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ABSTRACT
Decentralized exchanges (DEXes) have introduced an in-
novative trading mechanism, where it is not necessary to
match buy-orders and sell-orders to execute a trade. DEXes
execute each trade individually, and the exchange rate is
automatically determined by the ratio of assets reserved in
the market. Therefore, apart from trading, financial players
can also liquidity providers, benefiting from transaction fees
from trades executed in DEXes. Although liquidity providers
are essential for the functionality of DEXes, it is not clear
how liquidity providers behave in such markets.

In this paper, we aim to understand how liquidity providers
react to market information and how they benefit from pro-
viding liquidity in DEXes. We measure the operations of
liquidity providers on Uniswap and analyze how they deter-
mine their investment strategy based on market changes. We
also reveal their returns and risks of investments in different
trading pair categories, i.e., stable pairs, normal pairs, and
exotic pairs. Further, we investigate the movement of liquid-
ity between trading pools. To the best of our knowledge, this
is the first work that systematically studies the behavior of
liquidity providers in DEXes.

1 INTRODUCTION
Traditionally, trading is executed on centralized exchanges
(CEXes), using the limit order book mechanism. With this
mechanism, each seller is matched with a buyer for a trade.
In the cryptospace, when traders for instance want to ex-
change Ether (ETH) with Bitcoin (BTC) through a CEX, they
have to transfer their ETH to the account of the centralized
operator, submit their sell orders of ETH, wait for matching
corresponding buy orders of ETH, and then withdraw the
incoming BTC from the market operators after the execution
of their orders. This is cumbersome but also risky, since the
funds are temporarily with the CEX.
Recently, there is an alternative in the form of decen-

tralized exchanges (DEXes). Currently DEXes are popular
in cryptocurrency markets, but eventually fiat currencies,
stocks or other commodities might be traded on DEXes as
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well. So understanding DEXes may be important beyond just
cryptocurrency applications.

DEXes are based on smart contracts running on a blockchain.
In contrast to the limit order book mechanism, traders do
not need to be matched to a trading partner with opposite in-
tentions. In a DEX, trades are completed immediately when
the orders are recorded on the blockchain.

Uniswap is themost popular DEX. As an example, consider
trades between BTC and ETH. The Uniswap platform offers a
smart contract (liquidity pool) with locked-in funds for these
two cryptocurrencies. When a trader wants to exchange ETH
for BTC, the trader just needs to send their ETH to the smart
contract. The smart contract will then immediately send the
appropriate amount of BTC back to the trader, while the ETH
sent by the trader will be locked in the smart contract. The
exchange rate is primarily determined by the ratio of BTC
to ETH stored in the smart contract. The BTC and ETH in
the smart contract are providing the liquidity for the trades
between BTC and ETH on Uniswap.

In a DEX pool, liquidity is provided by liquidity providers.
These liquidity providers lock their cryptocurrencies into the
corresponding liquidity pools. DEXes generally charge a per-
centage transaction fee for each trade executed on the plat-
form. This transaction fee is shared by the liquidity providers
in proportion to their liquidity contributions. Therefore, with
the emergence of DEXes, users have new investment oppor-
tunities in the cryptocurrency ecosystem: they can offer their
assets in DEXes as liquidity and benefit from transaction fees.
Many interesting questions emerge: How many differ-

ent pools are liquidity providers invested in? What are the
expected earnings from transaction fees? How do liquidity
providers react to market forces? Do liquidity providers redis-
tribute their assets? As DEXes are an emerging phenomenon
that might cross over to other markets beyond cryptocurren-
cies, it is interesting to understand the motives of liquidity
providers.
In this paper, we quantitatively measure the behavior of

liquidity providers. We collect data from Uniswap, the most
popular DEX in the cryptocurrency ecosystem, to study liq-
uidity provider contributions, returns, and strategies. First,
we analyze the distribution of liquidity providers in Uniswap,
examining the creation of liquidity pools, the distribution
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of liquidity, and the participation of liquidity providers in
these pools. Although Uniswap allows users to create liq-
uidity pools between any pair of tokens, more than 80% of
liquidity pools include ETH, and six popular tokens domi-
nate the market. Moreover, more than 60% liquidity is locked
in the top 24 pools. Cryptocurrency holders act restrained
concerning these new investments: approximately 70% of
providers reserve their liquidity in a single pool. However,
these seemingly conservative liquidity providers contribute
more than 50% of the liquidity in the most popular pools.
This indicates that individual providers, as opposed to pro-
fessional market makers, control the liquidity of DEXes. In
examining the addition and removal of liquidity day by day,
we find that the market change of liquidity is relatively sta-
ble, i.e., the correlation between the number of injections
and withdrawals is 0.922.
To understand the behavior of liquidity providers, we

study the risks and returns they face across three different
pool Uniswap categories: stable, normal and exotic. We find
that while stable and normal pairs may provide attractive
investment opportunities for liquidity providers depending
on the individual risk tolerance and return expectations, the
exotic pools investigated are not. Those demonstrated deeply
negative returns accompanied by high risk.
Liquidity providers do not frequently move their assets

across different pools, seemingly indifferent to price changes
or other market indicators. However, we observe that many
traders redistribute their liquidity given the opportunity to
earn additional benefits of liquidity mining on top of trans-
action fees. This inspires to study what external factors are
influencing the behavior of liquidity providers.
This paper makes the following contributions. First, we

conduct a systematic investigation on the liquidity providers
in Uniswap to outline the participants of users in such emerg-
ing trading activities. Second, we classify three categories of
liquidity pools and analyze the investment returns and risks
of liquidity providers in those pools. We present the variabil-
ity of investment strategies for different types of liquidity
pools. Finally, we demonstrate the movement of liquidity
around the entire DEX and suggests the significant influence
of external factors on liquidity providers, such as liquidity
mining activities.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the background of DEXes. First,
we present the technology basis of the Ethereum blockchain,
smart contracts, and the mechanism of DEXes. We also re-
view two types of previous work: quantifying user behavior
on DEXes and analyzing returns of liquidity providers.

