that return a random subset of bitcoin node addresses. It
sends a getaddr message to those peers to get more bitcoin addresses and so forth. The peers reply
with an addr message that contains the addresses. The node can be configured to use a specific DNS
seed overriding the defaults by using the -dnsseed command-line option.

Seed nodes: A list of (hardcoded) node IP addresses from peers that are believed to be stable and
trustworthy. This is a fallback to DNS seeds. A specific node can be specified by using the -seednode
command-line option.

Node addresses are stored internally so the above discovery methods are only required at first run.
From then on the stored addresses can be used to remain up-to-date with active nodes in the network.

A list of the connected peers can be acquired with the getpeerinfo command and a node can
connect to specific (trusted) peers with the connect option.

Discovery

6

Digital Currency Programming P2P Network and Forking

When a node connects to a new peer it initiates a handshake by sending a version message to
establish the compatibility between peers. If the receiving peer is compatible it will send a verack
message followed by its own version message.

As previously discussed a getaddr message is send next expecting several addr messages in return.

Initially, a node that starts for the first time only contains the genesis block and will attempt to
synchronise (Initial Block Download) the blockchain from its peers. It sends a getblocks message
which contain its current best block as a parameter. The receiving peers reply with an inv (inventory)
message that contains a maximum of 500 block hashes after the initiator’s best block. The initiator can
then getdata to request the blocks themselves. The receiver will reply with several block
messages each containing a single block.

Handshaking and synchronisation

7

Digital Currency Programming P2P Network and Forking

Block Propagation and Bitcoin Relay Network

The faster a miner receives a new block the faster they can start working on the next block. Network
latency is extremely important and since the P2P network takes some time (at least for the needs of
miner) there are specialized networks to help with block propagation, e.g. Fast Internet Bitcoin Relay
Engine (FIBRE).

FIBRE does not only help less-connected miners to compete with the bigger mining farms but more
importantly reduces the chance that a solution will be propagated before another node finds a second
solution, thus reducing forks and orphan/stale block rates.

Note that the sole purpose of a relay network is to help propagate blocks fast between interested
parties (like merchants, miners). They do not replace the P2P network rather provide additional
connectivity between some nodes.

http://bitcoinfibre.org
https://www.falcon-net.org/

Another technology to improve propagation is Compact blocks (BIP-152) which reduces the
transaction’s size contained in a block.

8

http://bitcoinfibre.org
https://www.falcon-net.org/
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

unic.ac.cy/iff

Section 2: Simplified Payment Verification

Digital Currency Programming P2P Network and Forking

Simplified Payment Verification (1/2)

A full node is a node that downloads and validates all the blocks and their transactions from the

genesis block up to the most recent block. This is very secure since for a node to be fooled an attacker

has to provide an alternative longer blockchain which aggregates more hashrate than the current one.

To accomplish this the attacker needs to commence a 51% attack (and sustain it!) which is

economically nonsensical.

Although the most secure method it is impractical/infeasible for low-resource devices like mobile

phones to be expected to fully validate and store all transactions. For this reason an alternative called a

light or thin or SPV client (or wallet) was proposed. Such a client needs to download only the header*

of each block (80 bytes) and then query full nodes for blocks regarding specific transactions as the

need arises.

* Instead of synchronizing by asking entire blocks (getblocks) they ask only for the block headers

(getheaders).

10

Digital Currency Programming P2P Network and Forking

Simplified Payment Verification (2/2)

An SPV client requests information about transactions relevant to its keys from a full node. The full

node notifies the SPV client which blocks contain the relevant transactions together with the merkle

proof. Now the client knows the merkle root (from the headers), the transaction hash as well as the

merkle proof, so it can validate that the transaction was indeed included in a specific block.

This does not make the transaction automatically secure. The depth of the block is really important.

The more confirmations the more certain the SPV client can be that this is a final transaction.

11

Digital Currency Programming P2P Network and Forking

SPV Issues

A full node cannot easily fool an SPV client that the transaction is in a block but it is easy to make the

client believe that a transaction is not in a block. Effectively, this can be used as a form of DoS attack

which can be significant combined with a sybil attack; the more dishonest nodes the easier to achieve

this attack. In addition, it can also be used to double-spend against SPV nodes.

To remedy this an SPV client needs to be well connected to random nodes and have at least one

honest node to talk to.

Another issue is that user privacy could be at stake if certain measures are not taken. For example,

asking information for specific transactions (that include keys of interest) indirectly tells a full node of

the public addresses corresponding to this user. This is partly mitigated by bloom filters defined in

BIP-37.

12

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki

Digital Currency Programming P2P Network and Forking

Bloom Filters (1/2)

Bloom filter, from wikipedia:

A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard

Bloom in 1970, that is used to test whether an element is a member of a set. False positive

matches are possible, but false negatives are not – in other words, a query returns either

"possibly in set" or "definitely not in set".

The SPV client uses a bit array with size N with all the bits set to zero. Then, it applies k hashing

functions, which produce a number from 0 to N-1, to one of the transactions that it requires more

information for. Each hashing will result to a number up to N-1 which will be set to 1. This will occur for

every transaction that the SPV client requires more information; thus it is possible that some bit fields

will be set to 1 from hashing several addresses, without knowing for certain which ones.

The bloom filter request to a node is accomplished with filterload .

13

https://en.wikipedia.org/wiki/Bloom_filter

Digital Currency Programming P2P Network and Forking

Bloom Filters (2/2)

The full node will then run the same hashing functions to all its addresses and if an address’s bit fields

are 1 for all hashes it will include extra information for this address to the result. The result is a merkle

block, which is the block header, the TxIDs of the requested transactions together with a partial merkle

tree used to verify that the transactions are in the merkle root. The actual transactions are sent

separately.

The larger the bit field size and the less the number of hashing functions will result to greater privacy

at the expense of more bandwidth.

The SPV client can use filteradd to add new transactions to the existing filter and filterclear

to remove it completely.

14

Digital Currency Programming P2P Network and Forking

Bloom Filters - Example* (1/6)

15

* Diagrams from Mastering Bitcoin book, Chapter 8

k = 3
N = 16

https://github.com/bitcoinbook/bitcoinbook

Digital Currency Programming P2P Network and Forking

Bloom Filters - Example* (2/6)

16

* Diagrams from Mastering Bitcoin book, Chapter 8

SPV Client
Address A

https://github.com/bitcoinbook/bitcoinbook

Digital Currency Programming P2P Network and Forking

Bloom Filters - Example* (3/6)

17

* Diagrams from Mastering Bitcoin book, Chapter 8

SPV Client
Address B

https://github.com/bitcoinbook/bitcoinbook

Digital Currency Programming P2P Network and Forking

Bloom Filters - Example (4/6)

18

SPV Client sends the following:

1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1

1 2 3 4 165 6 7 8 9 10 11 12 13 14 15

Digital Currency Programming P2P Network and Forking

Bloom Filters - Example* (5/6)

19

* Diagrams from Mastering Bitcoin book, Chapter 8

Full Node
Checks tx addresses

Maybe, yes!
And will send

relevant tx

https://github.com/bitcoinbook/bitcoinbook

Digital Currency Programming P2P Network and Forking

Bloom Filters - Example* (6/6)

20

* Diagrams from Mastering Bitcoin book, Chapter 8

Full Node
Checks tx addresses

Definitely Not!
And will not send it

https://github.com/bitcoinbook/bitcoinbook

unic.ac.cy/iff

Section 3: Forking

Digital Currency Programming P2P Network and Forking

Software Development Forks

A software project fork occurs when some developers take a copy of the project and develop it
independently of the original. This is not just another development branch, this is a divergence of
direction; effectively we now have two separate projects and the community splits accordingly.

