
Towards a Two-Tier Hierarchical Infrastructure:
An O�ine Payment System for Central Bank Digital Currencies

Mihai Christodorescu*, Wanyun Catherine Gu**, Ranjit Kumaresan*, Mohsen Minaei*, Mustafa Ozdayi*, Benjamin
Price**, Srinivasan Raghuraman*, Muhammad Saad*, Cuy She�eld**, Minghua Xu*, and Mahdi Zamani*

*Visa Research, Palo Alto, CA
**Visa Crypto Product, Palo Alto, CA

Abstract

Digital payments traditionally rely on online communications with several intermediaries such as
banks, payment networks, and payment processors in order to authorize and process payment trans-
actions. While these communication networks are designed to be highly available with continuous
uptime, there may be times when an end-user experiences little or no access to network connectivity.

The growing interest in digital forms of payments has led central banks around the world to ex-
plore the possibility of issuing a new type of central-bank money, known as central bank digital cur-
rency (CBDC). To facilitate the secure issuance and transfer of CBDC, we envision a CBDC design under
a two-tier hierarchical trust infrastructure, which is implemented using public-key cryptography with
the central bank as the root certi�cate authority for generating digital signatures, and other �nancial
institutions as intermediate certi�cate authorities. One important design feature for CBDC that can be
developed under this hierarchical trust infrastructure is an “o�ine” capability to create secure point-
to-point o�ine payments through the use of authorized hardware. An o�ine capability for CBDC as
digital cash can create a resilient payment system for consumers and businesses to transact in any
situation.

In this paper, we propose an o�ine payment system (OPS) protocol for CBDC that allows a user to
make digital payments to another user while both users are temporarily o�ine and unable to connect
to payment intermediaries (or even the Internet). OPS can be used to instantly complete a transaction
involving any form of digital currency over a point-to-point channel without communicating with any
payment intermediary, achieving virtually unbounded throughput and real-time transaction latency.
One needs to ensure funds cannot be double-spent during o�ine payments as no trusted intermediary
is present in the payment loop to protect against replay of payment transactions. Our OPS protocol
prevents double-spending by relying on digital signatures generated by trusted execution environments
(TEEs)which are already available onmost computer devices, including smartphones and tablets. While
a TEE brings the primary point of trust to an o�ine device, an OPS system requires several crypto-
graphic protocols to enable the secure exchange of funds between multiple TEE-enabled devices, and
hence a reliable �nancial ecosystem that can securely support CBDC at scale.

1

ar
X

iv
:2

01
2.

08
00

3v
1

 [
cs

.C
R

]
 1

4
D

ec
 2

02
0

Contents

1 Introduction 3

1.1 Our Contribution . 4

1.2 Overview of Our Solution . 5

2 Our Model 7

2.1 Problem De�nition . 7

2.2 Threat Model . 8

2.3 TEE Model . 8

3 The OPS Protocol 9

3.1 Client Setup . 9

3.2 OPS TA Registration . 11

3.3 OPS TA Program . 12

3.4 Deposit and Withdraw Protocols . 14

3.5 O�ine Payment Protocol . 17

3.6 Claim and Collect Protocols . 18

2

1 Introduction

Digital payments today represent an account-based system of debiting and crediting accounts operated
by the �nancial institutions, where the ownership of a payment account is tied to a user’s public identity.
With the emergence of distributed ledger technology, there has been growing interest in a new form of
token-based digital payment, where the token itself represents the medium of exchange or money, and
the ownership of the token is determined by a user’s access to a private cryptographic key that provides
access to the user’s digital wallet. Access to these wallets are typically facilitated by entities, known as
wallet providers, that o�er secure access to the cryptographic keys as well as some banking and other
�nancial capabilities [1–3].

The growing interest in token-based payments have led central banks around the world to explore the
possibility of issuing a new type of central-bank money, known as central bank digital currency (CBDC).
Some of these central banks have proposed designs that would issue this new money in the form of cryp-
tographic tokens backed directly by central bank reserves to enable consumers and businesses to make
payments in the form of “digital cash” [4–6].

In a CBDC model, the money in transit should remain the liability of its trusted issuer (e.g., a central
bank in the case of CBDC), meaning that its value is always guaranteed by the issuer as long as the recip-
ient can easily verify the authenticity of the money. This ensures that (1) the money was issued properly
according to a speci�c set of rules (aka, a monetary policy that has parallels to the existing �nancial sys-
tem) set by the issuer, and (2) the money maintained its value in transit (i.e., was neither double spent
nor counterfeited). In the digital world, this can be implemented using public-key cryptography, where
the money in transit carries a digital signature that can only be generated directly by the central bank or
indirectly by one of the central bank’s certi�ed delegates. Any recipient of the money can then simply au-
thenticate it by verifying the signature against the public key of the central bank and/or the certi�cate of its
trusted delegate. Public-key cryptography could o�er signi�cant advantages for security and compliance
over cash.

We envision a two-tier hierarchical trust infrastructure delivered through certi�ed delegation, which
allows the central bank to outsource the complexity of managing digital certi�cates for CBDC tokens to a
set of potentially regulated, permissioned entities that derive their authority from the central bank, through
a hierarchy of digital certi�cates originated from the central back at the root. This hierarchical trust design
resembles the hierarchy of certi�cate authorities (CAs) in a public-key infrastructure (PKI) [7] that plays a
vital role in enabling the secure transfer of information over the Internet. A PKI model for CBDC can
signi�cantly facilitate the secure issuance and transfer of CBDC funds with the central bank serving as the
root CA and supervised �nancial institutions (FIs) serving as intermediate CAs under regulatory oversight.
These intermediate CAs have two roles: (1) Vetting wallet providers based on regulatory compliance; (2)
Issuing digital certi�cates to vetted wallet providers to facilitate CBDC payments securely.

The core advantage of the two-tier model is that it decouples the certi�cate infrastructure (Tier 1) from
the critical latency path of CBDC payments (Tier 2), allowing wallet providers such as banks and other
FIs to securely process CBDC payments at a high scale without imposing extra overhead on the highly-
protected PKI nodes. This is a particularly relevant question at the heart of the current CBDC debate.

In the past year, several central banks have begun to research and ask how o�ine CBDC payments
could occur [4, 8–10]. An important feature that can be developed under the hierarchical trust
infrastructure for CBDC is an “o�line” capability to create secure point-to-point o�line pay-
ments using authorized hardware. An o�ine protocol can be a potential feature of CBDC by bringing
the primary point of trust to an o�ine device under this infrastructure. CBDC as digital cash can move
instantly across multiple payment rails and condition without necessarily needing to directly involve any
intermediary during transfers. For example, if the sender and the recipient of a payment have relationships
with di�erent wallet providers, they should still be able to transact with each other instantly in an ad-hoc,

3

point-to-point fashion without communicating with their wallet providers. This enables a signi�cantly
higher throughput as payments can still happen under congested network conditions. Moreover, the de-
sign provides a higher level of privacy to the clients by avoiding the need to share unnecessary payment
information with the intermediaries.