2.1 Ethereum Blockchain and ERC20
Standard

Ethereum is a public blockchain platform, which supports
Turing complete smart contracts. Compared to earlier blockchain
systems, such as Bitcoin, Ethereum provides a decentralized
virtual machine, the Ethereum Virtual Machine (EVM), to
execute smart contract code. A smart contract is a set of pro-
grams written in high-level languages, e.g., Solidity. These
programs will be compiled into executable byte-code. After
the creation of the smart contract, the executable byte-code
will be stored in an independent database of the blockchain.
Any Ethereum users can invoke functions defined in a smart
contract.
Ethereum supports three kinds of transactions: a simple

transaction, where the recipient is another address (account)
to transfer the native currency, ETH; a smart contract creation
transaction, without recipient is the null to create a new smart
contract; a smart contract execution transaction, where the
recipient is a smart contract address to execute a specific
function of that contract.

When a transaction is included in a block by a miner, the
operation corresponding to the message takes effect. The
miner who creates the block modifies the state of correspond-
ing accounts based on the messages. Each step of the miner’s
operation consumes a certain amount of gas, and the amount
of gas consumed in each block is capped. Users need to spec-
ify a gas price for the operation execution when sending
transactions. The fee paid by the initiator of a transaction
to miners is determined by the amount of gas consumed
and the gas price (gas fee = gas price × gas consumption).
The miner will include a receipt of the executed transactions
in Ethereum blocks as well, including the information on
whether the transaction has been executed successfully, the
gas fee, the identity of the transaction and the block, and
other information generated during the execution.
Based on the support of the smart contract, users can

create cryptocurrency other than ETH on Ethereum. These
smart contracts have to follow some standards; the most
widely used standard is the ERC20 standard, which requires
an approve function and a transferFrom function.When an
address (account)𝑎𝑑𝑑𝑟𝑎 calls the function approve(𝑎𝑑𝑑𝑟𝑏, 𝑣),
then the address 𝑎𝑑𝑑𝑟𝑏 can transfer at most 𝑣 tokens in to-
tal from 𝑎𝑑𝑑𝑟𝑎 to other accounts. After this approval, 𝑎𝑑𝑑𝑟𝑏
can transfer 𝑣 ′ tokens from 𝑎𝑑𝑑𝑟𝑎 to another account 𝑎𝑑𝑑𝑟𝑐
by calling the function transferFrom(𝑎𝑑𝑑𝑟𝑎, 𝑎𝑑𝑑𝑟𝑐, 𝑣 ′),
where

∑
𝑣 ′ ≤ 𝑣 .

2.2 DEXes
DEXes are smart contracts on Ethereum. Users send mes-
sages to a DEX address to invoke functions for performing
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market operations. DEXes support these operations: cre-
ate the trading (liquidity) pool between a pair of tokens,
adding/removing liquidity, and exchanging tokens. We take
Uniswap as an example to present these operations. Uniswap
is often also called an automated market maker DEX or a
constant function market maker DEX. There are currently
three Uniswap versions, V1, V2, and V3. Uniswap V2 is the
predominated market at the time of this writing. So we
study Uniswap V2 as example in this paper as it provides
us with the biggest data set. Furthermore, other DEXes, e.g.
Sushiswap, have similar mechanisms as Uniswap V2.

2.2.1 Creating Liquidity Pools. In Uniswap, exchanges
between two tokens are conducted through a liquidity pool,
i.e., a smart contract that keeps the pair of tokens. There
are two participants involved in the market: the liquidity
provider and the trader. Providers reserve their tokens in the
liquidity pool, while traders exchange their tokens with the
liquidity pool. Because providers contribute to the market
liquidity, they benefit from the transaction fees incurred with
transactions in DEXes.
Assume we have two tokens 𝐴 and 𝐵, and we want to

create a liquidity pool between𝐴 and 𝐵 on Uniswap. We first
send a smart contract execution transaction with the ERC20
smart contract address of 𝐴 and 𝐵 to the Uniswap to claim
the creation of the liquidity pool 𝐴 ⇌ 𝐵. The smart contract
will then check whether the pool between 𝐴 and 𝐵 exists
according to the addresses of two tokens. If not, Uniswap
smart contract will create a new liquidity pool 𝐴 ⇌ 𝐵, i.e., a
new smart contract reserving these two tokens.

2.2.2 Adding/Removing Liquidity. After creating the liq-
uidity pool between 𝐴 and 𝐵, liquidity providers can add a
token pair to the liquidity pool. Liquidity providers need to
approve the Uniswap address to transfer their𝐴 token and 𝐵
token from their address to the liquidity pool address. When
a Uniswap contract receives a liquidity providers call to add
liquidity, it will invoke the transferFrom function in ERC20
contracts to transfer tokens from the provider’s address to
the liquidity pool address.

If there are no tokens reserved in the liquidity pool, users
can supply any amount of 𝐴 and 𝐵 to the liquidity pool, and
the pool will return liquidity tokens as proof of the deposit. If
the amounts of𝐴 and 𝐵 provided by the providers are 𝑎 and𝑏,
respectively, then the provider will get 𝜆 =

√
𝑎 × 𝑏 liquidity

tokens. Meanwhile, the total supply of liquidity tokens of
𝐴 ⇌ 𝐵 pool is Λ =

√
𝑎 × 𝑏.

With 𝑎 of token𝐴 and 𝑏 of token 𝐵 already in the liquidity
pool, a provider can reserve 𝛿𝑎 of its asset 𝐴 and 𝛿𝑏 of its
asset 𝐵 in the liquidity pool simultaneously, where 𝛿𝑎

𝛿𝑏
= 𝑎

𝑏
.