Project forking is an important aspect of open source development allowing different opinions and
roadmaps to become a reality. Some notable examples are:

• Linux Mint from Ubuntu (from Debian)
• MariaDB from MySQL
• PostgreSQL from Ingres
• OpenSSH from OSSH
• Inkscape from Sodipodi (from Gill)
• Plex from XBMC
• ...

22

Digital Currency Programming P2P Network and Forking

A blockchain fork occurs when different peers on the network run code that implements incompatible
rules. This can happen because of a software project fork when some developers take a copy of a
blockchain project and develop it independently of the original but it could also happen due to a bug in
a simple upgrade.

If the rules implemented change to a degree that the messages are not compatible with the original
rules then some peers will start rejecting some of the messages with the possibility that the peer to
peer network is effectively split into two networks, depending on the kind of change that occurred; i.e.
the blockchain will fork and different peers will add blocks to different blockchains.

Note, that since running new code might result in a network (aka chain) fork the only way to update
Bitcoin software to change protocol features is by forking.

Reminder: temporary branching on the blockchain is relatively common and it is part of the Nakamoto
consensus. Forking refers to compatibility breaking changes between peers.

Blockchain Forks (1)

23

Digital Currency Programming P2P Network and Forking

Forks can occur when nodes on the network run different versions of the software. This is the case
when the Bitcoin software is being upgraded, e.g. from core v0.11.2 to core v0.12.0. This is a
scheduled fork and if all peers agree on the change and upgrade the software in a timely manner there
will be no issues.

Alternatively, competing versions might run, e.g. core v0.12.0 and classic v0.12.0. The two groups will
have different roadmaps on where they wish Bitcoin to go and can compete to gain the majority of the
hashing power in order for their blockchain to prevail.

We can have intentional forks due to software upgrades or alternative implementations and
unintentional forks due to incompatibilities caused by bugs.

There are two different types of blockchain forking:

• Soft-forks; blocks that would be valid (to old nodes) are now invalid
• Hard-forks; blocks that would be invalid (to old nodes) are now valid

Blockchain Forks (2)

24

Digital Currency Programming P2P Network and Forking

Soft-forks (1)

Blocks that would be valid are now invalid; thus new blocks created are a subset of the possible blocks
that the old rule-set would allow. Both old and new nodes will accept new blocks. However, blocks
created by old nodes will be accepted only by old nodes.

In theory, even 51% of the hashrate would be enough for the new chain since it will consistently (over
a period) have the longer chain. Since the longer chain consists of new blocks which are valid by both
old and new nodes, the old nodes will switch to the chain consisting new node blocks; thus the
blockchain itself remains compatible between all the nodes.

Soft-forks are forward compatible; valid inputs of the new version are also valid by the old version.
They do not force old nodes to upgrade or else consider them out of consensus.

25

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

Initial state of
network.

26

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% An soft-fork
upgrade occurs
where 67% of the
network uses the
new rules.

27

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% A block is created
based on the
new rules.

28

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% It is accepted by
everyone since
new rules are a
subset of the old
rules.

29

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% Then a block with
the old rules is
created.

30

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% It is only
accepted by old
nodes.

31

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% Then another
block with the
new rules is
found.

32

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% It is accepted
only by the new
rules since the
chains are of
equal size.

33

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% Then another
block with the
new rules is
found (67%
chance!)

34

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67%
Longest valid chain

Old nodes are
forced to sync
with the longest
chain (new
rules).

35

Digital Currency Programming P2P Network and Forking

Soft-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67%
Longest valid chain

Network is
synchronised.

36

Digital Currency Programming P2P Network and Forking

Soft-forks (3)

The actual blockchain will always sync to the longest chain and the above mentioned percentages have
to do with the hashing rate and thus the miners. However, to other stakeholders like users and
merchants a prolonged soft-fork could prove very disruptive.

Specifically, if a merchant is using the old chain for its transactions it is possible that their transactions
are ignored when the node switches to the new nodes’ (longest) chain. In between, that would lead to
fake confirmations and potential double spends.

Typically, if hashrate is obviously leaning to one side the rest of the network nodes will follow; miners
to stop losing rewards and merchants/users to have move consistent transactions.

Note that if the new nodes have 49% or less they will not be able to sustain the longest chain and two
incompatible chains will be created that cannot re-sync, leading to a temporary hard-fork.

37

Digital Currency Programming P2P Network and Forking

Hard-forks (1)

Blocks that would be invalid are now valid; thus new blocks created are a superset of the possible
blocks that the old rule-set would allow. Neither old or new nodes will accept blocks created from the
others.

Irrespective of the hashing rate this will result in a chain split that will not be able to be resolved unless
one of the sides changes software.

38

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

Initial state of
network.

39

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% An hard-fork
upgrade occurs
where 67% of the
network uses the
new rules.

40

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% A block is created
based on the
new rules.

41

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% It is accepted
only by the nodes
with the new
rules.

42

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% A block is created
based on the old
rules.

43

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% It is accepted
only by the nodes
with the old rules.

44

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% Another block is
created based on
the new rules.

45

Digital Currency Programming P2P Network and Forking

Hard-forks (2)

A

B

D

C

HG

F

E

J

K

L

M

N

I

33% vs 67% The old nodes
will never accept
the incompatible
blocks from a
longest chain!

46

Digital Currency Programming P2P Network and Forking

Hard-forks (3)

If a hard-fork occurs the network is effectively split in two. The mining hashrate is split in two as well as
the merchants and users. If one side does not change their software a hard-fork can permanently split
the community in two, effectively having two separate coins from that point onwards.

The same amount of bitcoins will exist in both chains and users will be able to access both. Miners,
users and merchants have to choose which side to support and in some cases merchants/users can
choose to support both; one of the coins will probably termed an altcoin and supported as such.

All transactions after the split are in danger of being rolled back (e.g. allow some users to
double-spend) if the fork resolves. If not, the trust and thus value of both systems will be diminished.

A chain fork also has potential replay attacks; signed transaction in one chain to be relayed on the
other chain. For example, a merchant that gets some bitcoins for a product replays the transaction on
the other chain to get the coins of the other chain as well.

47

Digital Currency Programming P2P Network and Forking

In June 2010 Bitcoin core v0.2.10 introduced a change to the protocol that was not forward
compatible. The version messages exchanged by nodes at connection time have changed format and
included checksum values.

Since this would lead to a hard-fork ample time was given for all miners, users and merchants to
upgrade before the activation of the new feature.

The new feature was activated in February 2012 and it happened without any incident.

Hard-fork examples 1

48

Digital Currency Programming P2P Network and Forking

In March 2013, Bitcoin core v0.8 switched its UTXOs/indexes database for storing information about
blocks and transactions from BerkeleyDB to LevelDB because it was more efficient. However, with the
upgrade came an unexpected bug that caused incompatibility between nodes running BerkeleyDB and
the new ones running LevelDB.

The bug was that BerkeleyDB had a limit on effectively how many changes it can make to the database
while LevelDB did not. The limit was reached and old nodes rejected the block that caused it while new
nodes accepted it; blocks that would be invalid where now valid.