One technical challenge in creating secure o�ine payments is to protect the system from �nancial
crimes and to avoid exposing either the buyer, seller, or the central bank to the risk that the payment may
not ultimately be settled [4]. Existing card payment networks such as Visa and Mastercard can provide
some form of o�ine payments for situations where the acceptance device (e.g., a card terminal) cannot
connect to payment providers for authorization in real time [11,12]. Payments without issuer authorization
require themerchant to bear some counterparty risk because the payermay not actually have the necessary
funds to ful�ll the transaction [13].

Would it be possible to allow o�ine payments between two parties without exposing counterparty
risk on either party?

Today, most mobile devices (e.g., smartphones and tablets) are equipped with secure hardware to store
keys and other sensitive material that can only be accessed through strong user authentication measures
(e.g., biometrics). It has been shown that compromising these hardware-protected mobile devices without
help from their manufacturers is di�cult [14]. This can potentially make mobile devices a viable option
to store the user’s CBDC funds and to issue o�ine payments using hardware-protected credentials provi-
sioned by the central bank or one of its delegates. As long as the secure hardware remains secure, (1) the
keys for signing o�ine payments are protected from malicious access, and (2) the same funds cannot be
spent o�ine more than once (i.e., no double spending).

While secure hardware provides a simple and e�cient medium for delegation of trust in the digital
setting [14], the possibility of device compromise would not only expose the involved users to the risk of
funds loss but also could, at a much larger scale, jeopardize the functionality of the entire CBDC ecosystem.
In a recent study, Allen et al. [15] identify three main challenges in the use of secure hardware. First, there
is a strong economic incentive for users to compromise their secure hardware in order to counterfeit CBDC
funds. Second, compromising one device could allow a user to double spend funds an unlimited number
of times (i.e., by default there is no graceful degradation). And third, a user’s funds could be totally lost in
case of device loss (due to, e.g., damage or failure).

We observe that these challenges are not exclusive to digital o�ine payments and are applicable to vir-
tually any form of o�ine payments, including physical cash. Therefore, we envision that measures similar
to those used for physical cash could be employed to protect the security of CBDC in an o�ine setting
while still maintaining the practical bene�ts of o�ine payments. In this paper, we initiate the formal study
of o�ine digital payments and propose a system that provides the basic functionalities for o�ine payments
assuming secure hardware cannot be compromised. In subsequent work, we will explore extended tech-
niques for o�ine payments to alleviate the above challenges by addressing economic incentives, graceful
degradation, and funds recovery.

1.1 Our Contribution

In this paper, we initiate the study of o�ine digital payments by de�ning the notion of an o�ine payment
system (OPS) that allows a user (e.g., a customer) to make digital payments in CBDCs to another user (e.g.,
a merchant) while both users are temporarily o�ine from payment intermediaries (or even the Internet).
We then construct the �rst OPS protocol that allows point-to-point authorization of o�ine payments using
open source technology and public key infrastructure to signi�cantly reduce the overhead of onboarding
new participants compared to existing digital payment systems. Once provisioned, OPS wallets can se-
curely sign and transmit transaction messages directly with each other over any communication channel

4

they prefer without requiring an intermediary to authorize and settle it. Recipients can submit signed, of-
�ine payment messages to an authorized wallet provider with guaranteed settlement of those transactions
in order to withdraw funds from the o�ine payment system.

1.2 Overview of Our Solution

Consider two clients A and B who hold online accounts with a server S. We assume an account maintains
information about the amount of money (aka, balance) that the client holds at S. We assume that the server
is a digital wallet provider that has already obtained a digital certi�cate from the central bank through the
hierarchical trust infrastructure for CBDC, as described in Section 1. This certi�cate can be used to attest
to the clients that S is a trusted entity. In the rest of this paper, we describe the o�ine payment protocol
that happens between the clients and the trusted server.

We assume a client’s account maintains information about the amount of money (aka, balance) that the
client holds at S. The goal of our OPS protocol is to allow client A (aka, the sender) to pay client B (aka, the
receiver) an amount of money denoted by 𝑥 from A’s account with S without either client communicating
with S during the payment. We assume A (or any other client who wishes to send money) owns a secure
deviceDA that can securely store data and execute code via a trusted execution environment (TEE). However,
we do not require B (or any other client who only wants to receive money) to own a secure device. In the
following, we �rst describe our TEE model and the main components of our protocol. Next, we brie�y
describe the main OPS protocols to set up the clients and perform o�ine payments.

TEE Model. A TEE is a software stack stored on a read-only memory within a secure device. This soft-
ware stack should adhere to privacy, security, and high software development standards which are already
adopted by most secure devices today. The stack consists of a set of resources to access the secure device,
a trusted operating system (TOS) that provides developer access to the underlying secure device, and one or
more trusted applications (TA) that implement application-speci�c functionalities to be executed securely
by the TEE (see Figure 4).

Untrusted Applications. Every client (with or without TEE) has an application-speci�c untrusted ap-
plication (UA) that resides in the “untrusted” region of the device and thus could be malicious. A benign
UA provides user-facing functionalities to receive, verify, and store payments on the device as well as to
submit the payments to the server whenever the client goes online. In case of a TEE-enabled client, the UA
also interacts with the TA to provide wallet operations to the user, such as creating new o�ine payments,
adding/collecting received payments into the secure wallet, etc. (see Section 2.3 for more details).

OPS Components. Our OPS consists of the following four main components:

• OPS Server TA: Deployed on the server and provides the functionalities to register and set up client
devices and manage client accounts.

• OPS Sender UA: Deployed on sender’s device and provides the OPS user interface to create o�ine
payments by interacting with the OPS TA, and to interact with the server to register the UA and the
TEE.

• OPS Receiver UA:Deployed on the receiver’s device and provides the OPS user interface to receive and
verify o�ine payments, and to interact with S to register the UA and claim o�ine payments. This UA
does not interact with any TEE. If the receiver is also wishing to receive money from another client,
then she needs to deploy the OPS Receiver UA on her device.

• OPS TA: Deployed on the sender’s secure device (within TEE) and provides OPS-speci�c functional-
ities to securely access the secure device and manage the client’s o�ine balance. We denote the TA
deployed on client A’s device by TA.

5

Setup Protocol. Our OPS protocol requires both clients to register with S during a one-time, online setup
to establish asymmetric cryptographic keys that are later used to issue and verify o�ine payments. The
online setup also allows A to initialize her TEE jointly by S andDA’s manufacturer. The TEE setup consists
of three phases: (1) Remote attestation to allow either the manufacturer or S to remotely verify the validity
of the TEE stack; (2) TA provisioning to allow either the manufacturer or S to securely deploy a TA inside
TEE; and (3) TA registration to allow the TA to establish a signing key pair, register it with S, and obtain a
certi�cate attesting to the validity of the key pair. See Section 3.1 for the complete description of the setup
protocol.

Deposit Protocol. Client A needs to initially deposit funds into her secure device when she is online to
be able to send o�ine payments later. Namely, A requests server S to deposit an amount of 𝑥 money from
her online balance stored at S into her o�ine balance stored in TA. The server responds with a signature
on showing that 𝑥 was deducted from A’s online balance. The client TA veri�es the signature with the
server’s public veri�cation key and adds 𝑥 to the o�ine balance stored in TA. See Section 3.4 for details.