Then they will earn 𝛿𝜆 = 𝑙 · 𝛿𝑎
𝑎
liquidity tokens for the𝐴 ⇌ 𝐵

and the total supply of liquidity tokens becomes Λ = 𝜆 + 𝛿𝜆 .

Providers can also remove their tokens from the liquidity
pool. The amount of tokens providers can redeem is related to
the amount of liquidity tokens they own. Assume a provider
has 𝛿𝜆 liquidity tokens of the liquidity pool 𝐴 ⇌ 𝐵 and
the total supply of liquidity tokens is 𝜆. The provider can
withdraw 𝛿𝑎 of 𝐴 and 𝛿𝑏 of 𝐵 from the 𝐴 ⇌ 𝐵 pool with
𝛿 ′
𝜆
≤ 𝛿𝜆 liquidity token, where 𝛿𝑎

𝑎
=

𝛿𝑏
𝑏

=
𝛿′
𝜆

𝜆
. The 𝛿 ′

𝜆
of

liquidity tokens will be burned (destroyed) after they redeem
the money and the total supply of liquidity tokens becomes
Λ = 𝜆 − 𝛿 ′

𝜆
.

2.2.3 Exchanging Assets. In Uniswap, tokens are not ex-
changed between two traders but between a trader and the
liquidity pool. The exchange of assets is realized in two steps.
First, the traders sends their tokens to the liquidity pool.
Second, the liquidity pool computes the exchange rate and
returns the targeted token to the traders.

Assume traders wants to exchange 𝛿𝑎 of𝐴 for 𝐵 token and
the liquidity of 𝐴 and 𝐵 are 𝑎 and 𝑏. They first need to let
the Uniswap address get the approval for transferring his 𝐴
token to other accounts. After receiving the exchange order
from the traders, the Uniswap contract transfers 𝛿𝑎 of 𝐴 to
the liquidity pool address and returns 𝛿𝑏 of 𝐵 back to the
traders.

The following equation always holds during the exchange:
𝑎 ·𝑏 = (𝑎+𝛿𝑎 ·𝑟1) · (𝑏 − 𝛿𝑏

𝑟2
), where 𝑟1 and 𝑟2 denote the trans-

action fee ratio in asset 𝐴 and 𝐵 respectively. In Uniswap,
𝑟1 = 0.997 and 𝑟2 = 1, which indicates that the transaction
fee is equal to 3‰·𝛿𝑎 . The remaining liquidity in the pool
equals to (𝑎 + 𝛿𝑎, 𝑏 − 𝑟1 ·𝑟2 ·𝑏 ·𝛿𝑎

𝑎+𝑟1 ·𝛿𝑎 ) and the amount of liquidity
tokens does not change.

2.3 Liquidity in DEXes
This paper aims to study liquidity providers in DEXes quan-
titatively. In this section, we review previous work in two
aspects: quantitative studies of market behavior in DEXes,
and studies on liquidity providers in DEXes.

Since all transaction information is broadcast through the
blockchain network and all transactions in DEXes are pub-
lic to all market participants, researchers are able to study
the market behavior of traders in cryptocurrency ecosys-
tems. Chen et al. [3] provide a basic view of the ERC20 to-
kens on Ethereum. They visualize how cryptocurrencies
are created, held, and transferred by traders. Other works
explore more detailed behavior of traders in the markets.
Daian et al. [4] measures front-running trades on DEXes.
Because of the transparency and latency of DEXes trans-
actions, traders are able to observe profitable transactions
before they are executed and place their own orders with
higher fees to front-run the target victim. Such behaviors
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result in a high miner-extractable value, which brings sys-
temic consensus-layer vulnerabilities. Torres et al. [10] and
Qin et al. [8] quantify the revenue of traders who conduct
a combination of front-running and back-running transac-
tions, i.e., sandwich attacks [13], demonstrating the normal
transactions are vulnerable to arbitrageurs. Wang et al. [12]
study another arbitrage behavior, i.e., cyclic arbitrages (tri-
angular arbitrages) in Uniswap, which profits traders with
price differences across different trading pools. They claim
that implementing transactions with private smart contracts
is more resilient to front-running attacks than directly call-
ing public functions of DEXes smart contracts. Although
previous studies have provided an in-depth understanding
of traders in the cryptocurrency ecosystems, they mainly
focus on the behavior of normal traders. The novel trading
option of providing liquidity on DEXes has not been well
studied. Therefore, this paper aims to fill the research gap
and inspires more work in this direction.
A separate line of work has analyzed the returns of liq-

uidity providers theoretically with microstructure models.
Evans [5] studies the returns of liquidity providers when
there is no transaction fee charged and claims that it is better
to invest in constant-mix portfolios than providing liquidity.
Moreover, Evans et al. [6] develop a framework for deter-
mining the optimal transaction fees for AMM DEXes and
show that providing liquidity to DEXes is preferable to all
alternative trading strategies as fees approach zero. Aoyagi
[2] conducts a game-theoretical analysis between liquidity
providers and informed traders to estimate the returns of liq-
uidity providers in DEXes. These studies have ideal assump-
tions on information delivery and price fluctuations of assets,
which do not coincide with the real scenarios. Moreover, they
have not considered how liquidity providers choose between
different trading pools. To the best of our knowledge, none
of the previous studies have empirically analyzed the trad-
ing behavior of liquidity providers in real DEXes. To better
understand the new trading option in DEXes, we measure
the real behavior of liquidity providers in Uniswap and study
how they react to market indicators, which will inspire bet-
ter theoretical models for analyzing liquidity providers in
DEXes.

