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Abstract

We propose a technique for achieving scalable blockchain consen-
sus by means of a “sample-and-fallback” game: split transactions up
into collations affecting small portions of the blockchain state, and re-
quire that in order for a collation of transactions to be valid, it must
be approved by a randomly selected fixed-size sample taken from a
large validator pool. In the exceptional case that a bad collation does
pass through employ a mechanism by which a node can “challenge”
an invalid collation and escalate the decision to a much larger set of
validators. Our scheme is designed as a generalized overlay that can be
applied to any underlying blockchain consensus algorithm (e.g. proof
of work, proof of stake, social-network consensus, M-of-N semi-trusted
validators) and almost any state transition function, provided that
state changes are sufficiently “localized”. Our basic designs allow for a
network with nodes bounded by O(N) computational power to process
a transaction load and state size of O(N2−ε), though we also propose
an experimental “stacking” strategy for achieving arbitrary scalability
guarantees up to a maximum of O(exp(N/k)) transactional load.

1 Introduction

Currently, all blockchain consensus protocols (eg. Bitcoin, Ethereum, Rip-
ple, Tendermint) that are actively in use have an important limitation: every
fully participating node in the network must process every transaction. Al-
though this requirement ensures a very strong guarantee of security, making
it all but impossible for an attacker even with control over every node par-
ticipating in the consensus process to convince the network of the validity of
an invalid transaction, it comes at a heavy cost: every blockchain protocol
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that works in this way is forced to choose between either limiting itself to a
low maximum transaction throughput, with a resulting high per-transaction
cost, or allowing a high degree of centralization.

What might perhaps seem like a natural solution, splitting the relevant
data over a thousand blockchains, has the two fundamental problems that
it (i) decreases security, to the point where the security of each individual
blockchain on average does not grow at all as total usage of the ecosystem
increases, and (ii) massively reduces the potential for interoperability, as
applications no longer have the ability to talk to each other with zero latency
and total security over a single ledger and must instead use cumbersome
”atomic cross-chain” interaction protocols.[1]

There are techniques, such that the practice of having proof-of-work min-
ers mine multiple blockchains simultaneously (“merge-mining”), that seem
to have stronger security, but in practice they end up offering at best a lin-
ear tradeoff between the thousand-chains and single-chain extreme: if each
chain is mined by only one in a thousand miners, then it is vulnerable to very
cheap attacks[2] (and indeed, such attacks have been succesfully carried out
in real life[3]), and if each chain is mined by every miner then every consensus
participant must process every transaction anyway and so we have not made
any progress in scalability. Techniques involving “checkpointing” a smaller
blockchain inside a larger one also fail to provide security, as they do not
prevent an attacker with majority participation in the smaller blockchain’s
consensus process from creating a checkpoint of fake or unavailable data.[4]

The problem of simulatenously achieving the best of both worlds: having
only a small portion of consensus participants explicitly participate in vali-
dating each transaction, but have the entire weight of the network implicitly
stand behind each one, has proven surprisingly hard.

There are several reasons why this is the case. First, because we lose
the guarantee that a node can personally validate every transaction in a
block, nodes must now necessarily employ statistical and economic means
in order to make sure that other blocks are secure; in essence, every node can
only fully keep track of at most a few parts of the entire “state”, and must
therefore be a “light client”, downloading only a small amount of header data
and not performing full verification checks, everywhere else - similarly to how
existing Bitcoin clients like Electrum[5] ensure security without downloading
the full blockchain today. However, even still that node’s economic resources
must somehow be involved in “attesting” to the security of all transactions,
including those that it does not even know about.

Second, we need to be concerned not only with validity but also with data
availability; it is entirely possible for a block to appear that looks valid, and
is valid, but for which the auxiliary data is unavailable, leading to a situation
where no other validator can effectively validate transactions or produce new
blocks since the necessary data is unavailable to them. Finally, transactions
must necessarily be processed by different nodes in parallel, and given that
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it is not possible to parallelize arbitrary computation [6], we must determine
the set of restrictions to a state transition function that will best balance
parallelizability and utility.

This paper proposes another strategy for achieving scalability, as well as
some formalisms that can be used when discussing and comparing scalable
blockchain protocols. The strategy revolves around splitting transactions up
into “collations” which affect a particular portion of the blockchain state,
and then using a “sample-and-fallback” game to validate the headers of in-
dividual collations: in order for any particular collation to be valid, require
it to be approved by a randomly selected sample of validators, and in case a
bad collation does come through employ a mechanism in which a node can
challenge invalid collations, reverting the harmful transactions and trans-
ferring the malfeasant validators’ security deposit to the challengers as a
reward unless the challenge is answered by a confirmation of validity from
a much greater number of validators.

Theoretically, under a Byzantine-fault-tolerant model of security, fall-
back is unnecessary; sampling only is sufficient. However, if we are operating
in an anonymous-validator environment, then it is also considered desirable
to have a hard economic guarantee of the minimum quantity of funds that
needs to be destroyed in order to cause a certain level of damage to the
network; in that case, in order to make the economic argument work we use
fallback as a sort of incentivizer-of-last-resort, making cooperation the only
subgame-perfect equilibrium with a large margin of error.

The particular advantage that our designs provide is a very high degree
of generalization and abstraction. Although schemes using technologies like
auditable computation through Merkle-tree computation traces[8] and mi-
cropayment channels[9] exist for increasing efficiency in specific use cases
like processing complex verifications and implementing currencies, our de-
signs can be used to provide scalability for any underlying state transition
function, provided that all state changes have a relatively “localized” impact
(ie. a single transaction cannot change very large fractions of the state all at
once). Our designs are also meant to be consensus-neutral, working equally
well with proof of work, Tendermint-style[10] proof of stake, and even social-
network consensus algorithms such the Stellar Consensus Protocol[11] and
Houwu Chen’s simulated annealing algorithm[12]. Generality is achieved by
splitting consensus into two levels, where the top-level consensus partici-
pants implement a state transition function that deals with root hashes of
portions of the state and collation headers, while the bottom-level activity
is involved in actually checking the validity of the underlying transactions.

Our basic designs allow for a network consisting solely of nodes bounded
by O(N) computational power to process a transaction load of O(N2−ε)
(we generally use O(N ε) to denote polylogarithmic terms for simplicity),
under both Byzantine-fault-tolerant and economic security models; we then
also propose an experimental “stacking” strategy for achieving arbitrary
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scalability guarantees up to a maximum of O(exp(N/k)) transactional load,
although we recommend that for simplicity, and because even the simpler
scheme can support transaction loads that are arguably sufficiently high for
very many categories of usage, implementers attempt to perfect the O(N2−ε)
designs first.

2 Concepts and Definitions

In order to facilitate the highly abstract discussion that is involved in our
solution, we will start off by defining some basic terminology and creat-
ing a semi-formal language that can be used to deal with the mechanics of
state transition functions in a highly abstract way. We will introduce cryp-
toeconomic state machines as a formalism, and we will provide Bitcoin as
an example, defining the state transition function, consensus algorithm and
fork choice rule involved, as well as describing several other projects so as
to illustrate how one might change each individual component.

Definition 2.1 (State). A state is the set of all stored information in a
paticular system or application. For our purposes, the state will often in-
clude account balances, domain registrations, the code and data associated
with on-chain objects such as smart contracts, etc.

Definition 2.2 (Transaction). A transaction is a piece of data represent-
ing an operation that a particular user wants to carry out. A transaction
typically includes a cryptographic signature from which one can verify its
sender.

Definition 2.3 (State Transition Function). A state transition function is
a function APPLY(σ, τ)→ σ′, which takes as input a “prior state” (or “pre-
state”) σ and a transaction τ and outputs the “post-state” σ′. If τ is “in-
valid” in the context of σ in the intuitive sense (eg. σ has account A having
a zero currency balabce and τ tries to send twenty currency units from A to
B), we conventionally say that σ′ = ∅. We require that APPLY(∅, τ) = ∅
for any τ .

For simplicity, we will use the following notation throughout:

• APPLY(σ, τ) = σ′ becomes σ + τ = σ′

• Given an ordered list T = [τ1, τ2, τ3...] and a state σ, we define σ+T =
σ + τ1 + τ2 + ...

• T = [τ1, τ2, τ3...] is valid in the context of σ if τ1 is valid in the context
of σ, τ2 is valid in the context of σ + τ1, τ3 is valid in the context of
σ + τ1 + τ2, etc.
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• [n] is the set {1, 2, 3.....n}, as is standard in combinatorics.

We can describe a simplified Bitcoin-like cryptocurrency as follows:

• The state consists of a mapping P → [0,∞), where P is a set of public
keys of users and the values are balances.

• A transaction is a tuple τ = (from, to, value, sig), where from is the
sender public key, to is the destination public key, value is the amount
that the transaction is sending and sig is a cryptographic signature.