O�line Payment Protocol. An o�ine payment is initiated by the receiver B who sends a payment re-
quest to A, including B’s certi�cate in the request. Upon receiving the request, A invokes TA.Pay to se-
curely deduct the payment amount from TA’s balance and create a signed payment message 𝑃 containing
the payment amount and the certi�cates of both clients. A sends 𝑃 to B who veri�es A’s signature and her
certi�cate, and checks that the payment containsB’s certi�cate as the recipient. If all checks pass, B accepts
the payment and stores 𝑃 on his device. Note that by deducting the payment amount from A’s balance
(which is stored on the TEE storage), the TEE prevents double spending of that amount. See Section 3.5
for details.

Claim Protocol. If B wants to add the amount of 𝑃 that he received o�ine from A to his online balance
stored at S, he can invoke the Claim protocol in which S veri�es the validity of 𝑃 and checks if it was not
previously marked as spent using a payment log stored by S. If all checks pass, S adds the amount of 𝑃 to
B’s online balance and adds 𝑃 to the log. See Section 3.6 for details.

Collect Protocol. Imagine that B also has a secure device with TB set up similar to what was described
before. IfBwishes tomake an o�ine payment out of themoney he previously received in 𝑃 fromAwithout
going online, then he can invoke the Collect protocol to add the money in 𝑃 into TB’s balance. This allows
B to spend the funds o�ine in exactly the same way A made the o�ine payment 𝑃 . See Section 3.6 for
details.

Withdraw Protocol. If A wishes to move funds from TA to her online balance stored at S, then she can
invoke the Withdraw protocol which invokes TA.Withdraw to deduct the funds from TA and return a
message signed with TA’s signing key. The client then forwards the signed withdraw message to S who
adds the fund to A’s online balance after verifying the signature. See Section 3.4 for details.

Replay/Rollback Protection. To protect against malicious intermediaries (such as a malicious UA) re-
play the messages exchanged between S and TA as well as between A and B, each party maintains
monotonically-increasing counters that are incremented after every round of communication between
a pair of parties. Both S and TA (as well as A and B) include the latest value of their counter in their signed
messages so that the receiver can verify the uniqueness and ordering of all messages according to their
local counter which is synchronized after every exchange.

6

2 Our Model

Consider a group of clients A,B,C, ... who can communicate with each other by exchanging messages
through a communication network. We assume that a secure communication infrastructure is in place,
that is, all parties may interact and send messages to each other in a secure way. In particular, this means
that when a party communicates with another, the receiver of the communication will be able to ascertain
the authenticity and validity of said communication.

Every client, say A, is associated with a non-negative numeric value known as its wallet balance (or
simply balance) balA indicating the amount of money possessed by A. A payment is represented in the
form 𝑃 : A

𝑥−→ B indicating a transfer of 𝑥 amount of money from client A (aka, the sender) to client B
(aka, the receiver). A payment protocol is a protocol that processes a payment 𝑃 : A

𝑥−→ B by updating the
clients’ balances correspondingly, i.e., balA = balA − 𝑥 and balB = balB + 𝑥 . A payment is called authentic
if and only if the sender’s balance at the time of payment is greater than or equal to 𝑥 . A payment system
PS consists of a network of clients who can verify the authenticity of any payment within PS through a
designated authority, referred to as server S.

2.1 Problem De�nition

An o�ine payment system (denoted by OPS) is a payment system that enables any pair of clients to pay
each other while both are o�ine from S. More precisely, any client A is associated with an online balance
onBalA and an o�ine balance o�BalA. Given a payment 𝑃 : A

𝑥−→ B, an online payment is a protocol that
ensures onBalA = onBalA − 𝑥 and onBalB = onBalB + 𝑥 . Given a payment 𝑃 : A

𝑥−→ B, an o�ine payment
is a protocol that ensures o�BalA = o�BalA − 𝑥 and o�BalB = o�BalB + 𝑥 . The following properties are
enabled by OPS:

• O�line Veri�ability: The receiver must be able to independently verify the authenticity of any
payment without communicating with the server during the payment.

• Absolute Finality: Once a payment is complete, the receiver must be instantly guaranteed to own
the transferred funds.

• Online Redeemability: A client A must be able to convert any amount 𝑦 ≤ o�BalA from their
o�ine balance into their online balance, i.e., o�BalA = o�BalA − 𝑦 and onBalA = onBalA + 𝑦 are
executed atomically, and vice versa.

• O�line Transitivity: After receiving an o�ine payment, the receiver must be able to spend the
payment amount (or a portion of it) in the same o�ine session, i.e., without requiring to go online
to redeem the payment amount and then spend it.

• Security: OPS is secure if it has the following properties:

– No Double Spending: No malicious client (or a coalition of them) can spend the same money
more than once.

– Wallet Security: No malicious client (or a coalition of them) can spend/remove money from an
honest client’s wallet without her permission.

– Supply Conservation: The total supply of money in the system always stays the same, i.e., a
client can only add/remove money to/from the system via the deposit/withdraw functionalities
provided by the server.

7

If client A wishes to spend her money o�ine, then she must have a TEE-enabled secure device DA to
store her o�ine balance o�BalA securely. The balance can only be modi�ed by theOPS trusted application
TA stored in DA. The authenticity of such modi�cations are enabled via digital signatures generated by TA
using a secret key skA stored securely inside DA. If the client does not want to spend money o�ine, then
she does not require any secure device.

2.2 Threat Model

We assume all parties communicate with each other via secure and authenticated communication chan-
nels. We consider a probabilistic, polynomial-time adversary who can corrupt any client in order to (1)
prevent the protocol from achieving its de�ned properties; and (2) counterfeit money, for example, by
double-spending the client’s money or forging new money. A corrupt client may do so by arbitrarily tam-
pering with and/or blocking messages exchanged between the server and the client’s TEE. We assume that
uncorrupt clients employ standard authenticationmechanisms such as password and biometrics to prevent
unauthorized access to their device in order to spend and/or erase their money without their approval. We
�nally assume that the server is fully trusted.

2.3 TEE Model

A TEE is an isolated execution environment with its own protected hardware resources (e.g., processor
memory, and peripherals) as well as a software stack consisting of an operating system and trusted pro-
grams, known as trusted applications (TAs), to access the TEE hardware resources securely [16,17]. The iso-
lation provides strong integrity and con�dentiality guarantees, where integrity ensures that unauthorized
users cannot change the code of a TA or its behavior, while con�dentiality guarantees that unauthorized
access to private TA data is prohibited. The trusted OS provides API access for external programs, known
as untrusted applications (UAs), to call and execute public TA functions within the TEE while restricting
external access to the rest of the TEE.

In practice, there are di�erent TEE architectures depending on the platform they run and the hardware
that provides the isolation. In this paper, we target o�ine payments for mobile devices; therefore, we
adopt GlobalPlatform (GP) [18], a standardized TEE model adopted by ARM TrustZone technology [19,20]
which itself is used in most Android smartphones today. As shown in Figure 1, the GP model provides a
standardized API for UAs in the non-secure world (aka, the rich execution environment – REE) to interact
with the isolated TAs via the trusted OS. We now describe GP’s secure storage model that allows us to
protect against OPS TA state rollback.