3 DATA DESCRIPTION
To measure the behavior of liquidity providers in Uniswap
and understand how their trading strategies are influenced
by market factors, we collect all transactions recorded on
Ethereum from block 10000835 (where Uniswap V2 has been
deployed, on May 4, 2020) to block 11709847 (on January

23, 2021)1. We develop and launch a modified version of go-
ethereum client, which exports all transactions executed on
Uniswap.
The addresses of liquidity pool smart contacts are stored

in the UniswapV2Factory contract. We query this contract
to get the contract addresses and token pairs of 29,235 avail-
able trading pools until January 23, 2021. Then, we find
21,830,282 transactions interacting with these liquidity pools
as Uniswap trades and filter those containing Mint and Burn
events, representing adding liquidity, and removing liquidity,
respectively.
In each Mint event, liquidity tokens of the liquidity pool

will be generated by the liquidity pool smart contract and
then transferred from the 0 address to the address of liquidity
providers. Similarly, in each Burn event, liquidity providers
transfer their liquidity tokens to the 0 address. Moreover,
some traders may exchange liquidity tokens in other trans-
actions, while liquidity pools will generate Transfer events
to record such liquidity token movements. With the infor-
mation of Mint, Burn, and Transfer events, we compute the
balance of liquidity tokens of liquidity providers in each pool.
To further evaluate the behavior of liquidity providers

and its dependence on pool characteristics on Uniswap, we
require the price of each cryptocurrency in a common cur-
rency – USD in our case. As many cryptocurrencies do not
have a market price, we first compute the price of each cryp-
tocurrency studied in ETH. This data is obtained from the
common pool with ETH of the cryptocurrency in question.
Such a pool exists for most cryptocurrencies. The ETH price
then allows us to calculate the value of each token in USD
historical data for the ETH price in USD from coinbase2.

4 LIQUIDITY DYNAMICS IN DEXES
In this section, we provide an overview of liquidity pools
on Uniswap. Unlike traditional centralized exchanges where
only the cryptocurrencies permitted by operators can be
traded on the platforms, DEXes allow any Ethereum users to
create trading pools between any pair of tokens. As shown
in Figure 1, the number of liquidity pools increases quickly
with the emergence of Uniswap and continues to rise at a
rate of over 100 per day until November 2020. After that, the
daily growth of liquidity pools has gradually slowed down
and keeps at a rate of 50 pools per day by the end of January
2021. In total, we find 29,235 available liquidity pools, which
involve 25,231 cryptocurrencies, while 22,828 tokens only
have a single trading pool. The most popular token is ETH,
24,011 tokens share a liquidity pool with ETH. Except for
ETH, the most popular cryptocurrencies are USDT (1321),
USDC (627), DAI (542), UNI (270), and WBTC (148). These

1Block data is available at https://www.ethereum.org/
2https://www.coinbase.com/
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Figure 1: Number of liquidity pools on Uniswap from
4th May 2020 to 23rd January 2021. The orange dotted
line represents the number of all liquidity pools on
Uniswap, while the black line shows the number of
daily emerging pools.

Figure 2: Distribution of liquidity in Uniswap on Jan-
uary 23, 2021.

tokens are either stable coins whose value is anchored at
1 USD or tokens with high value. Until 23rd January 2021,
Uniswap has reserved more than 2.5 billion ETH and more
than 60% of liquidity is located in the top 24 popular pools
(Figure 2).

Apart from the distribution of liquidity pools, we also
measure the participation of liquidity providers in Uniswap.
Although some traders may use several addresses to provide
liquidity on Uniswap, more than 82% of Ethereum users only
control a single account [11]. Therefore, in this paper, we
consider each address as a single liquidity provider. In total,
we find 183,823 addresses add liquidity to liquidity pools on
Uniswap, while 107,352 of them keep reserving their tokens
in Uniswap by 23rd January 2021 (Figure 3). Initially, most
liquidity providers reserve their money only in one liquidity
pool, and the average number of pools they participate in is
less than 1.4 until September 2020. Later on, during October
and November, liquidity providers are interested in more
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Figure 3: The number of liquidity providers over time.
The gray line demonstrates the number of providers
that only participate in one pool. The colorful dot-
ted line is the number of active liquidity providers in
Uniswap, and the color indicates the average number
of pools that liquidity providers participate.

Figure 4: Distribution of the number of liquidity pools
that each liquidity provider participates in. About
10,000 only participate in a single pool (top left), and
some providers participate in many pools (bottom
right).

pools, as we see the average number of pools providers are
involved in increases to 1.8.
As shown in Figure 4, the distribution of the number of

liquidity pools that each liquidity provider participates in
follows the power law. The largest providers participate in
120 pools and more than 96.5% of the accounts reserve their
money in no more than 5 pools.

In general, becoming liquidity provider is not yet a popular
investment strategy in the cryptocurrency ecosystems. Most
liquidity providers only participate in a single pool. Even

Leon Helg



Submission Ye Wang, Lioba Heimbach, and Roger Wattenhofer

Figure 5: Number of liquidity providers per pool. The
DAI-WETH pool has more than 6,000 individual liq-
uidity providers. More than 4,000 of them only con-
tributed to this one (1) pool. The other colors repre-
sent providers which are providing liquidity to more
than one (2,3,...) pool.

for those popular liquidity pools on Uniswap, more than
70% of providers reserve their cryptocurrency assets only in
one of them. Only few providers spread their assets in more
than 10 pools (Figure 5). Liquidity providers reserve their
cryptocurrency assets only in one pool have taken a serious
role in the DEXes ecosystem, as they provide more than half
liquidity in these popular pools (Figure 6). This fact suggests
that DEXes are not controlled by oligopoly and professional
market makers. Ordinary users contribute the most to the
healthy operation of the decentralized market mechanism.

