
SMART CONTRACT AUDIT

March 15th, 2022| v.	1.0



score


100

PASS
Zokyo’s Security Team has concluded 
that this smart contract passes 
security qualifications to be listed on 
digital asset exchanges.



1

Penguin Karts Smart Contract Audit

This document outlines the overall security of the Penguin Karts smart contracts, evaluated by 
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document Penguin Karts smart contract codebase 
for quality, security, and correctness.

There were no critical, high or medium issues found during the audit.

Contract Status

low Risk

Testable Code

The testable code is 100 %, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of 
the contract, rather limited to an assessment of the logic and implementation. In order to 
ensure a security of the contract we at Zokyo recommend that the Penguin Karts team put in 
place a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .



2

Penguin Karts Smart Contract Audit

9Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

6Complete​ ​Analysis

5Structure​ ​and​ ​Organization​ ​of​ ​Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

. . .



3

Penguin Karts Smart Contract Audit

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify 
the implementation of Penguin Karts smart contracts. To do so, the code is reviewed line-by-
line by our smart contract developers, documenting any issues as they are discovered. Part of 
this work includes writing a unit test suite. In summary, our strategies consist largely of 
manual collaboration between multiple team members at each stage of the review:

1
Due diligence in assessing the overall 
code quality of the codebase.

2
Cross-comparison with other, similar 
smart contracts by industry leaders.

3
Testing contract logic against common 
and uncommon attack vectors.

4
Thorough, manual review of the 
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the contract:

Implements and adheres to existing standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Follows best practices in efficient use of resources, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):
� Token.sol


The Penguin Karts smart contract’s source code was taken from the smart contract provided 
by the Penguin Karts team

SHA-256 (audited): 
b2abfbf7f352dd3497d22685e8a20a80edc68a78d5182783504a5ef7608a638c

Auditing Strategy and Techniques Applied

. . .



4

Penguin Karts Smart Contract Audit

There were no critical or high issues found during the audit. Although certain number of low 
and informational issues were discovered, they relate to the following�

� Missed messages in exception�
� Constant can be use�
� Centralization risk



After recommendations by Zokyo auditors and discussion with the Customer it was decided 
that all these issues don’t influence security and efficiency of the smart contract provided by 
Penguin Karts Team. By the Customer, ownable fuctionality will be used only after the listing, 
thus it is acceptable.

EXECUTIVE Summary

. . .



5

Penguin Karts Smart Contract Audit

The issue has minimal impact on the 
contract’s ability to operate.

Low

The issue has no impact on the contract’s 
ability to operate.

Informational​

The issue affects the ability of the contract 
to compile or operate in a significant way.

High

The issue affects the ability of the contract 
to operate in a way that doesn’t significantly 
hinder its behavior.

Medium

The issue affects the contract in such a way 
that funds may be lost, allocated incorrectly, 
or otherwise result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are 
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed. 
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or 
other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .



6

Penguin Karts Smart Contract Audit

low

Missed messages in exceptions



Token.sol. In case of discrepancy in requirements the error will not return a description of 
exception. It will make it harder to reveal a cause of revert.

Recommendation:
Use messages in “require” statements to add a description of exceptions.

Complete​ ​Analysis

. . .

informational

Constant can be used



Token.sol, Line 29. Token amount calculation can be moved to the public constant in order to 
save gas during the deployment.

Recommendation:
Consider using the public constant.



7

Penguin Karts Smart Contract Audit

. . .
informational

Centralization risk



Token.sol. Contract uses onlyOwner modifier to control access to admin’s functionality. In case 
of losing access to the owner's address or sharing access with an unwanted person, admin 
can lose access to admin’s functionality.

Recommendation:
Consider using multisig as an owner’s address.

Post-audit:
By the client, ownable functionality will be used single time after the listing



8

Penguin Karts Smart Contract Audit

. . .

Access Management Hierarchy Pass

Arithmetic Over/Under Flows Pass

Token.sol

PassDefault Public Visibility

PassEntropy Illusion (Lack of 
Randomness)

PassRace Conditions / Front 
Running

PassShort Address/ Parameter Attack

PassUninitialized Storage Pointers

PassTx.Origin Authentication

Pass
Pool Asset Security 
(backdoors in the 
underlying ERC-20)

PassRe-entrancy

PassDelegatecall Unexpected Ether 

PassHidden Malicious Code

PassExternal Contract Referencing

PassUnchecked CALL Return Values

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay



9

Penguin Karts Smart Contract Audit

Contract: Token.sol

✓ Mints proper amount (122ms)

✓ Transfers proper amount with antisnipe and liquidity restriction enabled (633ms)
✓ Disables liquidity restriction (289ms)
✓ Can't disable liquidity restriction if it's already disabled (201ms)
✓ Transfers proper amount with antisnipe enabled only (570ms)
✓ Transfers proper amount liquidity restriction enabled only (498ms)
✓ Disables antisnipe (222ms)
✓ Can't disable antisnipe if it's already disabled (194ms)
✓ Transfers proper amount without restrictions (435ms)

As part of our work assisting Penguin Karts team in verifying the correctness of their contract 
code, our team was responsible for writing integration tests using Truffle testing framework. 

Tests were based on the functionality of the code, as well as review of the Penguin Karts 
contract requirements for details about issuance amounts and how the system handles these.

Tests written by Zokyo Secured team

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

Token.sol 100.00 85.71 100.00

FILE % STMTS % BRANCH % FUNCS

All files 100 85.71 100



We are grateful to have been given the opportunity to work 
with the Penguin Karts team.



The statements made in this document should not be 
interpreted as investment or legal advice, nor should its 
authors be held accountable for decisions made based on 
them.



Zokyo's Security Team recommends that the Penguin Karts 
team put in place a bug bounty program to encourage further 
analysis of the smart contract by third parties.