• A transaction τ = (from, to, value, sig) is valid in the context of a
state σ if all of the following hold true:

– σ[from] ≥ value (you can’t spend more money than you have)

– value ≥ 0

– V (from, sig) = 1 for some cryptographic verification function V
(i.e. the signature is valid when verified against the sender public
key, so you can’t spend an account’s money unless you have the
corresponding private key)

If τ is invalid, then σ + τ = ∅. If τ is valid, then σ + τ is identical to
σ except:

– σ′[from] = σ[from]− value
– σ′[to] = σ[to] + value

In reality, Bitcoin is somewhat more complicated, using a concept of
unspent transaction outputs to record the ownership of funds instead of a
direct mapping of public keys to balances, but the above example illustrates
the basic principle.

Definition 2.4 (Block). A block β is a package containing a list of trans-
actions T , a reference to a parent block (in more exotic protocols, blocks
with multiple parents are sometimes found, but usually blocks only have
one parent), and auxiliary verification data. A block is valid in the context
of a state σ if:

• The block’s transaction list is valid in the context of σ

• Some other conditions, generally determined by the consensus algo-
rithm (eg. proof of work), are met.

If a block is valid, we define the block-level state transition function with
σ+β = σ+T (ie. σ+τ1+τ2+...+τn) where T = [τ1, τ2...τn] is the transaction
list in β. If a block is invalid, then we once again conventionally specify σ+
β = ∅. Note that the consensus algorithm will sometimes specify operations
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that are illegal in normal transactions; for example, Bitcoin specifies that the
first transaction in a block can include an ex nihilo reward of 25 BTC to the
producer of that block, and Ethereum performs a similar operation at the
end; although in Ethereum’s case the rewarding step is performed directly
by the protocol and not by an actual transaction, we can still consider it a
kind of “virtual transaction” for our purposes.

Definition 2.5 (Blockchain). A blockchain is a tuple (G,B) where G is a
genesis state and B = [β1, β2, β3...] is an ordered list of blocks. A blockchain
is valid if every β ∈ B is valid, and so G+ β0 + β1 + ... = σf is a valid state
(i.e. not ∅).

Definition 2.6 (Consensus algorithm). A consensus algorithm is an ensem-
ble of two processes:

• A fork choice rule, a process which can be run by any node in order
to determine what the current “main chain” is. Note that the fork
choice rule also implicitly provides σf , the final state after sequentially
processing all blocks.

• An updating process, a process that is collectively performed by the
participants in a network in order to produce a new block to extend
the main chain.

The consensus algorithm will in most cases specify additional block va-
lidity conditions. In the case of Bitcoin, the consensus algorithm is known
as “proof of work”, and the parts can be summarized as follows:

• The updating process consists of thousands of nodes around the world
repeatedly attempting to produce blocks with powerful computers un-
til some node finds one satisfying sha256(β) < 2256

D [14], where D is
a difficulty parameter that updates so as to ensure that a block is
produced on average every ten minutes. Because sha256 is a pseudo-
random hash function, there is no way to produce a valid block that
is faster than simply trying different modifications to the block data
until you eventually produce a block that passes, and this process on
average collectively takes the whole network D iterations.

• The fork choice rule consists of choosing the blockchain that has the
highest total difficulty, i.e. the greatest amount of statistically expected
computational work placed into building the whole chain.

• The additional block validity conditions are:

– sha256(β) ≤ 2256

D

– The first transaction is allowed to create an ex nihilo reward of
25 BTC to the producer of the block
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Note that in this case, the updating process and the block validity
conditions are the same, but this is not always the case; for example, in
Tendermint[10], the validity condition is simply that a block must be signed
by two thirds of a pool of validators, but a traditional Byzantine-fault-
tolerant consensus algorithm is used in the consensus process to facilitate
agreement on which block validators should sign.

Definition 2.7 (Weight function). A weight function is a mapping U →
x ∈ [0, 1] where U is a user, such that the sum of the weights of all users
equals to 1. Essentially, the weight of a user is their “share of the vote” in
some voting process.

In traditional Byzantine fault tolerance literature, guarantees are usually
phrased in the form “this algorithm works unless at least 1

3 of nodes (in
this paper we use the word “node” interchangeably with “user”) fail or act
incorrectly”; here, we are assuming an open and decentralized protocol so
creating a node is trivial, and so our Byzantine fault tolerance guarantees
will be phrased in the form “this algorithm works unless at least 1

3 of all
weight fails or acts incorrectly”.

We define the emsemble of (i) a block-level state transition function and
(ii) a consensus algorithm as a cryptoeconomic state machine. A cryptoe-
conomic state machine can be viewed as a kind of decentralized simulation
of a server, maintaining the state of one or more applications and updating
it in discrete steps. Desired properties for a cryptoeconomic state machine
include:

• Consistency : there exists a value σf such that every node sees a main
chain whose near-final state (i.e. state after processing all blocks except
for the last few) is σf . Ideally, everyone would see a blockchain with the
same final state at all times, but nonzero network propagation times
mean that an update will always reach some nodes before other nodes,
and some consensus algorithms allow for short forks, so consensus on
recent values of σf is the best that we can do.

• Data availability : any part of σf can be accessed and downloaded
from the network within some reasonably short period of time (eg.
O(log(Nn)) times network latency where Nn is the number of nodes
in the network) if needed.

• Non-reversion: the main chain that is currently seen by a node ide-
ally only changes through the addition of new blocks; it should not
revert blocks. If it does sometimes revert, the total number of blocks
“undone” during such a revert should be minimized.

• Validity : σ only ever attains values that are the result of G+T for some
transaction list T , where evert τ ∈ T has actually been produced by
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some user at some point in time (potentially implicitly, by producing
a block). That is, “illegal transitions” that cannot be explained by the
sequential application of a set of known transactions do not occur.

• Byzantine fault-tolerance: the above guarantees remain even if up to
k of all weight (e.g. k = 1

3), according to some weighting function,
fails to follow the protocol and/or misbehaves arbitrarily (including
irrationally).

• Economic security : the above guarantees survive even if all users ex-
cept altruists are rational, and a meaningful failure of the protocol
would lead to an economic loss to the malfeasant actors of at least
b ∗ L, where b is a constant and L is some metric of the value of
economic activity in the system.

• Complete security : the guarantee of economic security survives even
if up to k of all weight misbehaves arbitrarily (including irrationally).

Under economic security, we are allowed to assume that, whatever con-
sensus algorithm we use (as long as it’s nontrivial), there exists some small
constant wa such that wa of all weight is altruistic, but we assume that the
set of attackers, and the budget of attackers, is larger than the set and bud-
get of altruists (e.g. attackers can have weight up to 1

3 , altruists will have at
least 1

12). Note that the introduction of economic limitations does allow us
to have somewhat weaker guarantees in some circumstances: for example, if
5% of the weight is capable of mounting a medium-duration denial of service
attack, then that may be acceptable as long as the attack is expensive and
the attackers eventually run out of money.

The purpose of economic security is to essentially provide another kind of
“safety margin”, showing that the economic incentives of the protocol work
even if there are any kind of arbitrary unforeseen social factors, bribes by
attackers or other incentives affecting the participants, provided that these
factors are not too large. Although literal “bribes” as often referred to in
this paper may often be unrealistic, a protocol where users succumb to small
bribes will also necessarily be a protocol where users have little disincentive
to secure themselves against being hacked, not use poorly written software
that takes shortcuts (eg. signing blocks without even validating them), etc.

A key reason why complete security and not just economic security is
necessary is because actors can not only be bribed (or otherwise rewarded),
but also threatened. Giving someone a $1 million incentive as a bribe will
necessarily actually cost $1 million to the supplier of the incentive; however,
given the ability to threaten individuals whether through social/reputational
blackmail, legal force or physical coercion in real life, one can potentially
provide a threat so grave that the victim will be willing to forgo $1 million in
order to avoid the adverse consequence at a much lower cost than $1 million;
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formally, we can say that when threats are allowed, the cost of inflicting a
disincentive on an actor of size X is sublinear in X. To get around this
problem, we stipulate that not only must the total size of incentives plus
disincentives provided by an attacker sum up to b ∗ L, but they must also
be spread out among a maximally large set of individuals.

The goal of this document can be summarized as follows: given a state
σ and a state transition function APPLY, where the size of the state and
the number of transactions is much larger than any single node can inde-
pendently process, come up with a process to convert σ to ψ, T to κ and
APPLY to APPLY′, where if APPLY(σ, T ) = σ′, APPLY′(ψ, κ) = ψ′, such
that ψ and ψ′ can be easily stored within a single node and APPLY′ can
be processed by a single node (mathematically, we can see this as a kind
of homomorphism). We will then have the underlying consensus algorithm
maintain consensus on the homomorphism of the state instead of the state
itself, and will use separate “bottom-level” cryptoeconomic machinery to
ensure that the underlying transactions and data are all valid.