During the nine analyzed months, liquidity providers have
gradually added and removed liquidity from different pools,
while they reserve their tokens 1,011,524 times on Uniswap
(Figure 7) and withdraw them for 527,429 times (Figure 8).
We find that the day by day correlation between the number
of liquidity injections and liquidity withdrawals is very high
(0.992), indicating that the market size is growing steadily.
Moreover, in terms of days, the market behaviors of liquidity
providers are relatively consistent. Almost half of liquidity
operations from August to September take place in the most
popular pools. However, these pools become less active from
October onwards. On the one hand, we may consider the
liquidity in these popular pools to become stable after five
months of the development. On the other hand, this fact also
indicates a rapid change of interests in the liquidity pools of
investors in the cryptocurrency ecosystems.
We have specified 12 pools with the most liquidity injec-

tions and withdrawals in Figure 7 and Figure 8. As most
liquidity operations occur in these pools, the patterns of
liquidity changes in these pools can represent the trading
behavior of liquidity providers in DEXes well. For instance,

Figure 6: Total liquidity per pool. The biggest pool is
USDC-WETH with more than 200,000 ETH liquidity.
About 125,000 ETH is funded by liquidity providers
which only contributed to this one (1) pool. The other
colors represent providers which are providing liquid-
ity to more than one (2,3,...) pool.

Figure 7: Number of mint events per month executed
in different liquidity pools in Uniswap. In September
2020 there were more then 300,000 mint events in to-
tal.

we can observe a clear difference between the three types of
liquidity pools: normal pools, stable pools, and exotic pools.

In the normal liquidity pools, both cryptocurrencies traded
in the pools have a certain value, such as𝑈𝑆𝐷𝐶 ⇌𝑊𝐸𝑇𝐻 ,
𝑊𝐵𝑇𝐶 ⇌ 𝑊𝐸𝑇𝐻 , and 𝐷𝐴𝐼 ⇌ 𝑊𝐸𝑇𝐻 . These cryptocur-
rencies are recognized in the cryptocurrency ecosystems.
To support trades between these cryptocurrencies, the liq-
uidity in the pools is relatively high (Figure 2). Although
the price of normal tokens may fluctuate, the price trend

Leon Helg
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Figure 8: Number of burn events per month executed
in different liquidity pools in Uniswap. In September
2020 there were more then 140,000 burn events.

is relatively stable and in line with the development of the
cryptocurrency ecosystem.
In stable pools, both tokens traded in the pool are stable

coins, such as 𝑈𝑆𝐷𝐶 ⇌ 𝑈𝑆𝐷𝑇 and 𝐷𝐴𝐼 ⇌ 𝑈𝑆𝐷𝐶 . The
price fluctuations of stable coins are negligible. Thus, the
market environment has little impact on stable pool liquid-
ity providers. Since the price of the stable coins remains
largely constant, liquidity providers earn profits by charging
transaction fees.

The remaining pools are referred to as exotic pools. In such
pools the price of one trading token is extremely volatile.
The price of these tokens changed by more than a hundred
times during our measuring period. As we show in Figure 2,
although many liquidity operations have been applied on
these pools, they are not part of the high liquidity value by
23rd January 2021, as little liquidity remains in the pool –
for example, YAM, MOON, and KIMCHI. For these exotic
cryptocurrencies, liquidity providers take more risks because
of their dramatic price fluctuations. When the price of the
exotic token changes drastically, the other coin they have re-
served in the pool may be emptied instantly by other traders.
Given the significant differences of these three kinds of

pools, we infer that the distribution of liquidity providers,
their trading strategies, and the investment return across
these three categories differ. Therefore, we measure the ac-
tivities of liquidity providers in these pools separately and
analyze how they react market changes.

5 RETURNS AND RISKS OF PROVIDING
LIQUIDITY

Evans et al. [5] suggest that the returns of providing liquid-
ity are lower than investing in the constant-mix portfolios

if the transaction fee is zero. However, in reality, liquidity
providers can benefit from their contribution to the liquidity
pools through strictly positive transaction fees, which results
in different returns and risks compared to the previous the-
oretical analysis. To better understand liquidity providers’
motivation in DEXes, we compare the return received by
liquidity providers to holding the respective assets according
to the given token ratio during the initial liquidity injection.

The return between time 𝑡1 and 𝑡2 in percent is given as

return𝑡1→𝑡2 = 100 ·
invest𝑡2
hold𝑡2

− invest𝑡1
hold𝑡1

invest𝑡1
hold𝑡1

,

where invest𝑡 , which is the current value in USD of the liq-
uidity placed in the pool at time 𝑡 and hold𝑡 is the value in
USD of the constant-mix portfolio at time 𝑡 .
This return is positively influenced by the fees collected

from trades performed in the pool and negatively impacted
by the impermanent loss, otherwise referred to as divergence
loss. Consider a liquidity pool 𝐴 ⇌ 𝐵 between token 𝐴 and
𝐵, where the amount of 𝐴 in 𝐴 ⇌ 𝐵 at time 𝑡 is denoted as
𝑎𝑡 and the amount of 𝐵 in 𝐴 ⇌ 𝐵 at time 𝑡 is denoted as 𝑏𝑡 .
The fees collected between time 𝑡1 and 𝑡2 as a percentage of
the liquidity are given as,

fees𝑡1→𝑡2 = 100 ·
(
1 −

√︁
𝑘𝑡1√︁
𝑘𝑡2

)
,

where 𝑘𝑡 = 𝑎𝑡 · 𝑏𝑡 [1]. The impermanent loss, on the other
hand, describes the risk for liquidity providers of seeing the
value of their reserved tokens decrease in comparison to
holding the assets. This occurs with any price change in the
pool. More precisely, the impermanent loss between 𝑡1 and
𝑡2 is given as,

impermanent loss𝑡1→𝑡2
= 100 ·

©­­«
2 ·

√︃
𝑝𝑡2
𝑝𝑡1

1 + 𝑝𝑡2
𝑝𝑡1

− 1
ª®®¬ ,

where

𝑝𝑡 =
𝑏𝑡

𝑎𝑡
,

is the ratio between tokens in the pool at time 𝑡 [7]. Due to
the impermanent loss, reserving of tokens runs the risk of
under-performing a buy and hold strategy of a constant-mix
portfolio.
The returns and the impermanent loss may vary greatly

across the different liquidity pool categories, namely nor-
mal pools, stable pools, and exotic pools. Thus, to provide
a comprehensive understanding of returns and risks of pro-
viding liquidity in Uniswap, we analyze them separately.
We look at nine pools in detail - three of each kind (stable
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(a)𝑈𝑆𝐷𝐶 ⇌ 𝑈𝑆𝐷𝑇