The fork was detected quickly by IRC users reporting conflicting block heights on their nodes. The new
chain had the majority of the hash rate and thus the old nodes were left behind with a possibility of
finding and notifying them being slim.

Hard-fork examples 2 (1)

49

Digital Currency Programming P2P Network and Forking

Major miners were easier to find however and it was quickly agreed that they switch back to v0.7 so
that the majority of the hashrate was that of the old nodes. This way thousands of users being on old
nodes would not need to upgrade their clients and that would minimize disruption.

Indeed, since it was communicated to most miners that a bug caused a split and, more importantly,
since the majority of the hashrate was in the old chain the rest of the miners had strong incentive to
revert to the old version as well to be part of the valid chain (and thus get rewards).

There was no political, economic or other incentive to continue with the new chain and thus it died
away. Some miners lost their rewards as well as a merchant via a successful double spend but other
than that the incident was painless.

Hard-fork examples 2 (2)

50

unic.ac.cy/iff

Conclusions

Digital Currency Programming P2P Network and Forking

Conclusions

• We described the basics of the P2P network initialisation and
synchronisation.

• We got an understanding of what blockchain forks are, when they occur
and their consequences

52

unic.ac.cy/iff

Further Reading

Digital Currency Programming P2P Network and Forking

Self-assessment exercises

1. Prepare a list with all the forks (soft and hard) that occurred in Bitcoin from the beginning
2. Create a program that given a new block displays the signalling information of that miner. Start

by first thinking what are the steps required to accomplish this?

54

Digital Currency Programming P2P Network and Forking

Further Reading

Mastering Bitcoin (Ch. 8 & Ch.10), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch08.asciidoc

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch10.asciidoc
(Bitcoin Mining and Consensus)

Bitcoin Wiki - Soft-forks
https://en.bitcoin.it/wiki/Softfork

55

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch08.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch10.asciidoc
https://en.bitcoin.it/wiki/Softfork

56

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Upgrading and Codebase
Konstantinos Karasavvas

Digital Currency Programming Upgrading and Codebase

Objectives of Session

• Explain how Bitcoin software is upgraded to add new features
• Bitcoins’ codebase

In this session we will look into upgrading the network and some history regarding past upgrades.
We explain the process and consequences of forking as well as the mechanisms used to upgrade
nodes as gracefully as possible.

2

Digital Currency Programming Upgrading and Codebase

Agenda

• Upgrading
• Bitcoin’s codebase
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Upgrading

Digital Currency Programming Upgrading and Codebase

Upgrading Bitcoin (soft-forks)

During the first years of its existence upgrading Bitcoin involved notifying node owners to upgrade via
forums and mailing lists. The community was smaller and more in-line regarding the future of Bitcoin.

As the network grew however coordinating via forums could not scale well so new mechanisms were
added to improve the process.

Signalling BIPs to reach consensus before making breaking changes to the rules.

BIP-34: Allow one upgrade at a time (superseded)

BIP-9: Allow several upgrades at a time (superseded)

BIP-8: Similar to BIP-9 but allows automatic activation (current)

5

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0008.mediawiki

Digital Currency Programming Upgrading and Codebase

BIP-34

The block version was traditionally 1. The BIP suggested that when miners want to support a proposal
they would increase the block version to signal that to others and specify in the coinbase input the
block height when the upgrade will be activated given it has enough support. The (convention) rules
were as follows:

Specify new feature with block version number (say 2) and block height for activation in coinbase

• If 750 out 1000 blocks have block version of 2 then reject invalid v2 blocks (if no block height
included)
• 510 out of 1000 for testnet3

• If 950 out of 1000 blocks have block version of 2 then reject all block version 1 blocks
• 750 out of 1000 for testnet3

BIPs activated: BIP-34 (block header v2), BIP-65 (v3), BIP-66 (v4)

6

Digital Currency Programming Upgrading and Codebase

BIP-9

BIP-34 allowed only one upgrade at a time and no easy way to reject a proposal to replace it with
another. BIP-9 solves these issues with the following (convention) rules:

• The remaining 29 bits of the block version field can be used to signal for 29 proposals
• A structure is defined with:

• name, usually bipN
• bit, the block version bit used to signal for this change
• starttime, time (Median Time-Past, BIP-113) when signalling can begin
• timeout, time (MTP) when change is considered rejected if not activated by then

• Threshold for activation is 95%
• Signalling is based on the whole 2016 blocks of a re-target interval

• if threshold is passed activation occurs one re-target interval later

BIP-9 was used to activate proposal "csv" that contained BIPs 68, 112 and 113 as well as "segwit" with
BIPs 141, 143 and 147. There is a list of all BIP-9 deployments (both past and current ones).

7

https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009/assignments.mediawiki

Digital Currency Programming Upgrading and Codebase

BIP-8

This BIP is very similar to BIP-9. The major differences are:

• Uses block height instead of timestamps for signalling
• Give the option to reject or enforce the upgrade at the end of the timeout

• lockinontimeout or LOT=false
• BIP-9 equivalent behaviour

• LOT=True
• enforces lock-in

BIP-8 will be used for the activation of the "taproot" proposal.

8

Digital Currency Programming Upgrading and Codebase

Blocksize debate

The block size debate have been going on from 2013 but it became more urgent when the Bitcoin’s
1MB block size started to fill up completely. As a consequence many transactions could not make it in
the current block and had to wait for the next. Miners, give priority to transactions that give more fees
and thus fees increased considerably (up to $2-3 on June 2017) in order to get your transaction in the
current block.

Two major camps suggested different solutions*:

• Increase the block size from 1MB to 2MBs (or more)
• straight-forward software change but requires a hard-fork!

• Activate “segwit” a set of proposals that includes, among others, an effective increase of the
transactions that fit in a block by x1.8
• more involved software change that changes the transaction structure but achieves it

with a soft-fork

* Several suggestions were made, attempted and failed. We only mention the major ones.

9

Digital Currency Programming Upgrading and Codebase

User-Activated Soft-Fork (UASF)

The “segwit” proposal that used BIP-9 for signalling and consisting of BIPs 141, 143, 144 and 145 is
contentious and it seems that it will not be activated until 15-Nov-2017 which is its expiration date.

According to some statistics more than 80% of the nodes are signalling for “segwit” and thus the
rationale of the UASF is that node owners want it but miners block it.

Thus, some supporters of “segwit” created BIP-148 (and the code that implements it!) as an
alternative mechanism for signalling “segwit”. All it does, is to not accept/propagate blocks that do not
signal for segwit. That will make activation easier and more importantly user-activated rather than
miner-activated as was usually the case. With users it refers to everyone that runs a Bitcoin node;
effectively, allowing every stakeholder to vote and not only the miners (but also merchants, exchanges,
miners or just users).

The activation threshold is 80% and it will activate on 1-Aug-2017 (MTP) if >80% runs the UASF code
and signals for “segwit”. Note that since anyone can run a Bitcoin node UASF is vulnerable to sybil
attacks.

10

https://github.com/bitcoin/bips/blob/master/bip-0148.mediawiki

Digital Currency Programming Upgrading and Codebase

Segwit2x

An agreement made end of May 2017 in New York (NYA) between major Bitcoin stakeholders
(exchanges, miners, merchants, etc.) tried to compromise between big blocks and segwit. The NYA
would have 2 phases. First nodes would signal for ‘segwit’ and if >80% majority segwit would lock-in
and be activated. Then after 3 months the second phase would take place with a hard-fork that
increases the block size to 2MB.