3 Mathematical, Cryptographic and Cryptoeco-
nomic Primitives

Before we get to describing our approach, there are a few more fundamental
primitives that we need to describe.

Definition 3.1 (Partitioning scheme). A partitioning scheme is a way of
representing a state as a collection of “subspaces”; formally, we can see it as
a bijective function P which maps possible values of σ to a tuple (σ1, σ2...σn)
for a fixed n (in practice, protocols will need to adjust n to maintain appro-
priate balance of effort at multiple levels of transaction volume; however we
will start off with fixed n to simplify the discussion for expository purposes,
and will then discuss mechanisms for adjusting n in a ater section). An
individual value σ[i] will be called a state subspace, and a value i will be
called a subspace index.

We can visually see a partitioning scheme as follows:
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Definition 3.2 (Affected area). The affected area of a transaction (or trans-
action list) τ in the context of σ (denoted AFFECTED(σ, τ)) is the set of
subspaces that were changed in the process of applying τ , i.e. the set of
indices S such that (σ + τ)[i] 6= σ[i] if and only if i ∈ S.

Definition 3.3 (Observed area). The observed area, or in short area (since
observed area includes affected area), of a transaction (or transaction list) τ
in the context of σ (denoted AREA(σ, τ)) is the set of subspaces the values of
which the result of the transaction depends on, i.e. the smallest set of indices
S such that (i) S ⊃ AFFECTED(σ, τ), and (ii) for any ψ where ψ[i] = σ[i]
for i ∈ S (but potentially ψ[i] 6= σ[i] for one or more i /∈ S), if we define
ψ′ = ψ + τ and σ′ = σ + τ , we have ψ′[i] = σ′[i] for i ∈ S.

Note. If we define a candidate observed area as a set of indices as defined
above, but not necessarily the smallest one, we can show that the set of
candidate observed areas is closed under intersection (basically, if x is inde-
pendent of anything outside A and is independent of anything outside B,
then it’s independent of anything outside A ∩ B), and so the concept of a
“smallest candidate observed area” is unique and meaningful.

Ultimately, the observed area is incomputable; to see why, note that a
state transition execution may contain an obfuscated circuit which grabs a
value from a subspace and, unbeknownst to any conceivable generic analysis
tool, multiplies it by zero (one can prove equivalence to the halting problem
by constructing a program which runs the state transition function with all
possible values for some subspace and halts only if it finds two values that
lead to a different result). However, we can get a close approximation by
simply adding a wrapper to the state transition execution code that keeps
track of all subspaces that were accessed. We can use this as the “observed
area” defined in the protocol.
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The concept of “area” is a key component our mechanism for collating
transactions and parallelizing execution across the entire network; it allows
transactions to be broken up into groups that can be processed at once by
a few nodes that happen to fully possess that particular set of subspaces.
If two transaction lists have completely disjoint areas, then we know that
they can be computed in parallel. Technically, there is an even weaker
condition that is sufficient for parallelizability: the affected area of each
transaction must be disjoint with the (total) area of the other. Two observed
areas intersecting with each other is not an issue. We will take advantage
of this insofar as all transactions are aware of the header chain, but will
otherwise employ the stronger criterion for establishing parallel evaluability
for simplicity - although we note that such a loss of information is necessarily
wasteful.

The next concept that will be crucial to our design is randomized sam-
pling. The concept of taking a random sample of m validator nodes out of a
much larger set of n nodes should be highly intuitive; however, we will still
describe the algorithms involved formally for the sake of completeness.

Definition 3.4 (Cryptoeconomically secure entropy source). A cryptoeco-
nomically secure entropy source is a function that provides a value E(σ),
taking the current state of a blockchain and outputting a pseudorandom
value. Desired properties include (i) pseudorandomness, and (ii) uninflu-
enceability, ie. it should be economically expensive to have any predictable
influence on the result (formally, we can say that if there is a predicate P
such that normally P (E(σ)) is true with probability k, it should not be
possible to increase the probability that P (E(σ)) to 2 ∗ f without paying a
cost proportional to the cost needed to successfully attack the network (eg.
via a 51% attack).

Example 3.1. The cryptoeconomically secure entropy source used in NXT[21]
is defined recursively as follows:

• E(G) = 0

• E(σ+β) = sha256(E(σ) +V (β)) where V (β) is the block proposer of
β.
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Manipulation is costly, essentially because the only way to manipulate
the result is not to participate during a round during which you are eligible
to propose a block, and this constitutes sacrificing a block reward. Other
schemes include N-of-N commit-reveal schemes such as Tomlion’s random-
number generation protocol[28], as well as simple proof of work.

Definition 3.5 (Sampling function). A sampling function is a function
SAMPLE(W,k,m)→ u1...um that takes a weight function W , a seed k and a
number m and outputs a pseudorandomly selected (weighted by W ) sample
of m users. The seed is typically generated by some external entropy source.

Example 3.2. Arrange all users u1...un in order of public key, and assign
the range [

∑j−1
i=1 W (ui)...

∑j
i=1W (ui)] to user uj for all 1 <= j <= n. For

all 1 ≤ h ≤ m, return the user whose range includes the value H(k+h)
2256

for
some hash function H.

Definition 3.6 (Merkle tree). A Merkle tree[17] is a mechanism for hashing
a large piece of data, which in its most general form works as follows:

• Use a partition function to split the data into chunks D[1]...D[n], such
that each D[i] has a very small size. Let us define this collection as
L0(D).

• To determine Li+1(D) (starting from i = 0), split Li(D) into collec-
tions of fixed size (e.g. 2-16 items) using some deterministic algorithm,
and return as Li+1(D) the set of the hashes of the collections. Because
there are fewer collections than elements (as each collection has more
than one element), the size of Li+1(D) will be less than the size of
L(D)

• Eventually, this leads to some Lk(D) which has only one element. We
call this the root of the tree.

In a standard Merkle tree, the “collections” are always made up of two
adjacent elements, e.g. if the original data has 32 elements, then L1(D)
is made up of H(D[1] + D[2]), H(D[3] + D[4]), etc, then L2(D) is made
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of up H(L1(D)[0] + L1(D)[1]), H(L1(D)[2] + L1(D)[3]), etc. In a Merkle
Patricia tree[18] used in Ripple and Ethereum, the structure is somewhat
more complicated, but with the benefit of greater flexibility in the case where
elements are added or deleted from the partition.

We define a Merkle proof as being a subset of nodes that can be used
to prove the existence of a particular piece of data at some particular point
in the Merkle tree. We construct such a proof by taking the node whose
placement we want to prove, and then adding the chain of ”siblings” and
”ancestors” going all the way up to the root node:

Given this proof, a verifier can check that the hashes are correct at each
step along the chain, and thus that the node is in fact at the given position
in the tree which has the given root hash. Mathematically, we can abstract
this into three functions:

• ROOT (σ)→ ρ, taking as inpput a state σ and outputting a root hash
(usually 256 bits).

• PROV E(σ, i) → π, taking as inputs a state σ and an index i and
providing an output π, a “proof” showing that σ[i] is indeed a part of
σ

• V ERIFY (ρ, i, π, V )→ {0, 1}, taking as input a state root ρ, an index
i, a proof π and a candidate value V . The function should only return 1
if π is a proof showing that V = σ[i] for some σ such that ROOT (σ) =
ρ.

Note. The above two mechanisms are interesting to us for two reasons. First,
root functions prove a quickly updateable “compact representation” of a
potentially very large piece of data; they are key in building our compact
homomorphism for scalable blockchains. Second, Merkle proofs allow us to
use this compact representation, in collaboration with the network supplying
data, to securely determine any particular part of the underlying data that
we may want to access.
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4 Global Variables and Assumptions

In the rest of this document we will use the following variables:

• N - the maximum computational power of a node

• L - the level of economic activity in the network

• m - the size of the randomly selected pool of validators that need to
validate each block (usually 50 or 135)

• ns - the number of subspaces

• nt - the number of transactions per collation

• nc - the number of collations per block

• D - the size of a validator security deposit

• r - the reward for a validator to sign a particular collation

τ will represent transactions, β will represent blocks and block headers
depending on context, and B will represent “super-blocks”. We also make
the following assumptions:

• There exists some constant wa such that at least wa of weight is al-
truistic (i.e. willing to follow the protocol even ignoring the potential
for greater monetary gains from violating it)

• The number of transactions, the potential budget of attackers, the
potential budget of altruists, and any economic metric of activity L
that we use for the purposes of measuring economic security are all
proportional to each other.

• Moderate wealth concentration: there exist many individuals that hold
at least L

N wealth.

• There exists some fixed number kt such that most transactions observe
and affect at most kt subspaces.

• There exists some fixed number ku such that on average a user is
interested in accessing data from at most ku subspaces.

• As soon as data makes it into the hands of at least one altruist, it will
propagate through the distributed hash table and become available to
everyone.