(b) 𝐷𝐴𝐼 ⇌ 𝑈𝑆𝐷𝑇

(c) 𝐷𝐴𝐼 ⇌ 𝑈𝑆𝐷𝐶

Figure 9: Evolution of the return, fees and imperma-
nent loss over four months for stable pairs. Stable
pairs do not suffer from impermanent loss.

pairs: USDC⇌ USDT, DAI⇌USDT, and DAI⇌USDC; nor-
mal pairs: UNI⇌WETH, LINK⇌WETH, DPI⇌WETH; ex-
otic pairs: MOON⇌WETH, KIMCHI⇌SUSHI, KIMCHI⇌
WETH)3. We choose pools through a combination of size
and variety. When analyzing the data, we observe the same
four-month period between the end of September 2020 and
the end of January 2021, i.e., the time during which all nine
sample pools were active. Further, when looking at daily
returns, we consider the average daily return as opposed to
the closing daily return to mitigate the effects of short-term
in-balances in pool reserves. Such imbalances occasionally
occur after trades that are large in comparison to the pool
reserves. Due to the influence of the impermanent loss on
the returns, the inaccurate price ratio causes starkly nega-
tive returns. However, these temporary imbalances recover

3In picking pools, we excluded liquidity mining pools (i.e., WETH⇌USDT,
WETH⇌USDC, WETH⇌DAI and WETH⇌WBTC), as the influence of the
liquidity mining program clearly presents itself in the data.

quickly as other trades see an arbitrage opportunity due to
the inaccurate price ratio.

In Figure 9, 10 and 11, we show the evolution of the return,
fees and impermanent loss of stable pools, normal pools, and
exotic pools over time, respectively. Each of the three stable
coins (USDT, USDC, and DAI) tracks the USD. Thus, the ratio
between each pair is close to one at all times, and imperma-
nent loss plays a subordinate role in determining the returns
and is therefore negligible. Rather, the fees received through
trades in the pool dominate the return. This dependency is
apparent from the almost overlaying curves for return and
fees shown across all three pairs show in Figure 9. Moreover,
due to negligible price fluctuations and continuous collection
of fees, liquidity providers in stable pools can expect positive
returns independent of the time of the liquidity injection.
Therefore, providing liquidity in stable pools appears almost
risk-free with consistent and stable revenue.
The influence of the impermanent loss on the profits of

liquidity providers becomes more apparent for the two other
types of pools – normal and exotic. For normal pairs (Fig-
ure 10), the cumulative return fluctuates below and above
zero, influenced both by the ever-changing impermanent
loss and the steadily increasing fees collected. Finally, we
observe even starker domination of the impermanent loss
for the return rate in Figure 11. Due to the high price volatil-
ity characteristic for exotic pairs, we observe impermanent
losses of around 70% over a four-month period, which the
collected fees cannot compensate – leading to deeply red
returns.
Figure 12 illustrates the fee distribution observed in the

nine sample pools. While we can detect differences in the
distributions of the fees collected in the various pools, there
is no apparent pattern between the different types of pools.
The fees collected by liquidity providers appear to depend
more on the specific pair than on whether the pair is stable,
normal, or exotic.
Turning to the return rate observed in our sample pools,

Figure 13, we clearly observe patterns between the three dif-
ferent types of pools. Due to the previously observed negligi-
ble influence of impermanent loss on the profits expected in
stable pairs, the daily returns in stable pools are rarely, if ever,
negative – Figure 13a. Thus, all having positive daily average
returns of around 0.03%. For the normal pairs, Figure 13b, we
observe significantly higher volatility in the returns, accom-
panied by both higher (0.04% for 𝐿𝐼𝑁𝐾 ⇌𝑊𝐸𝑇𝐻 ) and lower
(0.00% for𝐷𝑃𝐼 ⇌𝑊𝐸𝑇𝐻 ) daily returns than previously seen
for the stable pairs. Finally, the exotic pairs seen in Figure 13c
are characterized by even larger return volatility and very
negative daily returns (-0.76% for 𝐾𝐼𝑀𝐶𝐻𝐼 ⇌ 𝑆𝑈𝑆𝐻𝐼 ).
To summarize the risks and returns associated with pro-

viding liquidity, we turn to Figure 14. There we plot the
daily mean returns observed in each sample pool against the
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(a)𝑈𝑁𝐼 ⇌𝑊𝐸𝑇𝐻

(b) 𝐿𝐼𝑁𝐾 ⇌𝑊𝐸𝑇𝐻

(c) 𝐷𝑃𝐼 ⇌𝑊𝐸𝑇𝐻

Figure 10: Evolution of the return, fees and imperma-
nent loss over four months for normal pairs. Some-
body funding LINK-WETH in November, and pulling
out in January would have suffered a loss, since the ac-
cumulated fees do not make up for the impermanent
loss.

daily conditional value at risk (CVaR). CVaR is a coherent
risk measure that represents the average worst-case scenario.
More precisely, CVaR at 5% level is the expected return on
an investment in the worst 5% of cases [9]. We use historical
data to calculate the daily mean and CVaR of the returns.
Analyzing Figure 14 allows us to extract patterns emerging
between the three different kinds of pools that in-line with
our previous observations. In general, the three exotic pairs
have the highest risk, measured through the CVaR, as well
as the lowest average return associated with them. Exotic
pairs make an inefficient investment to liquidity providers,
as all three exotic pairs are dominated, i.e., higher return and
lower risk, by each of the remaining pairs. For the normal
pairs, on the other hand, the picture is more complex. While
the 𝐷𝑃𝐼 ⇌𝑊𝐸𝑇𝐻 pair is dominated by all stable pairs, the
remaining two normal pairs are not. 𝐿𝐼𝑁𝐾 ⇌𝑊𝐸𝑇𝐻 and