TEE Replay/Rollback Protection. Throughput this paper, we assume that the OPS TA has access to
a secure storage to store its state, ensuring that the state cannot be rolled back by the adversary. The
GP speci�cation mandates the possibility to store general-purpose data and key material within a TEE
with integrity, con�dentiality, and atomicity1 guarantees [21]. Typically, a replay-protected memory block
(RPMB) partition2 on an eMMC storage (e.g., the phone’s persistent storage) is used to store TA’s data
securely [22, 23]. Any data written on the RPMB is protected against man-in-the-middle replay/rollback
attacks using amonotonically-increasing counter (MIC) maintained by a dedicated hardware, known as the
RPMB engine. The engine increments the MIC after every write to the RPMB and uses message authen-
tication codes (MACs) to verify the validity of the write command by checking that (1) the counter was
increased, and (2) the MAC that was sent by the sender (e.g., the TA) is identical to the MAC that the
RPMB engine generated using its latest value of MIC. Finally, every read from RPMB is MAC-checked by

1 Atomicity means that either the entire write operation completes successfully or no write is done.
2 The RPMB partition is typically 4 MB in size [22].

8

Untrusted
App

Untrusted
App

Untrusted
App

Trusted
App

Trusted
App

Trusted
App

Embedded OS Trusted OS

Protected Hardware
Resources

Rich Execution Environment

Untrusted World

Trusted Execution Environment

Trusted World

Hardware

Figure 1: Our TEE Model

the reader (e.g., the TA) using the latest value of MIC maintained by the reader. For more details, we refer
the reader to [22]. The GP speci�cation also allows a secure storage to be implemented on the REE (i.e.,
non-secure) �le system as long as suitable cryptographic protection is applied, which must be as strong as
the means used to protect the TEE code and data itself [21].

3 The OPS Protocol

We now describe the OPS protocol explicitly. We break down the protocol to its components and explain
each thoroughly.

3.1 Client Setup

Every client (TEE-enabled or not) needs to participate in a one-time setup protocol to register her device
with the server (i.e., establish cryptographic keys and certi�cates) and to initialize her device’s TEE stack
in case of a TEE-enabled device. To register with the server, the client generates a local signing key pair
denoted by (vk, sk) and submits the veri�cation key to the server. In return, the server initializes the
client’s account information and returns a certi�cate denoted by cert to the client.

The certi�cate is essentially a signature by the server on the client’s veri�cation key so that the client
can later prove to other entities that her device is registeredwith the server. The server maintains a registry
(denoted by S.Registry) of all registered clients. When a new client registers herself with the server, the
veri�cation key of the client is added to this registry. This allows the server to keep track of registered
clients in the future to catch duplicate and bogus users. The server also stores the online balance (denoted
by onBal) of each registered client. When a new client registers herself with the server, the server initializes
an online balance of 0 for the client. The formal description of this protocol is presented in Figure 2.

9

Variable Description Scope

S.Registry Server S’s registry of valid UA certi�cates S

S.onBalA Client A’s online balance stored at S S

S.iA Client A’s index maintained by S S

DA Client A’s secure device/hardware A

TA Client A’s trusted application deployed on DA A

(skS, vkS) Server S’s signing key pair (S, Global)

(skA, vkA) Client A’s signing key pair (A, Global)

(TA .sk, TA .vk) TA’s signing key pair (TA, Global)

certA Certi�cate for client A consisting of vkA and a signature on it by S certify-
ing that vkA was issued by S

Global

TA .cert Certi�cate for TA consisting of TA .vk and a signature on it by S certifying
that TA .vk was issued by S

Global

TA .i Client A’s server index maintained by TA TA

TA .j Client A’s payment index maintained by TA TA

TA .bal Client’s A’s o�ine balance TA

TA .inPaymentLog List of o�ine payments received by TA A, TA, S

𝑃 .amount Amount money transferred by payment 𝑃 Holder of 𝑃

𝑃 .sender Certi�cate of the sender of payment 𝑃 Holder of 𝑃

𝑃 .receiver Certi�cate of the receiver of payment 𝑃 Holder of 𝑃

𝑃 .index Index of payment 𝑃 Holder of 𝑃

𝑃 .time Time when payment 𝑃 was created Holder of 𝑃

𝑃 .type Type of payment 𝑃 (“Basic” or “Conditional”) Holder of 𝑃

Function Description Scope

H(𝑥) Outputs a cryptographic hash of 𝑥 Global

Sign(𝑥, sk) Outputs a signature of 𝑥 signed with signing key sk Global

SigVerify(𝑥, 𝜎, vk) Outputs 1 i� signature 𝜎 over 𝑥 using veri�cation key vk is valid Global

CertVerify(cert, vkS) Outputs 1 i� SigVerify(cert.vk, cert.sig, vkS)
?
= 1 Global

TACertVerify(cert, vkS) Outputs 1 i� SigVerify([cert.vk, “TA”], cert.sig, vkS)
?
= 1 Global

OEMVerify(vk, cert, vkD) Outputs 1 i� SigVerify([vk, “Secure Device”‖M], cert, vkD)
?
= 1 Global

TA .Deposit(𝑥, ...) Deposits 𝑥 amount of money into client A’s secure hardware TA TA

TA .Withdraw(𝑥, ...) Withdraws 𝑥 amount of money from client A’s secure hardware TA TA

TA .Pay(𝑥, ...) Debits 𝑥 amount of money from TA and outputs a payment 𝑃 TA

TA .Collect(𝑃) Credits a payment 𝑃 into TA’s balance TA

Table 1: Protocol Notations

10

Client Registration Protocol

Client A requests server S create an account for her.

1. A sends [RegisterClient, vkA] to S, where (vkA, skA) ← KeyGen(1𝜆).

2. Upon receiving [RegisterClient, vkA], S performs the following steps:

(a) Abort if (vkA, ·) ∈ S.Registry;
(b) Add (vkA,⊥) to S.Registry;
(c) S.onBalA ← 0;
(d) Create certA such that certA.vk← vkA and certA.sig← Sign(vkA, skS);
(e) Send certA to A.

Figure 2: Client Registration Protocol

We now describe how a TEE-enabled client can set up its TEE (according to the GP speci�cation) using
remote attestation and TA provisioning.

TEE Remote Attestation. The �rst step to set up a TEE is to obtain an attestation from the original
equipment manufacturer (OEM) of the TEE to convince any veri�er that the TEE hardware and the trusted
OS are authentic. At a high-level, this is ensured by a read-onlymemory (ROM), and a device speci�c device
key-pair (D.vk,D.sk). Both the ROM and the device keys are embedded into the hardware by the OEM. The
trusted OS provides a signature (using D.sk from the ROM) on the TEE binaries using a method we denote
𝑇𝑂𝑆.𝐴𝑡𝑡𝑒𝑠𝑡 along with D.vk to the remote party who forwards them to the OEM for veri�cation. Since
OEM knows the contents of the TEE stack, it can verify the signature, and hence attest to the authenticity
of the TEE using a method we denote OEMVerify.