The proposal had strong support (with 58 signatories) but later on many signatories backed off their
commitment for the 2MB increase since they found that more testing is required for a hard-fork.

That increased support for segwit and another proposal was suggested, called segsignal.

11

Digital Currency Programming Upgrading and Codebase

Segsignal or MASF

BIP-91 proposal was compatible with the NYA and was created to decrease required consensus from
95+% to 80+%. Support was overwhelming with more than 90% and thus the upgrade was locked.

Then another group, led by ViaBTC mining pool, used the UASF’s date of activation (1st Aug) to
hard-fork Bitcoin, increasing the block size to 8MBs, creating Bitcoin Cash.

Segwit activated on block 481,824 (24 Aug 2017).

In November, the second phase was expected but many signatories backed off their commitment for
the 2MB increase and it never happened; that lead to more contention with more people supporting
Bitcoin Cash.

12

https://github.com/bitcoin/bips/blob/master/bip-0091.mediawiki

Digital Currency Programming Upgrading and Codebase

Taproot upgrade in progress

● name: taproot
● bit: 2
● startheight: 693504 (~2021 July 23rd)

○ starttime
● timeoutheight: 745920 (~2022 July 22nd / 1 year after signalling begins)

○ timeout
● threshold: 1815 out of 2016 blocks (90%)
● lockinontimeout: no consensus as of 8 March 21

Source: https://en.bitcoin.it/wiki/Taproot_activation_proposal_202102

13

unic.ac.cy/iff

Section 2: Bitcoin's Codebase

Digital Currency Programming Upgrading and Codebase

Bitcoin codebase (1)

The architecture and abstractions discussed were developed from people trying to design new
blockchain systems. People that understood how Bitcoin works tried to componentize it in an effort to
design cleaner systems.

In general, it is good practice to go through the codebase of a project in order to get a deep
understanding of how it works. This is quite challenging for a relatively large project like Bitcoin. More
importantly, the codebase (although improved considerably) still misses encapsulations and
abstractions with a lot of components being tightly coupled together.

There have been attempts to improve this, like abstracting the consensus rules in a separate library
(libconsensus) but many of these were abandoned. Notably, in v0.17 the process running the GUI
is being separated from the process running the node; and it is planned to have the wallet code in yet
another process in the future.

Lack of proper abstractions make the project much more difficult to test and as a result people do as
little changes as possible in fear of introducing new bugs to the codebase. As a result Bitcoin’s code
base carries a lot of technical debt with it and it is even more challenging for a new developer to get
comfortable and develop on it.

15

https://github.com/bitcoin/bitcoin/issues/6714

Digital Currency Programming Upgrading and Codebase

Bitcoin codebase (2)

V0.13.1 -- C/C++: 573 files with 175091 lines of code plus 17581 lines of comments

16

Digital Currency Programming Upgrading and Codebase

Bitcoin codebase (3)

V0.1.5 -- C/C++: 26 files with 14775 lines of code plus 1695 lines of comments

17

Digital Currency Programming Upgrading and Codebase

Bitcoin codebase (4)

If you want to study Bitcoin’s codebase, e.g. in order to be able to contribute, you will need to study
the codebase. Your success would depend on your C/C++ experience including debugging tools and
your perseverance.

To get an idea of the pace of contributions, the code changes from v0.16 to v0.17 involved*:

• 1225 non-merge commits (6.3/day)
• 135 unique commit authors (67 new authors)
• 958 files changed, +45370/-65542 (568/day)

You may want to start with an older and simpler version of the software albeit with a smaller feature
set. There is a relatively detailed explanation of v0.3.23 in the bitcointalk forum so you could use this
version to get a glimpse of the implementation. Of course since the codebase increased almost tenfold
it would just be the starting point of such a journey.

* Statistics from http://diyhpl.us/wiki/transcripts/london-bitcoin-devs/jnewbery-bitcoin-core-v0.17/

18

https://bitcointalk.org/index.php?topic=41718.0
http://diyhpl.us/wiki/transcripts/london-bitcoin-devs/jnewbery-bitcoin-core-v0.17/

Digital Currency Programming Upgrading and Codebase

Tinychain

“Tinychain is a pocket-sized implementation of Bitcoin. Its goal is to be a
compact, understandable, working incarnation of the Nakamoto consensus
algorithm at the expense of advanced functionality, speed, and any real
usefulness.”

Tinychain condenses the very basic in ~800 lines of python code.

19

https://github.com/jamesob/tinychain

unic.ac.cy/iff

Conclusions

Digital Currency Programming Upgrading and Codebase

Conclusions

• We explained the different methods and mechanisms used to upgrade the
Bitcoin software / network

21

unic.ac.cy/iff

Further Reading

Digital Currency Programming Upgrading and Codebase

Self-assessment exercises

1. Provide a (detailed) walkthrough of the proposals created to resolve the block size debate
2. What would the core developers need to do to fix the BerkeleyDB to LevelDB bug?
3. Split Bitcoin according to the architectural components that we mentioned. Which part of

Bitcoin fits in each component?

23

Digital Currency Programming Upgrading and Codebase

Further Reading

Mastering Bitcoin (Ch. 8 & Ch.10), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch08.asciidoc

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch10.asciidoc
(Bitcoin Mining and Consensus)

Signalling BIPs
Old: https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
New: https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

Scorex
https://github.com/input-output-hk/Scorex

24

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch08.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch10.asciidoc
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/input-output-hk/Scorex

25

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Advanced Topics, Part 1
Konstantinos Karasavvas

Digital Currency Programming Advanced Topics, Part 1

Objectives of Session

• Introduce more advanced concepts like HTLC contracts and Atomic swaps

• Describe several state of the art concepts

In this session we introduce some of the more advanced Bitcoin concepts with script examples so
that people can work on their own implementations.

2

Digital Currency Programming Advanced Topics, Part 1

Agenda

• Native Wallet Descriptors
• Partially Signed Bitcoin Transactions (PSBTs)
• Hashed Time-Locked Contracts (HTLCs)
• Atomic Swaps
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Native Descriptor Wallets

Digital Currency Programming Advanced Topics, Part 1

Output Script Descriptors

The Bitcoin Core wallet primarily stores private keys. It uses these keys to create public keys and
addresses. This works fine for single key scripts like those needed for P2PK, P2PKH and P2WPKH.
However, Bitcoin Script supports arbitrary scripts (P2SH and P2WSH) which cannot really be expressed
in the wallet right now. Single key descriptions cannot even express extended keys properly, e.g. using
derivation paths.

Consider a multisignature script created from another wallet. You can import that address to your
wallet and see the funds but you will not be able to spend even if you have imported the keys since
there is no way to 'describe' how these keys were combined to create that address.

Output script descriptors are strings that contain all the necessary information to spend an output
script. Some examples (from linked resource) are:

pkh(02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5)

combo(0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)

sh(multi(2,022f01e5e15cca351daff3843fb70f3c2f0a1bdd05e5af888a67784ef3e10a2a01,03a
cd484e2f0c7f65309ad178a9f559abde09796974c57e714c35f110dfc27ccbe))

pkh([d34db33f/44'/0'/0']xpub6ERApfZwUNrhLCkDtcHTcxd75RbzS1ed54G1LkBUHQVHQKqhMkhgb
mJbZRkrgZw4koxb5JaHWkY4ALHY2grBGRjaDMzQLcgJvLJuZZvRcEL/1/*)

5

https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md

Digital Currency Programming Advanced Topics, Part 1

Native Descriptor Wallets

Output script descriptors were introduced in v0.17 of Bitcoin Core and several RPC commands, like
listunspent and getaddressinfo where updated accordingly.