• The underlying top-level consensus algorithm works, and has all secu-
rity properties that are desired.
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• The underlying top-level consensus prevents censorship of transactions
in the long term; i.e. there is some period of time Tc within which a
transaction will almost certainly be accepted into the network.

5 A Byzantine-fault-tolerant Scalable Consensus
Overlay

Now, let us define the core part of our scheme. As described in a previous
section, the mechanism can most simply be formally described as using any
underlying consensus algorithm to keep track not of the state, but of a com-
pact homomorphism (“top level”) of the state, and then building separate
(“bottom-level”) machinery to collaboratively ensure that the underlying
state transitions are legitimate.

The basic mechanism is this. Suppose that σ is partitioned using some
partition function into n parts. If σ is partitioned into {i : σ[i]}, we define
ψ = {i : R(σ[i])}. We assume the existence of a coarse-grained partition
function as well as the existence of a fine-grained partition function which
converts σ[i] into a map {j : σ[i][j]}, where each σ[i][j] is constant-size (e.g.
an account). We then define an object called a transaction collation, which
consists of three components:

• T , a list of transactions

• A header H, consisting of:

– AP , the set of previous state roots {i : R(σ[i]) for i ∈ AREA(σ, T )}
– AN , the set of new state roots {i : R(σ′[i]) for i ∈ AREA(σ, T )}
– S = [s1...sm], an array of signatures

– R(T ) (the root hash of the list of transactions)

• D, the set of Merkle branches for the observed area of T on σ on the
fine-grained partition level.

We also add to the top-level state ψ a pool of validators V (ψ). In order
to achieve economic security, we will later recommend that these valida-
tors hold security deposits, but if super-protocol social mechanisms (eg. an
expectation that consensus participants will collude in order to kick out un-
cooperative validators) are allowed to play a dominant regulatory role then
some security can be achieved under the weaker condition that the validators
have persistent identities, and if the only goal is Byzantine fault tolerance
and not economic security then all that matters is that it is hard to become
a validator and there are many of them. Ideally, top-level consensus partic-
ipants (e.g. Tendermint stakeholders, miners) and validators would be the
same group.
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Finally, we use some source of in-blockchain randomness to select m ran-
dom validators; formally, we say VALIDATORS(H,ψ) = SAMPLE(W,E(ψ)+
AP,m) where W is some weight function, E(ψ) is a mechanism for gener-
ating entropy using ψ as input.

When a collation is passed around the network, the entire ensemble
κ = (T,H,D) is included. From the point of view of the top-level consensus,
however, only H exists, and H ends up playing the role of a “transaction”
from the top-level consensus’s point of view. For the purposes of defin-
ing APPLY′, the top-level state transition function, we say that a collation
header H is valid in the context of ψ if and only if the following are all true:

• For all i ∈ AP , ψ[i] = AP [i] (i.e. the collation’s pre-state matches up
with the actual pre-state)

• S includes valid signatures from at least two thirds of VALIDATORS(H,ψ)

If H is valid, we set ψ′ by:

• For all i ∈ AREA(σ, T ), ψ′[i] = AN [i]

• For all i /∈ AREA(σ, T ), ψ′[i] = ψ[i]

The top-level state transition function has an additional validity con-
straint: for the block to be valid, the areas of all collation headers included
must be disjoint from each other. The underlying consensus algorithm will
keep track of blocks, where each block contains a number of collation head-
ers, and we will refer to the blockchain produced by the underlying consensus
algorithm as the header chain.

Now, let us specify the bottom-level validation criteria. These are not
placed into the top-level state transition function (although in later sections
we will modify the protocol to require top-level consensus participants to all
perform specific bottom-level validations in extremis in the event of serious
attacks); rather, they can be viewed as “suggestions” for when validators
should sign collations. The conditions are fairly simple and intuitive:

• Every transaction in T is valid in its context when applied to σ, the
full pre-state associated with the compact pre-state ψ of the header
chain before the transaction.

• D, AP , and AN are produced correctly.

In short, the validators validate that the transactions are actually valid.
In practice, the way that they will do this is through one of two strategies.
First, they may receive the collation directly from the entity that produced
the collation, and the Merkle branch set D gives them the specific informa-
tion that they need from the observed and affected subspaces to re-compute
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the state transition function and ensure that the final subspace roots are
correct. Second, they may receive the collation header, and download infor-
mation from the distributed hash table on the fly.

Now, we will prove that our homomorphism is actually a homomorphism
- i.e. that H is valid in the context of ψ only if T is valid in the context of σ,
and that the final state ψ +H is equal to {i : R((σ + T )[i])} (i.e. a correct
compact representation of the final state) with extremely high probability
as long as a Byzantine fault tolerance guarantee is satisfied: less than one
third of the weight of validators is Byzantine.

Lemma 5.1. Assuming less than 1
3 of the weight of validators is Byzan-

tine, a block that is valid under the above top-level state transition function
will produce a top-level state ψ′ such that if we define σ′ with σ′ = {i :
R−1(ψ′[i])}, σ′ = σ + T1 + T2 + ... where Ti is the set of transactions in Hi

where Hi is the collation header root corresponding to the collation contain-
ing transaction list Ti.

Proof. Suppose that all βi satisfy the second-level validity criteria. Then,
note that each subspace in σ is only modified by at most one Ti, and so
we can model the state as a tuple (O,A1, A2, A3...An) if β includes k trans-
actions, where Ai is the affected area of Ti and O is the remaining part
of σ. The state after T1 will be (O,A′1, A2, A3...An), by disjointness the
state after T2 will be (O,A′1, A

′
2, A3...An), and so forth until the final state

is (O,A′1, A
′
2, A

′
3...A

′
n). If we use the top-level state transition function on

ψ, we can partition ψ similarly into (O,B1, B2, B3...Bn), and a similar pro-
gression will take place, with state roots matching up at every step. Hence
the final state at this top-level state transition will be made up of the roots
of the subspaces in σ′.

Now, suppose that one βi does not satisfy the second-level criteria. Then,
validators following the protocol will consider it invalid, and so 2m

3 validators
will not be willing to sign off on it with very high probability, and so the
block will not satisfy the top-level criteria.

Hence, we know that the resulting ψ′ will represent a state which is valid,
in the sense that it can be described as a series of transactions applied to
the genesis. This is the validity criterion that we will repeatedly use in order
to prove that validity is preserved by other mechanisms that we introduce
such as revert mechanics.

Because a sampling scheme is inherently probabilistic, it is theoretically
prone to failure, and so we will precisely calculate the probability that the
protocol will fail. Assuming a 96-bit security margin, we can consider a
probability negligible if the average time between failures is longer than the
time it takes for an attacker to make 296 computations. If we assume that
the cryptoeconomically secure entropy source updates every super-block,
and a super-block comes every 20 seconds, then one can reasonably expect
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a hostile computing cluster to be able to perform 248 work within that time,
so we will target a failure probability of 2−48 (this implies roughly one fail-
ure per 445979 years of being under attack). We can determine the failure
probability with the binomial distribution formula:

PE(n, k, p) = pk ∗ (1− p)n−k ∗ n!
k!(n−k)!

Where PE(n, k, p) is the probability of an event that occurs with probability
p in an attempt will achieve exactly k occurrences out of n attempts. For
convenience, we define PGE(n, k, p) =

∑n
i=k PE(n, i, p), i.e. the probability

of at least k occurrences.
We note that PGE(135, 90, 13) = 2−48.37, so 135 nodes will suffice for a k =

1
3 fault tolerance. If we are willing to lower to k = 1

5 , then PGE(39, 31, 15) =
2−48.58, so 39 nodes will be sufficient. Additionally, note that if we want
greater efficiency under normal circumstances, then a bimodal scheme where
either 44 out of a particular 50 nodes (PGE(50, 44, 13) = 2−49.22) or 90 out
of a particular 135 nodes is a sufficient validity condition will allow the
cheaper but equally safe condition to work in the (usual) case where there
are almost no malicious nodes, nearly everyone is online and the network is
not under attack, and fall back to the more robust but bulkier validation
rule under tougher conditions. In order to provide equal guarantees under
post-quantum conditions (i.e. Grover’s algorithm), then the constants will
likely need to be doubled in order to attain equal security margins, although
for now we will stick to concerning ourselves with the classical case.

Additionally, note that the combinatoric formula is only valid if the en-
tropy used to determine validator sets is actually random, or at least close
enough for our purposes. For this, our second uninfluenceability criterion,
stipulating that an attacker with less than 1

3 of all validators will be able
to influence it by at most a reasonably small linear amount (in the NXT
case, by a factor of 3

2), is crucial, showing that with such a powerful at-
tacker the probability of a successful attack remains below 2−47.4. The first
uninfluenceability criterion is important in order to avoid excessive superlin-
ear returns (ie. validators increasing their profit margins by centralizing or
colluding) resulting from super-block proposers manipulating the entropy in
order to increase the chance that their validators will be involved in verifying
blocks, but does not affect security.