(a)𝑀𝑂𝑂𝑁 ⇌𝑊𝐸𝑇𝐻

(b) 𝐾𝐼𝑀𝐶𝐻𝐼 ⇌ 𝑆𝑈𝑆𝐻𝐼

(c) 𝐾𝐼𝑀𝐶𝐻𝐼 ⇌𝑊𝐸𝑇𝐻

Figure 11: Evolution of the return, fees and imperma-
nent loss over four months for exotic pairs. The fees
should be much higher considering the risk of imper-
manent loss.

𝑈𝑁𝐼 ⇌𝑊𝐸𝑇𝐻 exhibit higher returns than at least the ma-
jority of stable pairs, but with that also carry higher risks.
All three stable pairs are very similar in terms of risk and
return, with 𝐷𝐴𝐼 ⇌ 𝑈𝑆𝐷𝑇 having a slight edge over the
others in return. Stable and normal pairs may provide attrac-
tive opportunities for liquidity providers depending on their
individual risk tolerance and return expectations.

6 MOVEMENT BETWEEN LIQUIDITY
POOLS

As profits and risks associated with providing liquidity vary
widely across different pools, we analyze how users redis-
tribute their investments across different pools, i.e., how they
move their assets from one pool to another. We investigate
the movement of liquidity providers with the goal of better
understanding their motivations.
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(a) stable pairs

(b) normal pairs

(c) exotic pairs

Figure 12: Daily percentage fees of sample pairs in
three categories over a four month period. The his-
tograms are normalized, i.e., the sum of the bar
heights of each data set are equal to one.

In Table 1 we record the correlation between the pool
liquidity and other pool characteristics, namely volume, and
token prices in USD. The correlations are calculated for daily
data. For all stable pairs, Table 1a, volume correlates highly
with pool liquidity. This strong correlation is expected, as
liquidity provider’s returns in stable pools are directly re-
lated to the fees accumulated (Figure 9), which are in turn
proportional to the volume. The high correlation between
liquidity and trading volume indicates the dynamic balance
of the liquidity providers in the market. When the trading
volume increases, liquidity providers will earn more fees,
then the high return attracts more liquidity into the pools.
Symmetrically, when the trading volume decreases, liquidity
will withdraw their funds from the pools, allowing the re-
maining liquidity providers to earn sufficient benefits again.

(a) stable pairs

(b) normal pairs

(c) exotic pairs

Figure 13: Daily percentage returns of sample pairs
in three categories over a four month period. The
histograms are normalized, i.e., the sum of the bar
heights of each data set are equal to one.

Thus, the correlation between liquidity and trading volume
appears natural. We see that liquidity tracks volume in stable
pools in Figure 15a, where the daily volume and liquidity are
visualized for𝑈𝑆𝐷𝐶 ⇌ 𝑈𝑆𝐷𝑇 .

The data shown in Table 1b for normal pairs and Table 1c
for exotic pairs reveals a less obvious picture. The liquidity
in all but one of the normal and exotic pairs appears largely
uncorrelated with the volume – 𝐿𝐼𝑁𝐾 ⇌ 𝑊𝐸𝑇𝐻 being
the exception. Figure 15b shows that while liquidity and
volume are somewhat correlated for the 𝐿𝐼𝑁𝐾 ⇌ 𝑊𝐸𝑇𝐻

pair, the link between them is not as apparent as for the
stable pairs. In the remaining pools, an example is shown
with 𝐾𝐼𝑀𝐶𝐻𝐼 ⇌ 𝑆𝑈𝑆𝐻𝐼 in Figure 15c, liquidity and volume
are uncorrelated. The lack of correlation might partially be
due to generally low volume and low liquidity but could also
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Figure 14: Risk and return comparison. We plot mean
daily returns and the daily 5% CVaR for nine sample
pools. Providing liquidity for exotic tokens is beyond
just risky.

stem from the less predictable returns in normal and exotic
pairs. Thus, liquidity providersmight pay less attention to the
volume when adding or removing liquidity. In general, the
price of the tokens appears uncorrelated with the liquidity.
While we do not necessarily expect a strong correlation, the
token price influences the liquidity providers’ returns via the
impermanent loss. Thus, liquidity providers do not seem to
react to price changes, indicating that either they hope for
the ratio to recover to previous value or they are insensitive
to the effects of the impermanent loss.
We further look at the movement of liquidity between

pools. When observing liquidity movements, we consider
the entire data set. We record a movement if the same address
removes liquidity from one pool and adds liquidity to another
pool within 6000 blocks – roughly a day. Further, we restrict
our analysis to the pools with the most liquidity movements
(mint and burn events) in the following and only consider
pools with more than 5000 liquidity movements.
In Figure 16 we plot a colormap of the movement be-

tween the 72 pools most active pools. We order the pools
smallest to largest by their average size, i.e., liquidity in
the pool, since their creation. For better visibility, all val-
ues are capped at 500. We immediately draw three conclu-
sions from Figure 16. First, the movements of liquidity in

USDC⇌ USDT DAI⇌ USDT DAI⇌ USDC

Volume 0.82 0.80 0.82
Price token 0 0.09 0.03 0.09
Price token 1 0.09 0.07 0.13

(a) stable pairs

UNI⇌WETH DPI⇌WETH LINK⇌WETH

Volume 0.00 0.14 0.48
Price token 0 -0.31 -0.29 0.71
Price token 1 -0.36 -0.16 0.67

(b) normal pairs

MOON⇌WETH KIMCHI⇌WETH KIMCHI⇌ SUSHI

Volume 0.01 -0.20 -0.05
Price token 0 0.31 -0.50 0.08
Price token 1 -0.11 0.51 -0.05

(c) exotic pairs

Table 1: Correlation between the liquidity in the pool
and various pool characteristics. The correlations are
recorded for daily data.