Descriptor Wallets are introduced in v0.21 and explicitly store output script descriptors in the wallet*.
These descriptors are then used to generate the addresses.

6

unic.ac.cy/iff

Section 2: Partially Signed Bitcoin Transactions
(PSBTs)

Digital Currency Programming Advanced Topics, Part 1

Partially Signed Bitcoin Transactions

PSBTs described in BIP-174 specifies a binary format that allows wallets to exchange unfinished
transactions in a standardised way. A PSBT describes all the UTXOs that need to be spend and the
outputs that will receive the funds. All necessary information to spend a UTXO can be included as well.

An example where PSBTs are very useful is when we need to sign a multisignature script. The partial
transaction can be shared to individual signers and then the results could be merged to produce the
final transaction.

8

https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki

unic.ac.cy/iff

Section 3: Hashed Time-Locked Contracts

Digital Currency Programming Advanced Topics, Part 1

Hashlocks

A hashlock is a type of locking script that restricts the spending of an output until a specific piece of
data (aka as pre-image or passphrase) is publicly revealed. The passphrase can be shared by any
means. All hashlock outputs using the same passphrase can then be spent.

Example locking script:

OP_HASH256 <passphrase_hash> OP_EQUAL

This makes it possible to create multiple outputs locked with the same hashlock and when one is spent
the rest will also be available for spending (since by spending one the passphrase will be revealed).
Effectively, by spending one such output you share the passphrase.

Of course, since the passphrase will become public, everyone will be able to spend the rest of the
outputs, which is not very useful. Thus, outputs protected by hashlocks are typically also protected by
specific signatures so that only the owners of the corresponding keys could spend the remaining
outputs. This is similar to what 2FA offers (something one owns and something one knows).

Example:

OP_HASH256 <passphrase_hash> OP_EQUALVERIFY OP_DUP OP_HASH160 <PKHash> OP_EQUALVERIFY
OP_CHECKSIG

10

Digital Currency Programming Advanced Topics, Part 1

HTLC

A Hashed Time-Locked Contract (BIP-199) is a combination of a hashlock and a timelock that requires
the receiver of a payment to either provide a passphrase or forfeit the payment allowing the sender to
take the funds back.

Example:

 OP_IF

 OP_SHA256 <passphrase_hash> OP_EQUALVERIFY OP_DUP OP_HASH160 <receiver PKH>

 OP_ELSE

 100 OP_CHECKSEQUENCEVERIFY OP_DROP OP_DUP OP_HASH160 <sender PKH>

 OP_ENDIF

 OP_EQUALVERIFY

 OP_CHECKSIG

The above locking script would be created by both sender and receiver collaborating. The receiver
knows the passphrase, also called pre-image, but only shares its hash also called digest. The sender
can then send some funds to that P2SH address. The receiver can claim the funds if he reveals (in the
blockchain) the passphrase. If not, after 100 blocks pass the sender can claim the funds.

11

https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki

Digital Currency Programming Advanced Topics, Part 1

HTLC Example

● Assumptions
○ Alice (sender) and Bob (receiver)

exchange public keys
○ Alice and Bob agree upon a timeout

threshold
○ Bob sends the passphrase_hash

(digest) to Alice
○ They can both create the script and

P2SH address
○ Alice sends funds to the new P2SH

address

12

Alice Bob

P2SH

sends funds

PK
A

PK
B
, digest

Digital Currency Programming Advanced Topics, Part 1

HTLC Example

● Scenario 1
○ Bob claims the funds and in doing so

reveals the passphrase

● Scenario 2
○ Bob does not claim the funds until

the agreed timeout
○ Alice takes the funds back

13

Alice Bob

P2SH

claims funds within
100 blocks

Alice Bob

P2SH

gets a refund
after 10 blocks

Digital Currency Programming Advanced Topics, Part 1

HTLC Applications

HTLC transactions are a safe and cheap method of exchanging secrets for money over the blockchain.
Applications include Atomic Swaps, Lightning Network, Zero-knowledge contingent payments and
potentially several others.

14

https://github.com/zcash/pay-to-sudoku

unic.ac.cy/iff

Section 4: Atomic Swaps

Digital Currency Programming Advanced Topics, Part 1

Atomic Swaps

Atomic Swaps is a way of trustlessly exchanging funds between different blockchains. You can swap
funds in a predetermined exchange rate. For example Alice wants to send 1 BTC to Bob in the Bitcoin
blockchain and receive 100 LTC from Bob in the Litecoin blockchain. It is important that these two
transactions happen atomically, either both happen or none.

To accomplish that we can use two HTLC contracts, one in each blockchain. The same passphrase
should be used, thus once the funds from one of the blockchains is claimed (passphrase revealed) it
can immediately be claimed in the other.

● Assumptions
○ Alice and Bob exchange public keys on both Bitcoin and Litecoin
○ Alice and Bob agree upon a timeout threshold, say 48 hours
○ Alice knows of a passphrase (pre-image) which is hashed to produce a digest

16

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (1)

● Bitcoin network
○ Alice creates a transaction moving

coins to an Output
1
 that can be

redeemed by:
■ revealing the passphrase and

Bob's signature
■ both Alice's and Bob's

signatures
○ Does not broadcast!

17

Alice P2SH
sends 1 BTC

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (1)

● Bitcoin network
○ Alice creates a transaction moving

coins to an Output
1
 that can be

redeemed by:
■ revealing the passphrase and

Bob's signature
■ both Alice's and Bob's

signatures
○ Does not broadcast!

● Litecoin network
○ Bob creates a transaction moving

coins to an Output
2
 that can be

redeemed by:
■ revealing the passphrase and

Alice's signature
■ both Alice's and Bob's

signatures
○ Does not broadcast!

18

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (2)

● Bitcoin network
○ Alice creates a second transaction

returning the coins from Output
1
 to

Alice (an address that she owns)
■ timelocked for 48 hours

○ Passes this transaction to Bob to sign
○ Bob signs the refund transaction and

returns it to Alice

19

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Alice

refund
after 48h

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (2)

● Bitcoin network
○ Alice creates a second transaction

returning the coins from Output
1
 to

Alice (an address that she owns)
■ timelocked for 48 hours

○ Passes this transaction to Bob to sign
○ Bob signs the refund transaction and

returns it to Alice

● Litecoin network
○ Bob creates a second transaction

returning the coins from Output
2
 to

Bob (an address that he owns)
■ timelocked for 24 hours

○ Passes this transaction to Alice to
sign

○ Alice signs the refund transaction and
returns it to Bob

20

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Alice

Bob

refund
after 48h

refund
after 24h

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (3)

● Bitcoin network
○ Alice broadcasts the first transaction

(sends 1 BTC to Output
1
)

21

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Alice

Bob

refund
after 48h

refund
after 24h

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (3)

● Bitcoin network
○ Alice broadcasts the first transaction

(sends 1 BTC to Output
1
)

● Litecoin network
○ Bob broadcasts the first transaction

(sends 100 LTC to Output
2
)

22

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Alice

Bob

refund
after 48h

refund
after 24h

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (4)

● Litecoin network
○ Alice reveals the passphrase, signs

and claims the 100 LTC (Output
2
)

23

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Alice

Bob

refund
after 48h

refund
after 24h

Alice
claims 100 LTC

Digital Currency Programming Advanced Topics, Part 1

Atomic Swap Example (4)

● Bitcoin network
○ Bob uses the passphrase, signs and

claims the 1 BTC (Output
1
)

● Litecoin network
○ Alice reveals the passphrase, signs

and claims the 100 LTC (Output
2
)

24

Alice

Bob

P2SH
sends 1 BTC

P2SH
sends 100 LTC

Alice

Bob

refund
after 48h

refund
after 24h

Alice

Bob
claims 1 BTC

claims 100 LTC

Digital Currency Programming Advanced Topics, Part 1

Atomic Swaps

Note that the above ordering is not strict in any sense. As long as the refund transactions are both
signed before the passphrase is revealed everyone is safe.