To see the role of the unpredictability criterion, note that the protocol
as described here provides ex ante Byzantine fault-tolerance, but not ex post
Byzantine fault tolerance; after the validators are selected, only that small
fixed number of validators acting maliciously will compromise the system.
If entropy becomes unpredictable very slowly (or never at all), then the
algorithm is only Byzantine fault-tolerant against faults very far in advance,
leading to potential practical vulnerabilities like an attacker locating the 135
validators that will be validating their block one year from now and taking
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the time to locate and hack into 90 of them.

Lemma 5.2. The above protocol is almost-quadratically scalable, in the
sense that it does not require any individual to perform more than O(N)
work even if the total transaction load is O(N2−ε).

Proof. Suppose that the size of a collation is calibrated correctly: each block
contains nc ∈ O(N1−ε) collations, each collation contains nt ∈ O(N1−ε)
transactions, the number of subspaces is also at ns ∈ O(N1−ε), and that
there are nv ∈ O(N1−ε) bottom-level validators. We leave it to each indi-
vidual protocol to determine how to auto-calibrate these values; however,
we will provide some suggestions in a later section.

First, let us consider the workload of a top-level consensus participant.
A top-level consensus participant must validate nc collations, where each
collation contains m signatures, as well as data associated with some num-
ber of subspaces. The total number of subspaces in all collations is at most
ns, since each subspace can be used by at most one collation. If it takes esig
computational effort to download and verify a signature, and ecol computa-
tional effort to download and verify a subspace root, then the total effort of
processing a block will be at most ecol∗ns+esig ∗m∗nc ∈ O(N1−ε). Suppos-
ing that a validator registration takes sv space, and a subspace takes up ss
space (realistically, ss = 32 bytes and sv < 100 bytes), the size of the state
is equal to nv ∗sv +ns ∗ss ∈ O(N1−ε). We can assume logarithmic overhead
from the Merkle tree verifications, but even still the total computational
complexity and the size of all objects together remain below O(N).

Now, let us consider the workload of each bottom-level validator. There
are nv bottom-level validators, nc collations, and each collation must be
approved by m validators; hence, if one collation takes E effort to validate
by one validator, the total work is E ∗ nc ∗m, and the total work per val-
idator is E∗nc∗m

nv
(because the validators are chosen randomly, we assume

that the workload is evenly distributed, and validation is not compulsory so
even if exploitation opportunities exist that is not a valid denial-of-service
vector). Because there are nt ∈ O(N1−ε) transactions, we can conclude
E ∈ O(N1−ε), and so E∗nc∗m

nv
∈ O(N1−ε). The transactions and Merkle

proofs would take up O(N1−ε ∗ log(N)) < O(N) space, so the storage and
bandwidth load is also manageable.

The incentives inside such a scheme would be provided as follows:

• Transactions can pay transaction fees to the producer of the block that
includes them.

• Blocks can pay transaction fees to the proposer of the super-block that
includes them, as well as the the validators that will sign off on them.
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• The proposer of the super-block can pay transaction fees to the valida-
tor pool of the super-block; this fee can be mandatory (i.e. protocol-
enforced) or enforced by validators refusing to sign a block with a fee
that is too small for them.

• The protocol may optionally add a mandatory fee to transactions and
blocks, and this fee can get destroyed. The protocol may also add
an ex nihilo reward to the validators of the super-block in place of
requiring it to be paid from transaction fees.

6 Economic Security

The previous algorithm provided a statistical guarantee of data availability
and validity by simply assuming that at least two thirds of validators are
honest; however, it carries an inherent fragility: if, for any reason, a small
sample of nodes actually does end up signing off on an invalid block, then
the system will need to hard-fork once the fault is discovered. This results
in three practical weaknesses:

• Larger safety factors are required on the sample sizes in order to en-
sure that a sample is absolutely never malicious. If there was a way
of recovering from a bad collation entering the system, the number
of validators required to sign every collation could be substantially
decreased, increasing normal-case efficiency.

• The economic security of the algorithm scales only with N and not
with L: in order for an attacker to produce an invalid collation that
gets accepted by the above algorithm, they need only bribe 2m

3 out of a
pool of m validators, with a total cost of D∗ 2m3 ∈ O(N) < O(L). Sam-
pling provides security against random faults, but targeted economic
incentives can potentailly allow attackers to create targeted faults at
low cost. Particularly, note that even fast randomness does not guar-
antee that successful bribery requires unrealistically fast communica-
tion; attackers can announce bribes ahead of time and apply them after
the fact, and greedy validators can simply comply with the attackers’
wishes of their own accord.

• Even in the absence of bribing attackers, there is an incentive for
validators to simply be lazy and sign every collation - particularly once
they see that every collation that has appeared so far is legitimate.

If we are content with the large safety factors, one approach to dealing
with the issue is to not bother with economic security, and instead sim-
ply rely on Byzantine-fault-tolerance guarantees. In order to ensure that
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the majority of validators are beneficent, we ask top-level consensus partic-
ipants to censor attempts to join the validator pool by parties that appear
to be unreliable or likely to be malfeasant - essentially, a protocol-wide
know-your-validator regime. In some cases, particularly regulated financial
systems, such restrictions are necessary in any case and so we need to go no
further[27]. If we are trying to create a more open network, however, then
such a solution is unsatisfactory, and so we arguably need not just Byzantine
fault tolerance but also regulation via economic incentives.

We will generally operate within the following framework:

• There exists a “challenge” mechanism by which anyone can pay a cost
cc in order to challenge what they perceive to be an invalid collation.
Note that we need cc ∈ O(N1−ε); if challenges are cheaper, then an
attacker will be able to overwhelm the header chain by producing more
than O(N) challenges at a cost of O(L) = O(N2−ε).

• If a collation is unchallenged for Fd blocks, then it is considered “fi-
nalized”.

• If a collation is challenged, then it is placed in “purgatory”. If it
remains in purgatory for Pd blocks, then the collation is reverted (we
will determine the precise mechanics of reversion in a later section),
and the challenger receives the security deposits of the original m
validators of the collation as well as any redeemers (see below).

• If a collation is challenged, then a larger randomly selected set of
2 ∗ m validators must attest to the validity of the collation in order
to “redeem” it. Challengers can optionally pay a higher cost k ∗ cc in
order to make the required redemption set even larger, 2 ∗ k ∗m, right
up to a maximum of the entire set of nv validators.

• Participating in a redemption has some very small economic reward
(note that only a small reward is required, because a validator can
know for sure that they are redeeming a valid and available collation,
and that they will be able to convince others of this, by simply down-
loading it themselves).

• If a collation is redeemed, then the Fd period begins again, and the
collation can be challenged again within that period - although this
time a minimum k multiplier is placed at twice the multiplier of the
last challenge. If challenges continue appearing, this will eventually
escalate to all nv validators checking the collation. If a collation is
finalized after being redeemed, the collation producer and validators
are penalized slightly; this makes it costly to engage in “crying wolf
attacks” as described below.
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• When all nv validators are checking the collation, we incentivize hon-
esty by either using a decentralized oracle scheme, or by asking the
top-level consensus process to adjudicate: if a block contains a pool
of nv validators attesting to a collation that is invalid, then we add a
top-level rule saying that that block should be considered invalid.

The chief difficulty in providing economic security is that there are in fact
two ways in which a collation can be invalid. The first is that a collation is
produced and broadcasted normally, but the block either includes an invalid
transaction or has an invalid final state root. In this case, the problem is
easy; in fact, we can prove that under the above mechanism acting honestly
is a subgame-perfect equilibrium. The second, and more difficult, kind of
validity centers around data unavailability. An attacker may simply create
a (valid or invalid) collation, publish the header, but refuse to publish the
contents, making it impossible for the network to learn the complete final
state.

The problem here is this: whereas in the case of invalid collations, the
validity or invalidity of a collation is fixed and cannot change, in the case
of unavailable data that is not the case. An attacker can always create
an unavailable collation, wait for challengers to challenge, and then publish
the data and start the redemption process, costing the challengers money.
The attacker may do this again and again, draining challengers’ resources,
until eventually challengers no longer find it economically rational to chal-
lenge bad collations, giving the attacker free rein to push through invalid
collations; we call this the crying wolf attack.

Although it may seem like data availability is less serious a problem than
invalidity, we will provide a series of attacks to show that the ability to push
through in some cases even valid unavailable collations can be a death knell
to a working blockchain system:

Example 6.1 (Unprovable theft attack). An attacker creates a block with
transactions T1 ... Tn, where T1 ... Tn−1 are legitimate and applied properly
but Tn is an invalid transaction which seems to transfer $1 million from
an arbitrary wealthy user to the attacker. The attacker makes T1 ... Tn−1
available, and makes the final state available, but does not make Tn available.
Once the state is confirmed by a sufficient number of future blocks, the
attacker than spends the $1 million to purchase other untraceable digital
assets.