OPSTAProvisioning. Once the TEE is authenticated via remote attestation, the veri�er needs to ensure
that the OPS TA program (as shown on Figure 4) is provisioned (i.e., deployed) properly inside the TEE.
This can be done via either local or remote provisioning [18]. In local provisioning, the OEM ships TA
binaries on the device as part of the TEE software stack. In remote provisioning, a trusted party (e.g.,
Trustonic [24]) deploys the TA to the TEE remotely after the TEE has been authenticated via the remote
attestation process. This is done by �rst establishing a secure channel with the TEE using the device’s
veri�cation key, and then transmitting the TA binaries to the TEE over the secure channel. To ensure the
TA is deployed properly, the TEE signs a hash of the binary with D.sk and returns the signature to the
trusted party for veri�cation.

3.2 OPS TA Registration

After registering with the server, TEE-enabled clients will need to perform two key steps in order to ini-
tialize their TEE. First, their TEE must be authenticated by means of (remote) attestation. Next, the OPS
TA (as shown in Figure 4) must be provisioned within their TEE. After the TEE is validated and the OPS
TA is setup via provisioning phase, the client’s device and the OPS TA instance need to be registered with
the server. To do this, the OPS TA �rst generates a signing key pair denoted (T.vk, T.sk), and returns to
the client’s device the veri�cation key as well as the remote attestation. This process is described by the
method Init described in the OPS TA program in Figure 4.

Next, the client transmits the TA’s veri�cation key and the attestation, along with its own device in-
formation to the server. The server, after verifying the attestation (using OEMVerify), certi�es the key

11

by signing it with the server’s secret key and returning it to the device. The signed veri�cation key is a
certi�cate showing that the OPS TA key is generated by a genuine TEE and is registered with the server.
Whenever this device makes a payment, it transmits the certi�cate along with other payment informa-
tion, so that the receiver can independently verify the validity of the payment using the server’s public
(veri�cation) key.

The certi�cate is also required to “activate” the client’s TEE for o�ine payments. That is, only after
receiving the certi�cate from the server ascertaining that it has been registered with the server will the
OPS TA in the TEE perform any of its functions (other than Init). This check is performed by the method
CertInit described in the OPS TA program (Figure 4). Speci�cally, initializing the variable T.cert by the
method CertInit in the OPS TA is necessary for the invocation of other methods.

The server initializes a counter (denoted by i) for each OPS client. The OPS TA also maintains an in-
ternal variable denoted by T.i. Our protocol ensures that the two counters are “in sync” with one another.
While the value of the counter would denote the number of deposits or withdrawals that have been per-
formed by the client, the role of this counter is to distinguish various deposits (converting online funds to
o�ine funds) and withdrawals (converting o�ine funds to online funds) and protect against replay attacks
(e.g., replaying a deposit would allow a client to create o�ine funds out of thin air). This will be explained
in further detail in Section 3.4.

The server makes use of its registry to ensure that the client has registered herself before the deposit
step. The server also uses the registry to tag the TEE being registered along with the client who is regis-
tering it, by storing the pair (vk, T.vk) in its registry. The formal description of this protocol is presented
in Figure 3.

TA Registration Protocol

Client A requests server S to register the instance of the OPS TA, denoted by TA, on her device DA. After the
secure boot sets TEE, the following protocol is executed between A and S.

1. A obtains (TA.vk, 𝜎) ← TA.Init() and sends [TARegister,DA.vk, TA.vk, vkA, 𝜎] to S.

2. Upon receiving [TARegister,DA .vk, TA.vk, vkA, 𝜎] from A, server S does the following steps:

(a) Abort if any of the following conditions is true:
• (vkA,⊥) ∉ S.Registry;
• OEMVerify(TA.vk, 𝜎,DA.vk) ≠ 1;

(b) iA ← 0;
(c) Create a certi�cate cert such that

cert.vk← TA.vk;
cert.sig← Sign([TA .vk, “TA”], skS).

(d) Send [cert] to A;
(e) Replace (vkA,⊥) with (vkA, cert.vk) in S.Registry.

3. Upon receiving [cert] from S, client A invokes TA.CertInit(cert).

Figure 3: TA Registration Protocol

3.3 OPS TA Program

In Figure 4, we present the methods provided by our OPS TA to the TEE-enabled client devices. We �rst
brie�y describe them. Note that the workings and the roles of the methods Init and CertInit have
already been discussed in Sections 3.1 and 3.2.

12

• Init: Initializes the OPS TA, generates a key-pair along with attestation; this is the �rst method
that must be invoked.

• CertInit: Processes certi�cate from the server; this is the second method that must be invoked,
after which, other methods can be executed.

• Deposit: Converts online funds into o�ine funds, increases the o�ine balance.

• Withdraw: Converts o�ine funds into online funds, decreases the o�ine balance.

• Pay: Creates an o�ine payment object.

• Collect: Veri�es an o�ine payment and applies it to the o�ine balance by increasing it with the
payment amount.

• Get-Balance: Returns the current o�ine balance stored inside the TEE storage.

After registering herself with the server and provisioning the OPS TA on her TEE, the client invokes
the Init method of the OPS TA. Using the results from the OPS TA, the client can then register her TEE
with S, obtain the certi�cate from S, and invoke the CertInitmethod of the OPS TA. Now, the client can:

• Convert some/all of her online funds into o�ine funds in her OPS TA (by invoking the deposit
protocol described in Section 3.4 which will involve invoking the Deposit method of the OPS TA);

• Use o�ine funds to make o�ine payments (by invoking the o�ine payment protocol described
Section 3.5 which will involve invoking the Pay method of the OPS TA);

• Verify o�ine payments made to her either o�ine with her OPS TA (by invoking the collect protocol
described Section 3.6 which will involve invoking the Collect method of the OPS TA) or online
with the server (by invoking the claim protocol described Section 3.6);

• Convert some/all of her o�ine funds into online funds (by invoking the withdraw protocol described
Section 3.4 which will involve invoking the Withdraw method of the OPS TA).

With the overall �ow of operations in mind, we now describe the OPS TA program in more detail. The
OPS TA maintains some variables whose functions are as follows:

• (T.vk, T.sk) is the singing key-pair used to authenticate outputs of the OPS TA.

• T.bal is the o�ine balance that is maintained within the OPS TA.

• T.cert is the certi�cate issued by the server on registering the TEE. This certi�cate allows the OPS
TA to be convinced that the TEE has been registered with the server. It is also used by the OPS
TA when it generates o�ine payments to identify itself as an authentic registered sender of o�ine
funds.

• T.inPaymentLog is the log of o�ine payments received from other users. It is used to protect a client
from a malicious sender who may be replaying a previous payment in an attempt to double-spend.

• T.i is a counter for deposits and withdrawals. The role and workings of this counter were alluded to
brie�y in Section 3. Recall that the server also maintains a copy of this counter and the two copies
are kept in sync with one another. It is used to prevent replay attacks in the context of deposits and
withdrawals. Further details are described in Section 3.4.

13

• T.j is a counter for payments. It is used to make every payment unique. This (in conjunction with
the payment log inPaymentLog) prevents a client from replaying a previous payment in an attempt
to double-spend.

We now describe in detail the various sub-protocols that are involved in our OPS protocol.