If Bob does not send the LTC, Alice will be able to get her 1 BTC back after 48 hours by broadcasting her
refund transaction.

If Alice does not send the BTC, Bob will be able to get his 100 LTC back after 24 hours by broadcasting
his refund transaction.

It is important to understand that active participation is required in this exchange. For example, if Bob
does not use the passphrase to claim the bitcoin in time after the passphrase is revealed, Alice can use
her refund transaction and also get her bitcoin back!

Atomic swaps allow for trustless exchange between assets of different blockchains. That allows for
trustless decentralized exchanges. But how will users find each other orders?

25

unic.ac.cy/iff

Conclusions

Digital Currency Programming Advanced Topics, Part 1

Conclusions

• We introduced HTLC contracts and its components

• We explained what are atomic swaps as well as how they can be
implemented

27

unic.ac.cy/iff

Further Reading

Digital Currency Programming Advanced Topics, Part 1

Self-assessment exercises

• Implement the example HTLC scenario of slides 11-13. Create the appropriate scripts for both
Alice and Bob.

• Write the HTLC locking script that Alice needs to create for the atomic swap step of slide 18.
• Write the unlocking script that Alice needs to use to claim the litecoin as in slide 24.
• Try to design a platform that would facilitate atomic swaps between Bitcoin and Litecoin. Think

about it holistically and in practical terms; i.e. how would you design and implement such a
platform. Keep a note of all the potential difficulties that might come up and try to find
solutions.

29

Digital Currency Programming Advanced Topics, Part 1

Further Reading

Output Descriptors
https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://achow101.com/2020/10/0.21-wallets

PSBTs
https://bitcoinops.org/en/topics/psbt/
https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki

Atomic Swaps
https://en.bitcoin.it/wiki/Atomic_swap
https://medium.com/blockchainio/what-are-atomic-swaps-bc1d034634c9
https://blockgeeks.com/guides/atomic-swaps/

30

https://github.com/bitcoin/bitcoin/blob/master/doc/descriptors.md
https://achow101.com/2020/10/0.21-wallets
https://bitcoinops.org/en/topics/psbt/
https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki
https://en.bitcoin.it/wiki/Atomic_swap
https://medium.com/blockchainio/what-are-atomic-swaps-bc1d034634c9
https://blockgeeks.com/guides/atomic-swaps/

31

unic.ac.cy/iff

BLOC-521 Digital Currency Programming
Advanced Topics, Part 2
Konstantinos Karasavvas

Digital Currency Programming Advanced Topics, Part 2

Objectives of Session

• Explain how payment channels are leveraged in the Lightning Network

• Describe several state of the art concepts

In this session we introduce some of the more advanced Bitcoin concepts with script examples so
that people can work on their own implementations.

2

Digital Currency Programming Advanced Topics, Part 2

Agenda

• Payment Channels
• Lightning Network
• Conclusions
• Self-assessment exercises and further reading

3

unic.ac.cy/iff

Section 1: Payment Channels

Digital Currency Programming Advanced Topics, Part 2

Payment Channels

Payment channels is a class of techniques that allows two participants to make multiple Bitcoin
transactions without committing all of those transactions to the blockchain; i.e. most of the
transactions are off-chain.

The Bitcoin wiki lists several approaches to implement Payment Channels. We will only go through
some of them including the one currently used in the Lightning Network.

● Nakamoto high-frequency transactions

● Spillman-style payment channels

● CLTV-style payment channels

● Poon-Dryja payment channels

● Decker-Wattenhofer duplex payment channels

● Decker-Russell-Osuntokun eltoo Channels
○ eltoo; requires SIGHASH_NOINPUT

5

https://en.bitcoin.it/wiki/Payment_channels

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

Assume that a customer wants to watch a video from a streaming service and pay by the minute. The
frequency of the payment (as well as the tx fees) makes it impossible to work with on-chain Bitcoin
transactions.

6

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

7

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

PK

SP

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

8

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

(2) C creates tx-id1 which sends 0.1 BTC
to a 2-of-2 address that unlocks with
C and SP signatures; not
broadcasted yet

PK

SP

2-of-2
tx-id1

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

9

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

(2) C creates tx-id1 which sends 0.1 BTC
to a 2-of-2 address that unlocks with
C and SP signatures; not
broadcasted yet

(3) C creates a refund tx-id2 that sends
the funds back to C nLockTime'ed
12 blocks in the future (~2 hours)
and sends to SP to sign

PK

SP

2-of-2
tx-id1

refund
tx-id2

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

10

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

(2) C creates tx-id1 which sends 0.1 BTC
to a 2-of-2 address that unlocks with
C and SP signatures; not
broadcasted yet

(3) C creates a refund tx-id2 that sends
the funds back to C nLockTime'ed
12 blocks in the future (~2 hours)
and sends to SP to sign

(4) SP signs refund tx and returns

PK

SP

2-of-2
tx-id1

refund
tx-id2

refund
tx-id2

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

11

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

(2) C creates tx-id1 which sends 0.1 BTC
to a 2-of-2 address that unlocks with
C and SP signatures; not
broadcasted yet

(3) C creates a refund tx-id2 that sends
the funds back to C nLockTime'ed
12 blocks in the future (~2 hours)
and sends to SP to sign

(4) SP signs refund tx and returns
(5) Then C broadcasts tx-id1 that sends

the funds to the 2-of-2 address

PK

SP

2-of-2
tx-id1

refund
tx-id2

refund
tx-id2

2-of-2
tx-id1

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

12

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

(2) C creates tx-id1 which sends 0.1 BTC
to a 2-of-2 address that unlocks with
C and SP signatures; not
broadcasted yet

(3) C creates a refund tx-id2 that sends
the funds back to C nLockTime'ed
12 blocks in the future (~2 hours)
and sends to SP to sign

(4) SP signs refund tx and returns
(5) Then C broadcasts tx-id1 that sends

the funds to the 2-of-2 address
(6) C creates a tx-id3 which spends the

2-of-2 to send 0.01 to SP and 0.99 to
C, signs and sends to SP (paying for 1
minute of service)

PK

SP

2-of-2
tx-id1

refund
tx-id2

refund
tx-id2

2-of-2
tx-id1

0.01->SP
0.99->C

tx-id3

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

13

C Bitcoin (1) Service Provider (SP) gives their
public key to Customer (C)

(2) C creates tx-id1 which sends 0.1 BTC
to a 2-of-2 address that unlocks with
C and SP signatures; not
broadcasted yet

(3) C creates a refund tx-id2 that sends
the funds back to C nLockTime'ed
12 blocks in the future (~2 hours)
and sends to SP to sign

(4) SP signs refund tx and returns
(5) Then C broadcasts tx-id1 that sends

the funds to the 2-of-2 address
(6) C creates a tx-id3 which spends the

2-of-2 to send 0.01 to SP and 0.99 to
C, signs and sends to SP (paying for 1
minute of service) —this is called a
commitment tx and is off-chain

(7) And again for each minute of
streaming another commitment tx is
made

PK

SP

2-of-2
tx-id1

refund
tx-id2

refund
tx-id2

2-of-2
tx-id1

0.01->SP
0.99->C

tx-id3

0.02->SP
0.98->C

tx-id3

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

14

C Bitcoin (7) And again for each minute of
streaming another commitment tx is
made

SP

0.02->SP
0.98->C

tx-id3

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

15

C Bitcoin (7) And again for each minute of
streaming another commitment tx is
made

(8) And 28 more times…

SP

0.02->SP
0.98->C

tx-id3

...