Here, note that there is no way to prove invalidity, because theoretically
Tn very easily could be a transaction legitimately transferring $1 million from
the millionaire to the attacker, but the unavailability of the data prevents
the network from making the judgement.

Example 6.2 (Sudden millionaire attack). An attacker creates a block with
transactions T1 ... Tn, where T1 ... Tn−1 are applied properly but Tn is an
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invalid transaction. The attacker then makes T1 ... Tn−1 available, and
makes most of the final state available, with the exception of one branch
where the attacker has given themselves $1 million out of nowhere. Two
years later, the attacker reveals this branch, and the network is forced to
either accept the transaction or revert two years of history.

Note. One way to try to solve both attacks above is to require every valid
transaction to show a valid “source” of its income. However, this leads to
a recursive buck-passing problem: what if the attacker performs a sudden
millionaire attack to create a new unexplained account A1, then creates a
block with an unavailable transaction sending funds from A1 to A2 (possibly
a set of multiple accounts), then A3, and so forth until finally collecting the
funds at An, and then finally reveals all transactions upon receiving An. The
total dependency tree of a transaction may well have total size ω(N). Peter
Todd’s tree-chains discussion offers the solution[33] of limiting the protocol
to handling a fixed number (possibly more than O(N)) of “coins”, each one
with a linear history; however, this solution is not sufficiently generalizeable
and abstract for our purposes and carries high constant-factor overhead.

Example 6.3 (Transaction denial attack). An attacker creates a block with
an unavailable transaction which appears to modify another party’s account
(or spend their UTXO). This prevents the other party from ever performing
any actions with their account or their funds, because they can no longer
prove validity.

Note. Even zk-SNARK protocols cannot easily get around the above prob-
lem, as it is information-theoretically impossible for any protocol regardless
of cryptographic assumptions to fully specify the set of accounts that are
modified in a particular super-block in O(N) space if the set itself is greater
than O(N) in size.

Example 6.4 (Double-spending gotcha attack). Suppose that a protocol
tries to circumvent payment-denial attacks by making payment verification
a challenge-response process: a transaction is valid unless someone can show
that it is a double-spend. Now, an attacker can create a block containing a
legitimate but unavailable transaction that spends $1 million from account
A1 to A2, also controlled by them. One year later, the attacker sends $1
million from A1 (which no one can prove no longer has the money because
the data is unavailable) to A3. One year after that, the attacker reveals the
original transaction. Should the network revert a year of history, or allow
the attacker to keep their $2 million?

Note. Zk-SNARK protocols are not a solution here either, because of the
same information-theoretic issues.

In order to remove the possibility of such issues in the general case, we
will try to target a hard guarantee: given a general assumption that once
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data is available at all it is guaranteed to remain available forever due to
a combination of the DHT and altruist-operated archival services, we will
attempt to ensure that, for all collations κ, it is the case that either all of κ
is available or H is reverted by the top-level consensus (we will define the
precise semantics of “reverting” in a later section).

If N < D∗m
cc

(where D is the size of a validator deposit, with D ∈
O(N1−ε), and cc is the cost of challenging), then the crying wolf attack
is not a problem. If a challenger discovers an invalid collation, and the
collation is proven to be invalid, then the challenger receives a reward of
D∗m from the security deposits of the validators that accepted the collation;
hence, challenging makes economic sense if the perceived probability that an
currently unavailable collation will remain unavailable is at least cc

D∗m . By
the law of Laplacian succession[34], convincing rational challengers that the
probability is less than this will require roughly D∗m

cc
unavailable collations

that later become available, and if D∗m
cc

> N , then the cost of doing so is
greater than the cost of simply 51% attacking the network head-on.

If N > D∗m
cc

, however, then the situation is different, and the crying wolf
attack actually does become the most cost-efficient way of compromising the
system. In this case, we need to either concede that, in extremis, challenging
is an altruistic activity, or find some alternative mechanism of incentivizing
challengers.

We can model the situation as a kind of law-and-economics problem: the
“crime” is creating invalid collations, the “police officers” are challengers,
and our job is to incentivize enough law enforcement activity to ensure that
no crimes gets through uncaught. We will show two strategies for doing this,
one roughly corresponding to “private enforcement”, where individuals are
motivated to participate by “privatizing the loss” of a successful collation
getting through among a specific set of individuals, and the other roughly
corresponding to “public enforcement”, where a central common pool of
funds is used to pay challengers, making the payments via a kind of lottery
to minimize the amount of work required to make sure that challengers are
doing their jobs.

We also make the assumption that, when a challenge is made against
a genuinely unavailable collation, and the challenge is at such a level that
the entire set of validators is required to participate in redeeming it, there is
some fixed probability p such that the validators will check for the collation’s
availability and conclude that it is unavailable even before the attacker can
publish it. We can assume a small p, e.g. p ≈ 0.001; decreasing our estimate
of p simply makes the network linearly more vulnerable to denial-of-service
attacks.

The private enforcement strategy works as follows. First, we withhold
the reward for making a block (proposing in Tendermint, mining in Bitcoin,
etc) for Fd blocks, and keep it as a temporary deposit. Suppose that a
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collation is unavailable, and does not get challenged for Fd
2 blocks. Then,

a challenger has the ability to place a challenge at cost cc ∗ nv
m∗2 in order

to require redemption by all validators. If the challenge succeeds, then the
challenger receives the rewards (plus, for good measure, a portion of the
deposits) of all block makers between the time of the block’s creation and
the block that includes the challenge.

This has two consequences. First, it increases the reward for a challenger
to Fd

2 ∗ R ∈ O(L) (where R is the block reward), meaning that as long as
cc∗ nvm∗2
Fd
2
∗R

< p, challenging is rational. The above equation can be re-written as

cc∗nv∗2
Fd∗m∗R , with the constants Fd (we recommend values of Fd long enough for
a few minutes to an hour, ie. 10 < Fd < 1000 depending on block time, in
order to balance between network attack risks and the need for settlement
finality) and m (as in the previous section, we recommend 39 ≤ m ≤ 135
depending on parameters) at the bottom, so the truth of the inequality is
quite plausible, particularly with sufficiently small values of cc. Second,
it transforms deterrence against bad collations from a public good into a
private good - if a bad collation makes it through the first Fd

2 blocks, then
the next block makers specifically are liable. This creates the incentive for
those block makers to subsidize challengers to challenge during previous
blocks - perhaps privately using techniques like the random auditing that
we will discuss for the public enforcement strategy later.

The public enforcement strategy works simply: every block, we use a
small amount of proof of work, perhaps with expected per-block cost w =
R∗0.01, as a source of entropy from which to select a random subspace. We
then ask all top-level consensus participants to validate the last collation
on that subspace. If that collation is indeed unavailable, and the block has
been challenged, then the challengers split a reward of size rc = w ∗ 0.49 ∈
O(N2−ε). The block maker also gets a reward of equal size.

The scheme can be thought of an inverted application of a standard
result from law and economics: one can achieve compliance with arbitrarily
low enforcement cost by simply decreasing the level of enforcement, and thus
the probability of getting caught, but simultaneously increasing the fine[32]
- except, in our case, we are performing the exact opposite task of a police
department as we are trying to incentivize a virtuous usually-costly action
with the occasional application of a reward. The load each validator is at
most the cost of downloading one block, O(N1−ε), and each subspace will
have a probability of at least 1

O(N1−ε) of being randomly inspected; hence the

scheme does not compromise scalability. However, assuming that a top-level
challenge has at least a fixed probability p of correctly determining that an
unavailable block is unavailable before the attacker manages to broadcast it
across the network, this provides an average incentive of rc

O(N1−ε) ∈ O(N)

in order to challenge, making it statistically worthwhile to challenge invalid
blocks despite the cost.
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Note that it is expensive for the challenger to manipulate the proof of
work either upward or downward. Once the challenger has computed the
proof of work successfully, the challenger would incur a loss of size rc ∈
O(N2−ε) if they do not start the top-level challenge procedure for the entire
block, and with judicious choice of constants one can make the size of the
loss exceed our desired threshold b ∗ L for any given b. If the challenger
wants to increase the probability of triggering a top-level challenge in order
to earn the rc reward, possibly in collusion with the challengers, then note
that even if the attacker has placed an invalid block on all subspaces, re-
computing the proof of work has cost w and maximum expected collective
reward w ∗ 0.98.

Given that the expected reward of challenging is now w
N1−ε , we can im-

pose a cost of challenging of at most the same value, and so the level of
denial-of-service protection we get against challenges is proportional to the
quantity of proof of work employed. One can increase the ratio drastically
at the cost of limiting ourselves to a more qualified security bound by setting
rc = k ∗ w for some k > 1, making proof-of-work manipulation profitable
only if 1

2k of subspaces currently have an invalid block in them (due to the
extreme cost of producing an invalid block, we can hence make k quite high).