(a)𝑈𝑆𝐷𝐶 ⇌ 𝑈𝑆𝐷𝑇

(b) 𝐿𝐼𝑁𝐾 ⇌𝑊𝐸𝑇𝐻

(c) 𝐾𝐼𝑀𝐶𝐻𝐼 ⇌ 𝑆𝑈𝑆𝐻𝐼

Figure 15: Volume and liquidity in three sample pools.
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Figure 16: The number of directional movements be-
tween the 72 most active pools. The pools are ordered
smallest to largest by their average size, i.e., liquidity
in the pool, since the day of their creation. We cap the
number of movements at 500 for better visibility.

Uniswap are rare. Additionally, the matrix appears symmet-
ric. In other words, if providers move liquidity from one
pool to another, there also seem to be providers that move
liquidity in the opposite direction at similar numbers. Lastly,
the number of movements don’t appear to correlate with
the pool size. The ordered pool pair with the most move-
ments is 𝐷𝐴𝐼 ⇌𝑊𝐸𝑇𝐻 →𝑊𝐸𝑇𝐻 ⇌ 𝑆𝑈𝑅𝐹 with a total of
13389 movements. We count less than 3500 movements for
all remaining ordered pairs.

When looking at the data of some ordered pool pairs with
many movements in more detail, we observe the emergence
of two patterns in Figure 17. While movements between
𝐷𝐴𝐼 ⇌ 𝑊𝐸𝑇𝐻 → 𝑊𝐸𝑇𝐻 ⇌ 𝑆𝑈𝑅𝐹 all occur within a
rather short period and appear to be driven by an individ-
ual event, the movements we observe between 𝑈𝑆𝐷𝑇 ⇌
𝑊𝐸𝑇𝐻 → 𝑈𝑆𝐷𝐶 ⇌ 𝑊𝐸𝑇𝐻 and 𝑈𝑆𝐷𝐶 ⇌ 𝑊𝐸𝑇𝐻 →
𝐷𝐴𝐼 ⇌𝑊𝐸𝑇𝐻 happen over a longer period. However, even
though we observe different patterns, movements appear
to relate mostly to liquidity mining. The single spike in be-
tween 𝐷𝐴𝐼 ⇌ 𝑊𝐸𝑇𝐻 → 𝑊𝐸𝑇𝐻 ⇌ 𝑆𝑈𝑅𝐹 (Figure 17a)
coincides with the time at which liquidity mining for 𝑆𝑈𝑅𝐹
started in the 𝑊𝐸𝑇𝐻 ⇌ 𝑆𝑈𝑅𝐹 pair4. Further, the move-
ment between the 𝑈𝑆𝐷𝑇 ⇌ 𝑊𝐸𝑇𝐻 → 𝑈𝑆𝐷𝐶 ⇌ 𝑊𝐸𝑇𝐻

and 𝑈𝑆𝐷𝐶 ⇌𝑊𝐸𝑇𝐻 → 𝐷𝐴𝐼 ⇌𝑊𝐸𝑇𝐻 reaches its peaks
around the UNI liquidity mining period, 18th September
2020 to 17th November 20205. In conclusion, the movement

4https://www.reddit.com/r/CryptoMoonShots/comments/jivadf/surf_finance/
5https://uniswap.org/blog/uni/

(a) 𝐷𝐴𝐼 ⇌𝑊𝐸𝑇𝐻 →𝑊𝐸𝑇𝐻 ⇌ 𝑆𝑈𝑅𝐹

(b)𝑈𝑆𝐷𝑇 ⇌𝑊𝐸𝑇𝐻 → 𝑈𝑆𝐷𝐶 ⇌𝑊𝐸𝑇𝐻

(c)𝑈𝑆𝐷𝐶 ⇌𝑊𝐸𝑇𝐻 → 𝐷𝐴𝐼 ⇌𝑊𝐸𝑇𝐻

Figure 17: Directional liquidity movements and vol-
ume for a set of ordered pool pairs.

of liquidity does not appear too common among liquidity
providers unless driven by external motivations, such as
liquidity mining.

7 CONCLUSION
This paper addresses three fundamental problems in under-
standing liquidity providers in DEXes: Who provides liq-
uidity in DEXes? What are the returns and risks of provid-
ing liquidity? How do liquidity providers react to market
changes?

Our analysis suggests that users of cryptocurrency ecosys-
tems have gradually become interested in providing liquidity
in DEXes. However, users still act with caution – preferring
to participate in few liquidity pools. We find that the returns
and losses of providing liquidity in different types of pools
vary a lot. Stable pools enable a seemingly risk-free and prof-
itable investment opportunity compared to constant-mix
portfolios. Providing liquidity in exotic pools, on the other
hand, appears to perform much worse than the correspond-
ing constant-mix portfolios. Reacting to the unique return
opportunities and risks, liquidity providers perform different
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trading strategies across pool categories: they respond to
trading volume changes in stable pools and pay less atten-
tion to market changes of normal and exotic pools. Besides
market indicators, liquidity providers are also motivated by
external market factors, i.e., liquidity mining activities, to
redistribute their liquidity investments.
In this paper, we extend the research scope of liquidity

provider’s behavior in DEXes from theoretical analysis to
empirical studies. By studying the behaviors of liquidity
providers on the Uniswap market, our work provides a com-
prehensive insight into the new trading options in the cryp-
tocurrency ecosystems for users. More, it inspires future
work aimed to better understand DEXes market mechanisms.
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