0.30->SP
0.70->C

tx-id31

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

16

C Bitcoin (7) And again for each minute of
streaming another commitment tx is
made

(8) And 28 more times…
(9) C stops streaming service and SP

collects the funds by signing and
broadcasting the last commitment tx
(tx-id31) to the network

SP

0.02->SP
0.98->C

tx-id3

...

0.30->SP
0.70->C

tx-id31

0.30->SP
0.70->C

tx-id31

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

17

C Bitcoin (7) And again for each minute of
streaming another commitment tx is
made

(8) And 28 more times…
(9) C stops streaming service and SP

collects the funds by signing and
broadcasting the last commitment tx
(tx-id31) to the network

NOTES:

● SP is incentivized to broadcast only
the last tx.

● If SP does not cooperate C can
broadcast the refund transaction
after the nLockTime expires.

SP

0.02->SP
0.98->C

tx-id3

...

0.30->SP
0.70->C

tx-id31

0.30->SP
0.70->C

tx-id32

Digital Currency Programming Advanced Topics, Part 2

Spilman-style payment channels

Spilman-style payment channels are subject to transaction malleability attacks. For example after the
refund transaction is signed and returned (step 4), the 2-of-2 transaction which is then broadcasted
can be modified (step 5) before it is confirmed; the tx is acquired by the malicious party and the
signature is slightly modified (still complying to DER, e.g. changing signs). This will change its txid which
the refund tx depends on, invalidating the refund. Then the attacker re-broadcasts with a higher fee*
so that miners choose it over the original one.

When setting up the refund tx we have to specify a future until which the refund cannot be claimed.
This is the actual limit of the payment channel. It has to close before that time or else C can get a full
refund. We could set this a long time in the future but then in case SP does not cooperate the funds
will be locked accordingly.

Also notice that this kind of payment channels are unidirectional. Only one side pays the other.

* Or regardless of fees, the attacker arranges a deal with a miner which includes it in the next block.

18

Digital Currency Programming Advanced Topics, Part 2

CLTV-style payment channels

These are similar to Spilman-style channels but instead of creating an extra transaction for a refund
you include the refund as a branch in the script of the funding address (i.e. the 2-of-2).

 OP_IF

 2 <C Public Key> <SP Public Key> 2 CHECKMULTISIG

 OP_ELSE

 <current block+12> OP_CHECKLOCKTIMEVERIFY OP_DROP OP_DUP OP_HASH160 <C PKH>

 OP_EQUALVERIFY OP_CHECKSIG

 OP_ENDIF

Now since the refund tx is part of the funding tx and not an additional dependent tx an attacker
cannot use the tx malleability vulnerability previously described. This is an improvement of
Spilman-style channels but they are still unidirectional and have a time limit.

However, the payment txs depend on the funding tx (possible malleability attack) and thus the SP is
advised to wait for at least a single confirmation before accepting payments.

19

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels (punishment-based)

These payments are bidirectional and they have no time limit. With bidirectional channels both
participants A and B can send funds to each other. The idea is similar to the previous examples where a
funding tx opens the channel and then commitment txs change the balances. The funding tx however
gets funds from both participants this time.

If one of the participant misbehaves the other one can actually claim all the funds back (punishing the
bad actor).

Payment channels of this type became possible with Segregated Witness which solves the transaction
malleability issues.

The variation that we will go through uses revocation keys, which demonstrates the basic idea applied
in the Lightning Network.

20

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

21

A Bitcoin

(1) A and B exchange public keys

B

A
pk

B
pk

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

22

A Bitcoin

(1) A and B exchange public keys

(2) A and B generate random secrets
and exchange the respective hashes

B

A
pk

B
pk

A
H(S)

B
H(S)

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

23

A Bitcoin

(1) A and B exchange public keys

(2) A and B generate random secrets
and exchange the respective hashes

(3) A and B create the 2-of-2 address
controlled by A and B (they both
know they public keys).

B

A
pk

B
pk

A
H(S)

B
H(S)

2-of-2 2-of-2

Digital Currency Programming Advanced Topics, Part 2

Funding
TX

Poon-Dryja payment channels

24

A Bitcoin

(1) A and B exchange public keys

(2) A and B generate random secrets
and exchange the respective hashes

(3) A and B create the 2-of-2 address
controlled by A and B (they both
know they public keys).

(4) They both send the same amount of
funds to that address but do not
broadcast.

B

A
pk

B
pk

A
H(S)

B
H(S)

2-of-2 2-of-2

2-of-2

Sends
2 BTC

Sends
2 BTC

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

25

A Bitcoin

(5) Both A and B create a commitment
transaction that return their funds
immediately to them and the funds
of their peer after some delay, say
10 days OR also to them if they
know the other participant's secret.

B

2-of-2

2 BTC -> A

2 BTC -> B after 10d
OR

2 BTC -> A with B's
Secret

2 BTC -> B

2 BTC -> A after 10d
OR

2 BTC -> B with A's
Secret

2-of-2

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

26

A Bitcoin

(5) Both A and B create a commitment
transaction that return their funds
immediately to them and the funds
of their peer after some delay, say
10 days OR also to them if they
know the other participant's secret.

(6) A signs the 2-of-2 tx and sends to B.
B can now sign and get refunded
albeit with some delay.

B

2-of-2

2 BTC -> A

2 BTC -> B after 10d
OR

2 BTC -> A with B's
Secret

2 BTC -> B

2 BTC -> A after 10d
OR

2 BTC -> B with A's
Secret

2-of-2

2-of-2

2 BTC -> A

2 BTC -> B after 10d
OR

2 BTC -> A with B's
Secret

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

27

A Bitcoin

(5) Both A and B create a commitment
transaction that return their funds
immediately to them and the funds
of their peer after some delay, say
10 days OR also to them if they
know the other participant's secret.

(6) A signs the 2-of-2 tx and sends to B.
B can now sign and get refunded
albeit with some delay.

(7) B signs the 2-of-2 tx and sends to A.
A can now sign and get refunded
albeit with some delay.

B

2-of-2

2 BTC -> A

2 BTC -> B after 10d
OR

2 BTC -> A with B's
Secret

2-of-2

2 BTC -> A

2 BTC -> B after 10d
OR

2 BTC -> A with B's
Secret

2 BTC -> B

2 BTC -> A after 10d
OR

2 BTC -> B with A's
Secret

2-of-2

2 BTC -> B

2 BTC -> A after 10d
OR

2 BTC -> B with A's
Secret

2-of-2

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

28

A Bitcoin

(8) Now that both participants
committed for refunds the funding
transaction can be broadcasted
(channel is open).

