
SMART CONTRACT AUDIT

January 11th, 2022 | v.	1.0

score

98

PASS
Zokyo’s Security Team has concluded
that this smart contract passes
security qualifications to be listed on
digital asset exchanges.

1

Tarantino Smart Contract Audit

This document outlines the overall security of the Tarantino smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document Tarantino smart contract codebase for
quality, security, and correctness.

There were some no critical and medium issues found during the audit.

Contract Status

low Risk

Testable Code

The testable code is 100% which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a security of the contract we at Zokyo recommend that the Tarantino team put in place
a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

2

Tarantino Smart Contract Audit

8Code Coverage and Test Results for all files

6Complete Analysis

5Structure and Organization of Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

. . .

3

Tarantino Smart Contract Audit

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Tarantino smart contracts. To do so, the code is reviewed line-by-line
by our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite. In summary, our strategies consist largely of manual
collaboration between multiple team members at each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the contract:

Implements and adheres to existing standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Follows best practices in efficient use of resources, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):
 Tarantino.sol

The Tarantino smart contract’s source code was taken from the repository provided by the
Tarantino team

Repository

https://github.com/NFTrade/tarantino-contracts/
commit/775d623f2e82ad888b7514119c6d161eff702b24 
Last commit

775d623f2e82ad888b7514119c6d161eff702b24

Auditing Strategy and Techniques Applied

. . .

4

Tarantino Smart Contract Audit

There were no critical issues found during the audit. During the audit Zokyo team has found
some informational issues only.

EXECUTIVE Summary

. . .

5

Tarantino Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost, allocated incorrectly,
or otherwise result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Issues tagged “Verified” contain unclear or suspicious functionality that either needs
explanation from the Customer’s side or it is an issue that the Customer disregards as an
issue. Furthermore, the severity of each issue is written as assessed by the risk of exploitation
or other unexpected or otherwise unsafe behavior:

Structure and Organization of Document

. . .

6

Tarantino Smart Contract Audit

Complete Analysis

. . .

low

The addSigners function can allow address(o) to be added as a signer

Recommendation:
Ensure address(0) can not be made a signer

7

Tarantino Smart Contract Audit

. . .

PassAccess Management Hierarchy

PassArithmetic Over/Under Flows

Tarantino.sol

PassDefault Public Visibility

PassEntropy Illusion (Lack of
Randomness)

PassRace Conditions / Front
Running

PassShort Address/ Parameter Attack

PassUninitialized Storage Pointers

PassTx.Origin Authentication

Pass
Pool Asset Security
(backdoors in the
underlying ERC-20)

PassRe-entrancy

PassDelegatecall Unexpected Ether

PassHidden Malicious Code

PassExternal Contract Referencing

PassUnchecked CALL Return Values

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

8

Tarantino Smart Contract Audit

Contract: Tarantino

✓ Add to signers and sign (387ms)
✓ adds sale (138ms)
✓ bid (255ms)
✓ not on whitelist (842ms)
✓ bid on same amount (165ms)
✓ bid on less amount than current highest offer (148ms)
✓ bid on different amount but same bidder (141ms)
✓ goes to target price (1405ms)
✓ extend saleTotalTime to 12.5 hours when bid on last 30 min (248ms)

As part of our work assisting Tarantino team in verifying the correctness of their contract
code, our team was responsible for writing integration tests using Truffle testing framework.

Tests were based on the functionality of the code, as well as review of the Tarantino contract
requirements for details about issuance amounts and how the system handles these.

Tests written by Tarantino team

Code Coverage and Test Results for all files

. . .

contracts/ 79.59

79.59

75

75

80.39

115,120,15180.39

FILE % STMTS % BRANCH % FUNCS % LINES % UNCOVERED LINES

All files 7579.59 68.75 80.39

Tarantino.sol

68.75

68.75

9

Tarantino Smart Contract Audit

Contract: Tarantino
✓ Should be initialized correctly (335ms)
✓ Should allow new sale to be added then edited and toggled (327ms)
✓ Should toggle contract validity (102ms)
✓ Should get sale total time (238ms)
✓ Should get sale total time based on different bids (170ms)
✓ Should confirm sale is live (100ms)
✓ Should add signers and show that they are whitelisted (92ms)
✓ Should be able to remove signers (102ms)
✓ Should allow new bids to be added (122ms)
✓ Should return previous highest bid to the bidder (170ms)
✓ Should prevent bids from a contract (150ms)
✓ Should be able to get the highest offer (135ms)
✓ Should allow owner to withdraw funds (126ms)
✓ Should prevent bids from been added if parameters are incorrect (319ms)

As part of our work assisting Tarantino team in verifying the correctness of their contract
code, our team was responsible for writing integration tests using Truffle testing framework.

Tests were based on the functionality of the code, as well as review of the Tarantino contract
requirements for details about issuance amounts and how the system handles these.

Tests written by Zokyo Secured team

Code Coverage and Test Results for all files

. . .

contracts/ 100

100

100

100

100

100

FILE % STMTS % BRANCH % FUNCS % LINES % UNCOVERED LINES

All files 100100 100 100

Tarantino.sol

100

100

We are grateful to have been given the opportunity to work
with the Tarantino team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based on
them.

Zokyo's Security Team recommends that the Tarantino team
put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