7 Reverting

A critical mechanism used in the previous sections is the concept of reverting
a block if it is found to be invalid. However, it is necessary to come up with
a scheme to do so with minimal disruption, reverting only what needs to be
reverted while keeping the remaining state transitions intact. To do so, we
propose the following mechanism. When an invalid block is found and agreed
upon, construct a “dependency cone” of all subspaces that could have been
affected by that block, and revert each subspace to a prior “safe” state. The
algorithm for this relies on a primitive we will call GDC (“get dependency
cone”), which takes a target top-level state ψ, an errant collation header
H0 inside a block β and the post-block state ψ0 = ψ−1 + β, and outputs a
partial mapping of index to subspace. We define GDC as follows:

• GDC(ψ,ψ0, H0) = ∅ if ψ is an ancestor of ψ0 (i.e. the dependency
cone is empty before the errant collation header)

• GDC(ψ,ψ0, H0) = AREA(ψ0, H0) if ψ = ψ0 (i.e. immediately after
the errant collation header, the dependency cone is simply the area of
the errant collation)

• GDC(ψ + β, ψ0, H0) =
⋃
H∈S AREA(ψ,H) ∪ GDC(ψ,ψ0, H0), where

S is the set of all collation headers H such that AREA(ψ,H) and
GDC(ψ,ψ0, H0) have a nonzero intersection (i.e. the dependency cone
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includes the parent block’s dependency cone, plus the full area of all
blocks whose area has any intersection at all with the dependency cone
of the previous block)

When an invalid collation H’s purgatory period expires and H must be
reverted, we compute its dependency cone, and revert every subspace to the
value that it had just before it entered the dependency cone.

Lemma 7.1. The state obtained after reverting as above is valid.

Proof. For the sake of simplicity, suppose that every block contains a col-
lation modifying every subspace; if not, then we assume a phantom “null
collation” for each unaffected subspace i with AN = AP = {i : R(σ[i])}.
First, note that the area of the “dependency cone” during each super-block
corresponds exactly to the combined area of some set of blocks; it cannot
partially include any block because the definition states that if the area of
a block is partially included it must be fully included, and it cannot include
area unoccupied by blocks because of our siplifying assumption. Then, for
each block β, let D(β) be the set of blocks in the dependency cone of the
post-state of that block in the blockchain, and U(β) be the set of blocks not
in the dependency cone. If σf = σpre + β1 + β2 + ..., the post revert state
σ′f will correspond exactly to σpre + U(β1) + U(β2) + ....

We will show why this is true by illustration. Consider a sequence of
states with a set of blocks updating the state during each super-block:

Now, suppose that one of those blocks is invalid. Then, if we manage to
revert immediately in the next block, the state will be moved to the red line
here:

And if we revert later, the state will be moved to the red line here:
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Notice that one can apply the set of still-valid blocks sequentially to σ
to obtain σ′f in all cases.

It is important to note that the revert process is scalable only if the
number of subspaces that an attacker can revert with a single invalid block
is bounded, assuming some bound on the amount of time that it takes for
the bad block to be detected and for the revert to be included. Otherwise,
the attacker can annoy all users by paying less than b ∗ L cost, and so the
algorithm will no longer be scalable under attack. In order to achieve this,
we have two solutions. First, we can specify that each block can have a max-
imum area size k for some fixed k. The other approach is to require blocks
with area larger than k subspaces to have proportionately more validators;
e.g. a block with area of size 4k subspaces should require 8m

3 signatures out
of a pool of 4m in order to be valid. Both strategies ensure scalability under
attack.

8 Stacking

The above schemes provide scalability up to O(N2−ε). But can we go higher
than that? As it turns out, the answer is yes; we can in fact achieve scalabil-
ity of O(Nd−ε) for arbitrary d while satisfying both economic and Byzantine-
fault-tolerance guarantees. We accomplish this by essentially layering the
scheme on top of itself. We replace the two-level system with a generalized
system with d levels: the header chain, level 1 collations, level 2 collations
... level d − 1 collations and then finally transactions. Each level i colla-
tion contains n level i+ 1 collations, except the level d− 1 collations which
contain transactions. We create a d-tiered partitioning scheme, where the
state is partitioning into n level 1 subspaces, then each level i subspace is
partitioned into n level i+1 subspaces, stacking d times where the final level
is accounts.
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Each level i collation includes AP and AN values as before, calculating
AN by determining the root of each level i subspace in the new area, except
that the root is calculated using the level i + 1 collations included in the
level i collation. The validity of a level i collation for i < d − 1 is defined
narrowly, just as is the validity of a header chain, and does not include the
validity of transactions or level i + 2 collations contained in that collation;
all that matters is that the headers of the level i+ 1 collations are available
that the AP values are calculated correctly. If a level i+ 1 collation inside
of a level i collation turns out to be invalid, that is handled through the
purgatory and revert process inside of level i.

There are also now multiple pools of validators, one for each level: level
1 validators in the header chain, level 2 validators in the level 1 subspace,
etc. A collation on level i must be approved by a random selection of m
level i validators. Given that the set of validators at any level may change
during a block, we clarify that we are concerned with validators at the end of
the previous block ; this removes concerns that, because validators are now
not in the header chain and thus require Merkle proofs, they need to be
included in some kind of observed area. Additionally, we add a rule that
if a particular level i collation is challenged and requires more than O(N)
validators to rescue it, we instead require it to be rescued by a pool of m
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level i− 1 validators (and if more than O(N2) validators are required, then
m level i− 2 validators, and so on); this keeps the size of rescue operations,
as well as the random choice lottery, to below O(N).

Suppose that the scheme is attacked, by means of a successful invalid
level i collation. Then, challenges would be placed at depth i, and eventu-
ally the collation’s time in purgatory would expire and the revert procedure
would happen, reverting the i-th level subspace roots. The reversion process
would itself require an object at depth i in order to process. Because the to-
tal economic volume is O(Nd−ε), and there are O(N i−ε) validators at depth
i, the cost of bribing m validators at depth i would be m ∗ Nd−i, and the
block would inconvenience roughly O(Nd−i) users, so a proportionality of
attacker cost to network cost is maintained. The same escalation argument
as before shows that the scheme does not become unscalable until the at-
tacker starts making economic sacrifices superlinear in the economic activity
in the blockchain, and manages to corrupt a great majority of nodes.

In practice, we expect that the extra complexity in implementing such
an ultra-scalable scheme will be sufficiently high that cryptoeconomic state
machine developers will stick to simpler two-level scaling models for some
time. However, the result is important as it shows that, fundamentally, the
level of overhead required in order to have a blockchain of size L is roughly
m ∗ log(L), a very slowly-growing value. With clever use of zk-SNARKs,
perhaps even a completely constant-overhead approach for blockchains of
arbitrary size can be achieved.

9 Strategy

The above sections described the algorithms that can be used to convert
a state transition function into validity criteria that can be used in order
to build a scalable blockchain architecture out of traditional non-scalable
components. However, there is also a need to develop higher-level strategies
that would be used by validators in order to allow a maximally expressive
set of state transitions to effectively execute.

One major category of strategy that must be developed is for index se-
lection. Each collator must determine what set of subspace indices they will
be keeping up to date on the state for, and be willing to produce collations
containing. In the event that transactions requiring a larger area appear, the
groups of collators will likely need to somehow cooperate in order to be able
to produce a collation containing the combined area. One possible strategy
is for validators to arrange subspace indices in a k-dimensional space, and
maintain up-to-date knowledge of σ[i] for either a radius-r cube or at least
two adjacent subspaces. An alternative approach, specialized to simpler
state transition functions involving sending from A to B (such as that of
Bitcoin), is to maintain (i, j) pairs and update i and j often. A third ap-
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proach is adaptive: use some kind of algorithm to determine which subspace
indices appear together most often, and try to keep track of an increasingly
contiguous cluster over time. If transaction senders also adapt their activi-
ties to subspace boundaries, the co-adaptation process can potentially over
time create highly efficient separations.

Additionally, note that index selection also becomes a concern when
one or more collations is in purgatory. In this case, a collation producer
producing a collation on top of a collation in purgatory has the concern
that their collation may be reverted. Hence, a possible strategy that col-
lators may employ in that case is to compute the dependency cones of all
presently challenged collations, and refuse to produce collations that are
fully or partially inside any such dependency cone. In that case, however,
the collation producer may also wish to check availability on the contested
collation themselves, and if it is contested create a rescue object.