3.4 Deposit and Withdraw Protocols

In the deposit protocol presented in Figure 5, the client converts some/all of her online funds into o�ine
funds. That is, the client deducts some amount from her online balance, as maintained by the server, and
deposits the amount to her o�ine balance which is maintained by the OPS TA within her device. The
withdraw protocol presented in Figure 6 works in the opposite direction converting o�ine funds into
online funds. That is, the client withdraws some amount from her o�ine balance and transfers it to the
server to add the amount to her online balance.

The deposit protocol works as follows. The client wishing to deposit an amount 𝑥 of online funds
into her o�ine balance, sends the request [Deposit, 𝑥] to the server. The server on identifying the client3
checks that the client has su�cient (greater than 𝑥) online funds. If so, the server deducts an amount of
𝑥 from the clients online balance and generates a deposit con�rmation that contains the amount 𝑥 . Aside
from the amount, the con�rmation contains two other key pieces of information. The �rst is the counter
i for deposits and withdrawals, and the second is a signature 𝜎 by the server on T.vk, 𝑥 and i. We will
describe the need for each of these ahead. On receiving the deposit con�rmation, the client can invoke the
Depositmethod of the OPS TA with the con�rmation. The method checks that the its local copy T.i is “in
sync” with that of the server (technically, they would be o� by 1 at this stage, but equal to each other once
Deposit completes) and that the signature is valid. If so, it increments the o�ine balance by 𝑥 and syncs
up T.i.

We now describe the role of i and 𝜎 . The counter i is used to uniquely identify deposits and with-
drawals and thus prevent a client using a particular deposit con�rmation more than once. In particular, if
a client attempts to invoke the method Deposit using a particular deposit con�rmation more than once,
the counter i would be out of sync with that of the server that is present in the con�rmation itself. But
what if the client attempts to spoof the value of i in the deposit con�rmation in order to make it seem as
though it is in sync? This is prevented by the signature 𝜎 .

Concretely, the presence of 𝜎 authenticates the con�rmation sent by the server. It is not possible for
the client to modify the particulars of the con�rmation (the TEE, the amount or i) without resulting in an
invalid signature in the con�rmation. By signing on T.vk, deposit con�rmations can only be processed by
one single (intended) client TEE. By signing on 𝑥 , the TEE is convinced of the authenticity of the deposit
amount. By signing on i, as explained before, a deposit con�rmation cannot be replayed in an attempt to
generate o�ine funds out of thin air. The formal description of this protocol is presented in Figure 5.

3The explicit reference to these details has been omitted in the presentation in Figure 5. This would involve the client identi-
fying themselves for instance using the certi�cate or veri�cation key which the server could check for in its registry. The server
would also need to determine if the client has registered her TEE which would be necessary in order to deposit online funds
o�ine. The client would have to explicitly identify their TEE which the server could then check for in its registry.

14

OPS Trusted Application

Init():

1. (T.vk, T.sk) ← KeyGen(1𝜆); T.bal← 0; T.cert = ⊥; T.inPaymentLog← ⊥; T.i← 0; T.j← 0;
2. 𝜎 ← 𝑇𝑂𝑆.𝐴𝑡𝑡𝑒𝑠𝑡 (T.vk)
3. Output (T.vk, 𝜎).

CertInit(cert):
1. Abort if TACertVerify(cert, T.vkS) ≠ 1.
2. T.cert← cert.

Deposit(𝑥, i, 𝜎S):

1. Abort if T.cert = ⊥ or i ≠ T.i + 1 or SignVerify([T.vk, 𝑥, i], 𝜎S, vkS) ≠ 1;
2. T.bal← T.bal + 𝑥 ;
3. T.i← T.i + 1.

Withdraw(𝑥):
1. Abort if T.cert = ⊥ or 𝑥 > T.bal;
2. T.bal = T.bal − 𝑥 ;
3. T.i = T.i + 1;
4. Output [𝑥, T.i, 𝜎], where 𝜎 = Sign([𝑥, T.i], T.sk).

Pay(𝑥, receiver):

1. Abort if T.cert = ⊥ or T.bal < 𝑥 ;
2. T.bal← T.bal − 𝑥 ;
3. T.j← T.j + 1;
4. 𝑃 .amount← 𝑥 ; 𝑃 .sender← T.cert; 𝑃 .receiver← receiver; 𝑃 .index← T.j;
5. Output 𝑃 , where 𝑃 .sig← Sign([𝑃 .amount, 𝑃 .sender, 𝑃 .receiver, 𝑃 .index], T.sk).

Collect(𝑃):
1. Abort if T.cert = ⊥ or PayVerify(𝑃) ≠ 1 or 𝑃 .receiver ≠ T.cert or 𝑃 ∈ T.inPaymentLog;
2. T.bal← T.bal + 𝑃 .amount;
3. Append 𝑃 to T.inPaymentLog.

Get-Balance():
1. Abort if T.cert = ⊥;
2. Output [T.bal, T.i, 𝜎], where 𝜎 = Sign([T.bal, T.i], T.sk).

Figure 4: OPS Trusted Application

15

Deposit Protocol

Client A requests server S to deposit an amount of 𝑥 money from her online balance stored at S into her o�ine
balance stored in TA.

1. A sends [Deposit, 𝑥] to S.

2. Upon receiving [Deposit, 𝑥] from A, server S does the following steps:

(a) Abort if 𝑥 > S.onBalA;
(b) S.onBalA ← S.onBalA − 𝑥 ;
(c) S.iA ← S.iA + 1;
(d) Send [DepositCon�rmed, 𝑥, S.iA, 𝜎] to A, where 𝜎 ← Sign([TA.vk, 𝑥, S.iA], S.skS).

3. Upon receiving [DepositCon�rmed, 𝑥, i, 𝜎] from S, client A invokes T.Deposit(𝑥, i, 𝜎).

Figure 5: Deposit Protocol (Online→ O�ine)

The withdraw protocol works in exactly the same way as the deposit protocol, only in reverse. The
client wishing to withdraw an amount 𝑥 of o�ine funds into her online balance, invokes the Withdraw
method of the OPS TA with the amount 𝑥 . The OPS TA checks that the client has su�cient (greater than
𝑥) o�ine funds. If so, the OPS TA deducts an amount of 𝑥 from the clients o�ine balance and generates a
withdraw con�rmation that contains the amount 𝑥 . As in the case of the deposit protocol, the withdraw
con�rmation also contains the counter i and a signature 𝜎 by the OPS TA on 𝑥 and i. We will describe the
need for each of these ahead.

The client on receiving the withdraw con�rmation, sends the request [Withdraw, 𝑥, i, 𝜎] to the server.
The server on identifying the client checks that the its local copy S.i is “in sync” with that of the OPS
TA and that the signature is valid. If so, it increments the online balance by 𝑥 and syncs up S.i. The
counter i prevents a client using a particular withdraw con�rmation more than once. The presence of 𝜎
authenticates the con�rmation sent by the OPS TA. It is not possible for the client to modify the particulars
of the con�rmation (the amount or i) without resulting in an invalid signature in the con�rmation. By
signing on 𝑥 , the TEE is convinced of the authenticity of the deposit amount. By signing on i, as explained
before, a withdraw con�rmation cannot be replayed in an attempt to generate online funds out of thin air.
The formal description of this protocol is presented in Figure 6.