Note: both A and B can now close the
channel and claim their money back with a
delay.

B

Funding
TX

2-of-2

Sends
2 BTC

Sends
2 BTC

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

29

A Bitcoin

To use the channel participants have to
create new commitment transactions
(similar to above) to to represent the new
state of the funds.

Suppose B sends 1 BTC to A; the new state
wouldbe: 3 BTC goes to A and 1 BTC goes to
B.

So the commitment process is repeated.

B

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

30

A Bitcoin

To use the channel participants have to
create new commitment transactions
(similar to above) to to represent the new
state of the funds.

Suppose B sends 1 BTC to A; the new state
wouldbe: 3 BTC goes to A and 1 BTC goes to
B.

So the commitment process is repeated.

(9) A and B generate new random
secret (A

S2
 and B

S2
) and exchange

the respective hashes (A
H(S2)

 and
B

H(S2)
)

B

A
H(S2)

B
H(S2)

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

31

A Bitcoin

(10) B will use the channel to send 1 BTC
to A. Both A and B create new
commitment transactions that
represent the new state of the
funds; i.e. 3 BTC goes to A and 1 BTC
goes to B.

B

2-of-2

3 BTC -> A

1 BTC -> B after 10d
OR

1 BTC -> A with B's
Secret2

1 BTC -> B

3 BTC -> A after 10d
OR

3 BTC -> B with A's
Secret2

2-of-2

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

32

A Bitcoin

(10) B will use the channel to send 1 BTC
to A. Both A and B create new
commitment transactions that
represent the new state of the
funds; i.e. 3 BTC goes to A and 1 BTC
goes to B.

(11) A signs the 2-of-2 tx and sends to B.
B can now sign and get refunded
albeit with some delay.

B

2-of-2

3 BTC -> A

1 BTC -> B after 10d
OR

1 BTC -> A with B's
Secret2

2-of-2

3 BTC -> A

1 BTC -> B after 10d
OR

1 BTC -> A with B's
Secret2

1 BTC -> B

3 BTC -> A after 10d
OR

3 BTC -> B with A's
Secret2

2-of-2

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

33

A Bitcoin

(10) B will use the channel to send 1 BTC
to A. Both A and B create new
commitment transactions that
represent the new state of the
funds; i.e. 3 BTC goes to A and 1 BTC
goes to B.

(11) A signs the 2-of-2 tx and sends to B.
B can now sign and get refunded
albeit with some delay.

(12) B signs the 2-of-2 tx and sends to A.
A can now sign and get refunded
albeit with some delay.

B

2-of-2

3 BTC -> A

1 BTC -> B after 10d
OR

1 BTC -> A with B's
Secret2

2-of-2

3 BTC -> A

1 BTC -> B after 10d
OR

1 BTC -> A with B's
Secret2

1 BTC -> B

3 BTC -> A after 10d
OR

3 BTC -> B with A's
Secret2

2-of-2

1 BTC -> B

3 BTC -> A after 10d
OR

3 BTC -> B with A's
Secret2

2-of-2

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

34

A Bitcoin

(13) Now the previous commitments
need to be invalidated. We can
exchange the previous secrets to
accomplish that.

B

A
S

B
S

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

35

A Bitcoin

(13) Now the previous commitments
need to be invalidated. We can
exchange the previous secrets to
accomplish that.

Effectively now we have moved to the new
state. If B broadcasts an older beneficial
commitment, e.g. from step 6, A has 10
days to use B's secret and claim B's funds
from the second output (and can always
claims the funds from the first output).

B

A
S

B
S

Digital Currency Programming Advanced Topics, Part 2

Poon-Dryja payment channels

36

A Bitcoin

(14) Participants can always broadcast
the last state to close the channel.
Here A also signs and broadcasts B's
last commitment.

B

1 BTC -> B

3 BTC -> A after 10d
OR

3 BTC -> B with A's
Secret2

2-of-2

unic.ac.cy/iff

Section 2: Lightning Network

Digital Currency Programming Advanced Topics, Part 2

Lightning Network

It is not feasible to expect every user to create a payment channel with everybody that he needs to
transact in some way. Lightning network is a design on how bidirectional payments channels can be
routed securely among many participants. The idea is that user A will be able to pay user E without a
direct payment channel. The payment would go through B, C and D.

38

A

B

K

I

HG

F

N

J

D

L

M

E

C

Digital Currency Programming Advanced Topics, Part 2

Lightning Network

It was first described in the lightning network paper and it is one way that routed payment channels
may work. There are several implementations and they are being guided by a set of interoperability
documents called Basics of Lightning Technology or BOLT.

39

* Diagram from Mastering Bitcoin book, Chapter 12

https://lightning.network/lightning-network-paper.pdf
https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch12.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch12.asciidoc

Digital Currency Programming Advanced Topics, Part 2

Lightning Network

A routed payment channel example where Alice
wishes to pay Eric 1 BTC. Eric constructs a secret
and gives the hash to Alice.

The network allows Alice to know that Eric is
connected to Diana, Diana to Carol, etc. and thus
can construct the route.

Alice sends 1.003 BTC to Bob with a commitment
stating that Bob will get paid after the secret is
revealed.

The same happens until a commitment from
Diana to Eric is sent (notice LN fees being
reduced).

Eric gets 1 BTC by revealing the secret, which is
then used by everyone else to get their 1 BTC.

40

* Diagram from Mastering Bitcoin book, Chapter 12

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch12.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch12.asciidoc

Digital Currency Programming Advanced Topics, Part 2

Lightning Network: Benefits and Challenges

Benefits:

Privacy/Fungibility: onion routing is used, i.e. each lightning node only sees the previous and the next
node thus they do not know the sender or the recipient.

Speed/Capacity: the transaction commitments are off-chain and thus lightning fast and not restricted
by on-chain block size constraints.

Granularity: micro-payments are possible

Challenges:

Limited routes and/or capacity: finding a route is not always possible or might take time to find an
appropriate route; that is one of the primary critiques of lightning network. People argue that hubs will
be required to enable better routing, which will decrease decentralization.

41

unic.ac.cy/iff

Conclusions

Digital Currency Programming Advanced Topics, Part 2

Conclusions

• We went through different approaches for Payment Channels and
explained some of them in detail.

• Went through some of the state of the art developments of the Bitcoin
network

43

unic.ac.cy/iff

Further Reading

Digital Currency Programming Advanced Topics, Part 2

Further Reading

Payment Channels
https://en.bitcoin.it/wiki/Payment_channels
https://blog.chainside.net/understanding-payment-channels-4ab018be79d4

Mastering Bitcoin (Ch.12), Andreas Antonopoulos
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc

45

https://en.bitcoin.it/wiki/Payment_channels
https://blog.chainside.net/understanding-payment-channels-4ab018be79d4
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc

46

	S01-HowBitcoinWorks-Part1
	S02-HowBitcoinWorks-Part2
	S03-CryptographicKeys
	S04-AddressesAndWallets
	S05-BitcoinScripting1
	S06-BitcoinScripting2
	S07-BitcoinScripting3
	S08-BitcoinScripting4
	S09-P2PandForking
	S10-UpgradingAndCodebase
	S11-AdvancedTopics-Part1
	S12-AdvancedTopics-Part2