The other category of strategy is for transaction sending, particularly
in the context of more complex state transition functions like that used in
Ethereum. If a transaction only affects a few neighboring subspaces, then
an index selection strategy as above will be able to provide easy and global
transfer. However, what happens if an action needs to be performed that has
wide-reaching effect, and it is impractical to put it into a single collation? In
this case, one option is to set up an “asynchronous routing” meta-protocol:
if a transaction affects state σ[i] but also needs to effect a change in σ[j],
then if it is acceptable for the latter change to be asynchronous we can have
a message be passed through a “network” of contracts, first to a contract
in a state neighboring σ[i], then hopping progressively closer to σ[j] during
subsequent transaction executions until finally arriving at σ[j] and effecting
the desired change. Note that this is equivalent to the hypercubes [35]
strategy developed for Ethereum in 2014; but instead of being a core part
of the protocol, the protocol has been abstracted even further out allowing
hypercubes to simply be one of the many possible strategies that the protocol
can lead to.

If the primary purpose of a blockchain is to act as a currency system,
then as long as sufficient liquidity exists one can get by with a very low
amount of interoperability. For example, even if it is only possible to move
funds between subspaces every 1000 blocks, and even then only through a
single central “hub state” (which is assumed all nodes store as a strategy),
that limited movement provides enough fungibility for the currency units
in the various subspaces to maintain fungibility. Cross-subspace payments
can be done by means of various decentralized exchange protocols, treating
the different subspaces as different currencies with the only difference being
that the currency exchange rate will always remain equal to 1. However,
it is debatable whether this approach is preferable to the other strategy
described above of having collators select random (i, j) pairs.

Finally, there is the protocol-level decision of how to maintain the divi-
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sions between subspaces and grow and shrink the total number of subspaces
if necessary. There are several categories of solution here:

• Employ an adaptive algorithms, perhaps adapting Karger’s minimal-
cut algorithm [36], in order to split and join subspaces over time.
Note that this can be done at the strategy level, giving the top-level
consensus the right to split and join subspaces arbitrarily, but making
it economically efficient for them to make splits that create a minimal
cut. One disadvantage of this approach is that if transaction fees are
priced so as to disincentivize cross-subspace activity, fees for specific
operations become unpredictable since subspaces can be rearranged.

• Create new subspaces every time existing subspaces get too large, and
incentivize users that marginally care less about network effect to act
in those subspaces by lowering transaction fee pricing. This removes
the ability to make arbitrary splits, but also leads to unpredictable
pricing since prices do need to go up to incentivize users away from
high-activity subspaces - although the pricing would be far more even
and less discretionary.

• Allow users to set the location of objects in the state with arbitrary
fineness, but with increased cost for higher degrees of fineness. Hence,
objects that need to be very close to each other can pay the cost
for extreme co-location, whereas other objects can place themselves
further apart. This is the strategy undertaken in Gavin Wood’s fiber-
chains proposal[39].

A simple way to record variable partitioning in the header chain is to
store the state as a quadtree[37], or higher-dimensional equivalent (or even
a simple binary tree). A collation can then have a single level-k node at
some position in the quadtree in its pre-state root list, but have multiple
level-k+1 nodes in the same position in the post-state root list, leaving the
next collation free to only modify some of those level-k+1 nodes if desired.

10 Further optimizations

The algorithms described above are meant to be starting points, and are by
no means optimal. The primary areas of optimization are likely to be the
following:

• Reducing the limits imposed on state transition functions while main-
taining identical levels of scalability

• Achieving constant-factor gains by increasing efficiency of Merkle proofs,
block sending protocols, safely reducing the value ofm, reducing churn,
etc.
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• Increasing block speed

• Making reverts less harmful by using inclusive blockchain protocols
(i.e. if β1...βn is the set of blocks that was reverted, and σ′f is the
post-revert state, automatically update to σ′′f = σ′f++β1++...++βn).

• Providing the option for even higher gains of efficiency but at the
cost of less-than-perfect guarantees of atomicity, i.e. reducing m to 8
with the associated cost gains but with the understanding that the
action happens within a cordoned-off area of the state where invalid
transitions will sometimes happen.

• Reducing the number of signature verifications required at the top
level (while keeping the number of validators per collation) constant.

For the first of these, the most promising direction where one can find
easy immediate gains is to try to separate observed area from affected area.
Theoretically, there is no interference risk if two collations in a block share
observed areas, as long as that observed area is not any collation’s affected
area. The challenge is (i) figuring out what hard limits to impose on a
collation in order to make sure that the scheme remains scalable (e.g. if
there are n

2 blocks each using {n2 + i} as their observed area and [n2 ] as

their observed area, the super-block will have n2

4 hashes and will thus be
unscalable), and (ii) figuring out how to manage reverts.

If one wants to go even further, one can allow the affected area of one
collation to be the observed area of another collation, as long as one can
arrange all collations in an order such that each collation is observed be-
fore it is affected. But there is a fundamental tradeoff between expressiv-
ity and fragility: the more the state transition function is able to process
synchronous updates of very many and arbitrary states, the more costly a
successful attack becomes if it must be reverted.

For the second, the largest tradeoff is likely to be that between churn and
security. If one can keep the same m nodes validating the same subspaces
for a longer period of time, e.g. half an hour, one may be able to reduce
network load. Collators may even find it worth their while to download the
entire upper half or two thirds of the Merkle tree for the subspaces into
which they are sorted, allowing for 2x or 3x savings in the data that needs
to be transmitted at the cost of O(N0.5) or O(N0.67) additional bandwidth
per half hour (e.g. assuming a subspace is 1 GB, either 32 KB or 1 MB
per half hour, respectively). However, keeping a constant pool for too long
makes the scheme more attackable.

For the third, the most likely source of gains will be a combination of
two factors. First, the underlying non-scalable consensus algorithm can be
sped up, using inclusive blockchain protocols such as those developed by
Sompolinsky and Zohar[38] or proof-of-stake-based alternatives. Second, we
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can amend the top-level validity rule to say that collations do not need sig-
natures in order to enter the header chain; however, in order for a state root
to be considered finalized it must be signed and the signature must enter
the header chain after the fact. This allows collations to be “partially con-
firmed” and even allows collations to be built on top of partially confirmed
collations, as long as everything is fully confirmed eventually. Efficiency in
such a scheme can be increased further, as a single validator signature can
be used to attest to multiple collations by using an identifier.

For the fifth, an ideal goal would be to have a blockchain design which
allows users to pick a point on the entire tradeoff space between cost and
probability of failure, essentially capturing in the base protocol concepts like
“auditable computation” [40] (where computation is done by a third party
by default, but if an auditor finds the third party provided an incorrect
result the auditor can force the execution to be re-done on the blockchain
and if the third party is indeed in the wrong it loses a security deposit from
which the auditor will be able to claim a bounty).

For the sixth, the simplest strategy is to separate collation inclusion
from collation verification. We can do this by allowing collations to enter the
header chain unsigned, but first placing them in a special “pending” status.
Validators can then sign collations on the header chain, and once a collation
has been signed enough times it becomes accepted pending challenges and
starts counting down the timer until finalization. The benefit here is that a
single signature can be used to attest to the validity of multiple collations,
by having the validator sign an encoded list of indices of collations that they
believe are valid.

Finally, there is plenty of room for optimization in strategies, figuring
out how validators can self-organize in order to maximize the expressivity
of the state transition function in practice. The ideal goal is to present an
interface to developers that “just works”, providing a set of highly robust
abstractions that achieve strong security bounds, freeing developers of the
need to think about the underlying architecture, math and economics of the
platform unless absolutely necessary. But this problem can be solved much
later than the others, and solutions can much more easily continue to be
iterated even after the underlying blockchain protocol is developed.

11 Conclusion

Using the reference-by-state-root homomorphism scheme described here, we
can create blockchain protocols with the ability to process O(N2−ε) trans-
actions in an environment where no user has access to more than O(N)
computational power. The scheme that we describe has the particular bene-
fit that it makes very few assumptions about the underlying state transition
function, except that it includes a currency which can be used to hold secu-
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rity deposits, and it makes very few assumptions about the underlying con-
sensus algorithm, except that there exists some concept of a “block maker”
(proposer in Tendermint, miner in Bitcoin) - and even that requirement can
be dispensed with if we are not interested in economic security.

The scheme makes minimal compromises to security, scalability or inter-
operability, except for making the compromise that state transitions must be
localized to a small area with a high degree of correlation between the sub-
spaces that are modified together. In those cases where rare combinations
of subspaces must be modified by one transaction, we offer the second-best
alternative of asynchronicity via a hypercube-style relay network. Although
one may criticize the solution for adding a higher amount of complexity
at the bottom layer, we argue that this brings a tradeoff of significantly
reducing complexity for application developers, who are exposed to an in-
terface almost unchanged from non-scalable blockchains; developers have
no additional need to think about cryptoeconomic security margins, trusted
parties or rigging up application-specific revert procedures to ensure cross-
chain atomic transactions. We hope that the higher throughput and lower
transaction fees that will result from our designs can form the basis for a
next wave of blockchain adoption.
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