Withdraw Protocol

Client A requests server S to withdraw an amount of 𝑥 money from her o�ine balance maintained by TA into
her online balance maintained by S.

1. Client A sends [Withdraw, 𝑥, i, 𝜎] to S, where [𝑥, i, 𝜎] ← TA.Withdraw(𝑥).

2. Upon receiving [Withdraw, 𝑥, i, 𝜎] from A, server S performs the following steps:

(a) Abort if i ≠ S.iA + 1 or SigVerify([𝑥, i], 𝜎, TA.vk) ≠ 1;
(b) S.onBalA ← S.onBalA + 𝑥 ;
(c) S.iA ← S.iA + 1;
(d) Send [WithdrawCon�rmed] to A;

Figure 6: Withdraw Protocol (O�ine→ Online)

16

3.5 O�line Payment Protocol

In the o�ine payment protocol presented in Figure 7, a client makes an o�ine payment to an-
other client in the following way. First, the receiver of the payment sends a payment request
[RequestPayment, 𝑥, receiver] to the sender of the payment. The payment request contains the payment
amount as well as the certi�cate of the receiver (denoted by receiver). Upon receiving a payment request,
the sender invokes the method Pay of the OPS TA using 𝑥 and receiver. The OPS TA checks that the sender
has su�cient (greater than 𝑥) o�ine funds. If so, the OPS TA deducts an amount of 𝑥 from the clients of-
�ine balance and generates a payment con�rmation that contains the amount 𝑥 . Aside from the amount
𝑥 , the payment con�rmation also contains the certi�cates of the sender (recall, T.cert) and the receiver
(recall, receiver), the payment counter j and a signature 𝜎 by the OPS TA on all of these particulars.

On receiving the payment con�rmation, the receiver checks that the payment is valid using PayVerify
which veri�es the certi�cates and 𝜎 . In addition, the receiver checks that the payment was intended for her
(i.e., matches the receiver) and that it is a fresh payment, i.e., the receiver can maintain a log inPaymentLog
of payments she has received, much like the OPS TA does, in order to prevent malicious senders from re-
playing payments in an attempt to double-spend. If all checks pass, the receiver is convinced of receiving
the payment – at this point, the receiver is ensured to obtain the payment funds. The receiver adds this
payment to her log of payments and sends a con�rmation message [ReceivedPayment] to S. This com-
pletes the portion of the protocol that involves the sender making an o�ine payment.

In order to obtain the payment funds, the receiver must either invoke the Collectmethod of the OPS
TA, or she is not a TEE-enabled client, she may engage in the claim protocol. Further details regarding this
are described in Section 3.6. It is to be noted that o�ine payments made to TEEs must be collected and not
claimed, while payments made to clients must be claimed and not collected. We now describe the need for
the various particulars of the payment con�rmation. The presence of the sender and receiver certi�cates
in the payment con�rmation convince the receiver that the payment is coming from a registered sender
and that the payment has indeed been made to herself. The counter j prevents a client using a particular
payment con�rmation more than once. Notice that the Pay method of the OPS TA increments j. Thus,
every payment con�rmation generated by a given TEE is unique (at the bare minimum, the value of j
would di�er between them).

The payment con�rmation also contains the sender certi�cate, this also means that every payment
con�rmation every generated is unique (either the sender certi�cate would di�er, and if not, jwould). The
presence of 𝜎 authenticates the con�rmation sent by the OPS TA. It is not possible for the client to modify
the particulars of the con�rmation (the amount, sender and receiver certi�cates or j) without resulting in
an invalid signature in the con�rmation. By signing on 𝑥 and the certi�cates of the sender and the receiver,
the authenticity of the payment amount and parties involved in the payment is guaranteed. By signing on
j, as explained before, a payment con�rmation cannot be replayed in an attempt to double-spend o�ine
funds. The formal description of this protocol is presented in Figure 7.

17

O�line Payment Protocol

Client B requests client A to send B a payment 𝑃 : A
𝑥−→ B transferring 𝑥 amount of money from A to B while

both clients are o�ine from S.

1. Client B sets receiver← TB .cert if TB ≠ ⊥. Otherwise, receiver← certB.
He then sends [RequestPayment, 𝑥, receiver] to A.

2. Upon receiving [RequestPayment, 𝑥, receiver] from B, client A sends 𝑃 ← TA.Pay(𝑥, receiver) to B.

3. Upon receiving 𝑃 from A, client B performs the following steps:

(a) Abort if any of the following conditions is true:
• PayVerify(𝑃) ≠ 1,
• 𝑃 .receiver ≠ receiver, or
• 𝑃 ∈ B.inPaymentLog;

(b) B adds 𝑃 to B.inPaymentLog and sends [ReceivedPayment] to A;
(c) If 𝑃 .receiver.type = “TA”, then B calls TB.Collect(𝑃);
(d) Otherwise, B engages in the Claim protocol with S (Figure 9) as soon as B is online.

Figure 7: O�ine Payment Protocol

PayVerify(𝑃):

Return 1 if and only if all of the following conditions hold:

1. TACertVerify(𝑃 .sender) ?
= 1, and

2. SigVerify([𝑃 .amount, 𝑃 .sender, 𝑃 .receiver, 𝑃 .index], 𝑃 .sig, 𝑃 .sender.vk) ?
= 1.

Figure 8: Payment Veri�cation Method

3.6 Claim and Collect Protocols

Once a client has obtained a payment con�rmation, they can obtain the funds by either invoking the
Collectmethod of the OPS TA, or if she is not a TEE-enabled client, she may engage in the claim protocol
presented in Figure 9 as soon as she is online. As noted in Section 3.5, o�ine payments made to TEEs must
be collected and not claimed, while payments made to clients must be claimed and not collected. This is
to prevent a malicious client from collecting and claiming a single payment con�rmation in an attempt to
generate online or o�ine funds out of thin air. Thus, a single payment con�rmation may only be either
collected or claim, but not both. This means that it is su�cient to ensure that a single con�rmation cannot
be collected more than once, nor claimed more than once.

Collect Protocol. A client can collect a payment by invoking the Pay method of the OPS TA using
the payment con�rmation. The OPS TA checks that the payment is valid (performed using PayVerify
which veri�es the certi�cates and 𝜎), that it was intended for itself (matching receiver) and that it is a
fresh payment (the OPS TA maintains a log inPaymentLog of payments it has received in order to prevent
malicious senders from replaying payments in an attempt to double-spend; this means that a payment
cannot be collected more than once). If all checks pass, the OPS TA increments the o�ine balance by 𝑥

and adds this payment to its log of payments.

18

Claim Protocol. A client can claim a payment by engaging in the claim protocol as shown in Figure 9.
The client wishing to claim a payment 𝑃 sends the request [Claim, 𝑃] to Swho checks that the payment is
valid and that it is a fresh payment. To achieve this, Smaintains a log inPaymentLog of payments that have
been claimed, much like the OPS TA does, in order to prevent malicious clients from replaying payments
in an attempt to generate online funds out of thin air. This means that a payment cannot be claimed more
than once. If all checks pass, S increments the online balance by 𝑥 and adds this payment to its log of
payments. Finally, S sends a con�rmation message [ClaimCon�rmed] to the client.

Claim Protocol

Client B submits an o�ine payment 𝑃 that he received from A to server S to have the money credited into his
online balance stored at S.

1. B sends [Claim, 𝑃] to S.

2. Upon receiving [Claim, 𝑃] from B, server S performs the following steps:

(a) Abort if any of the following conditions is true:
• 𝑃 .receiver.type ≠ “UA”;
• PayVerify(𝑃) ≠ 1;
• 𝑃 ∈ S.paymentLog;

(b) S.onBal𝑃.receiver ← S.onBal𝑃.receiver + 𝑃 .amount;
(c) Add 𝑃 to S.paymentLog;
(d) Send [ClaimCon�rmed] to B.

Figure 9: Claim Protocol (O�ine→ Online)

References

[1] United States House of Representatives Committee on Financial Services: Task Force on Finan-
cial Technology. Inclusive banking during a pandemic: Using fedaccounts and digital tools
to improve delivery of stimulus payments. https://www.congress.gov/116/meeting/house/
110778/witnesses/HHRG-116-BA00-Wstate-GiancarloJ-20200611.pdf, June 2020. (Accessed
on 09/15/2020).

[2] European Parliament. Crypto-assets: Key developments,regulatory concerns and responses.
https://www.europarl.europa.eu/RegData/etudes/STUD/2020/648779/IPOL_STU(2020)
648779_EN.pdf, April 2020. (Accessed on 09/15/2020).

[3] G7 Working Group on Stablecoins. Investigating the impact of global stablecoins. https://www.
bis.org/cpmi/publ/d187.pdf, October 2019. (Accessed on 09/15/2020).

[4] Discussion paper - central bank digital currency: Opportunities, challenges and
design. https://bankofengland.co.uk/-/media/boe/files/paper/2020/
central-bank-digital-currency-opportunities-challenges-and-design.pdf, 03 2020.
(Accessed on 06/29/2020).

[5] Colm Fulton. Sweden starts testing world’s �rst central bank digital cur-
rency - reuters. https://reuters.com/article/us-cenbank-digital-sweden/
sweden-starts-testing-worlds-first-central-bank-digital-currency-idUSKBN20E26G,
02 2020. (Accessed on 06/29/2020).

19

[6] China aims to launch the world’s �rst o�cial digital currency | �nance & economics
| the economist. https://economist.com/finance-and-economics/2020/04/23/
china-aims-to-launch-the-worlds-first-official-digital-currency, 04 2020. (Ac-
cessed on 06/29/2020).

[7] Stephen S. Wu, Randy V. Sabett, Dr. Santosh Chokhani, Dr. Warwick S. Ford, and Charles (Chas) R.
Merrill. Internet X.509 Public Key Infrastructure Certi�cate Policy and Certi�cation Practices Frame-
work. RFC 3647, November 2003.

[8] The Fed - comparing means of payment: What role for a central bank digi-
tal currency? https://www.federalreserve.gov/econres/notes/feds-notes/
comparing-means-of-payment-what-role-for-a-central-bank-digital-currency-20200813.
htm, August 2020. (Accessed on 09/22/2020).

[9] Raphael Auer and Rainer Böhme. The technology of retail central bank digital currency. https:
//www.bis.org/publ/qtrpdf/r_qt2003j.pdf, March 2020. (Accessed on 09/22/2020).

[10] Payment and settlement systems report - Annex – Bank of Japan reports and research papers.
https://www.boj.or.jp/research/brp/psr/data/psrb200702.pdf, July 2020. (Accessed on
09/22/2020).

[11] Card acceptance guidelines for Visa merchants. https://usa.visa.com/dam/VCOM/download/
merchants/card-acceptance-guidelines-for-merchants.pdf, 2015. (Accessed on
06/30/2020).

[12] Mastercard transaction processing rules. https://mastercard.us/content/dam/mccom/global/
documents/transaction-processing-rules.pdf, 12 2019. (Accessed on 06/30/2020).

[13] Square Editorial Team. O�ine credit card processing - accept credit cards o�ine. https:
//squareup.com/us/en/townsquare/offline-credit-card-processing, 2020. (Accessed on
11/18/2020).

[14] Felix Wu. No easy answers in the �ght over iphone decryption. Commun. ACM, 59(9):20–22, August
2016.

[15] Sarah Allen, Srdjan Capkun, Ittay Eyal, Giulia Fanti, Bryan Ford, James Grimmelmann, Ari
Juels, Kari Kostiainen, Sarah Meiklejohn, Andrew Miller, Eswar Prasad, Karl Wüst, and Fan
Zhang. Design choices for central bank digital currency – policy and technical considerations.
https://www.brookings.edu/wp-content/uploads/2020/07/Design-Choices-for-CBDC_
Final-for-web.pdf, July 2020. (Accessed on 12/10/2020).

[16] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution environment: What it is, and what it
is not. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages (57–64), 2015.

[17] G. Arfaoui, S. Gharout, and J. Traoré. Trusted execution environments: A look under the hood. In
2014 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, pages
259–266, 2014.

[18] GlobalPlatform – the Trusted Execution Environment: Delivering enhanced security at a lower
cost to the mobile market. https://globalplatform.org/wp-content/uploads/2018/04/
GlobalPlatform_TEE_Whitepaper_2015.pdf, June 2015. (Accessed: 2020-06-21).

20

[19] ARM TrustZone. https://developer.arm.com/ip-products/security-ip/trustzone. (Ac-
cessed: 2020-06-21).

[20] Sandro Pinto and Nuno Santos. Demystifying ARM TrustZone: A comprehensive survey. ACM
Comput. Surv., 51(6), January 2019.

[21] GLOBALPLATFORM. GlobalPlatform: TEE internal API speci�cation". https://globalplatform.
org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_API_Specification_v1.1.2.
50_PublicReview.pdf.

[22] Einav Zilberstein and Adi Klein. Western digital whitepaper: e.MMC security methods.
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/
public/western-digital/collateral/white-paper/white-paper-emmc-security.pdf,
July 2017.

[23] Liang Cai. Guard your data with the Qualcomm Snapdragon mo-
bile platform. https://www.qualcomm.com/media/documents/files/
guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf, April 2019.

[24] Trustonic: World leading embedded cybersecurity & patented technology Trustonic. https://www.
trustonic.com/. (Accessed on 11/24/2020).

Disclaimers
Case studies, comparisons, statistics, research and recommendations are provided “AS IS” and intended for informational purposes
only and should not be relied upon for operational, marketing, legal, technical, tax, �nancial or other advice. Visa Inc. neither makes
any warranty or representation as to the completeness or accuracy of the information within this document, nor assumes any liability
or responsibility that may result from reliance on such information. The information contained herein is not intended as investment or
legal advice, and readers are encouraged to seek the advice of a competent professional where such advice is required. All trademarks
are the property of their respective owners, are used for identi�cation purposes only, and do not necessarily imply product endorsement
or a�liation with Visa.

21

	Introduction
	Our Contribution
	Overview of Our Solution

	Our Model
	Problem Definition
	Threat Model
	TEE Model

	The OPS Protocol
	Client Setup
	OPS TA Registration
	OPS TA Program
	Deposit and Withdraw Protocols
	Offline Payment Protocol
	Claim and Collect Protocols

