
SMART CONTRACT AUDIT

December 6th, 2021 | v. 1.0

95
Score

PASS
Zokyo Security Team has concluded
that this smart contract passes
security qualifications

This document outlines the overall security of the Teneo Finance smart contracts, evaluated
by Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Teneo Finance smart contract
codebase for quality, security, and correctness.

. . .

1

Teneo Finance Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 100%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the Teneo Finance team put in
place a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

Teneo Finance Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

6Complete​ ​Analysis

10Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

10Tests written by Zokyo Secured team

3

Teneo Finance Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the Teneo Finance repository.

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Repository:
https://github.com/TeneoFinance/contracts/commit/
a9749ab5e3aee310010ae2691bd8ccd820510145

Contracts:

ReflowStaking.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of TENEO FINANCE smart contracts. To do so, the code is reviewed line-by-
line by our smart contract developers, documenting any issues as they are discovered. Part of
this work includes writing a unit test suite using the Truffle testing framework. In summary,
our strategies consist largely of manual collaboration between multiple team members at
each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Summary

. . .

4

Teneo Finance Contract Audit

The Zokyo team has conducted a security audit of the given codebase. The contracts provided
for an audit are well written and structured. All the findings within the auditing process are
presented in this document.

During the auditing process, our auditor's team found 1 issue with low severity and 1
informational issue. These issues were not fixed.

Based on the results of the audit, we can give a score of 95 and state that the audited
contracts are fully production-ready.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

5

Teneo Finance Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

6

Teneo Finance Contract Audit

Rounding of rewards

low

Because solidity doesn’t support operations with floating point it rounding values up or down.
For this reason user’s could lose part of their reward tokens. Amount of lost reward tokens
depends on the staked amount.

Recommendation:
Change the logic of calculation.

function _calcReflow(uint256 pid) internal view returns (uint256, uint256, uint256) {

 if (_poolInfo[pid].stakeAmount > 0) {

 uint256 period;

 uint256 lastRewardSecond = block.timestamp;

 if (lastRewardSecond <= _poolInfo[pid].rewardEndTime) {

 period = lastRewardSecond - _poolInfo[pid].lastRewardSecond;

 } else {

 period = _poolInfo[pid].rewardEndTime - _poolInfo[pid].lastRewardSecond;

 lastRewardSecond = _poolInfo[pid].rewardEndTime;

 }

 uint256 rewardPerPeriod = period * _poolInfo[pid].rewardPerSecond + _poolInfo[pid].rewardReserve;

 uint256 uncalculated = rewardPerPeriod / _poolInfo[pid].stakeAmount +
_poolInfo[pid].actualRewardPerShareAndSecond;

// If the pool is not expired yet, the period will be calculated "normally"

 // The actual timestamp gets subtracted by the last time a reflow happened. (claim, deposit,
withdraw, any funding)

 // If the pool expires, the reward end time (pool end timestamp) is subtracted by the last reward
second

 // The reason is: when a pool gets funded after the pool expires, it is also possible to fund.

 // For that the reward end time is increased and here calculats the rewards.

// calculate how many rewards are not calculated yet (also calculate in the residual if one exists)

 // calculate the rewards per share (the shares are divided by 10**12 to make the calculation easier)

// residuals are stored for the next time

. . .

7

Teneo Finance Contract Audit

 uint256 rest = rewardPerPeriod % _poolInfo[pid].stakeAmount;

 return (uncalculated, rest, lastRewardSecond);

 } else {

 return (_poolInfo[pid].actualRewardPerShareAndSecond, _poolInfo[pid].rewardReserve,
_poolInfo[pid].lastRewardSecond);

 }

 }

Unused requirements

informational

This requirement is not used because in front of him is another requirement which does the
same work “checking that the user doesn’t try to withdraw more than he has.”. Also in your
contract impossible situation then the user withdraws the amount of staked tokens which he
has and at the same time withdraws more than pool has.

require(_allowances[sender][_msgSender()] >= amount, "transferFrom: transfer amount exceeds
allowance");

Recommendation:
Remove requirement:

require (wAmount / CORRECT_DIVISOR <= _poolInfo[pid].stakeAmount

Or swap it with requirement:

require (wAmount / CORRECT_DIVISOR <= _userInfo[pid][msg.sender].stakeAmount

function _withdraw(uint256 pid, uint256 wAmount) internal {

 require(wAmount / CORRECT_DIVISOR > 0, "_withdraw: Sorry, but too few to withdraw. (min. 10**12
wei)");

 require(wAmount % CORRECT_DIVISOR == 0, "_withdraw: Sorry, but for the correct calculation you only
can withdraw without residual. (amount % 10 ** 12 == 0)");

 require (wAmount / CORRECT_DIVISOR <= _userInfo[pid][msg.sender].stakeAmount, "_withdraw: Not
enough stakes in your account");

. . .

8

Teneo Finance Contract Audit

 require (wAmount / CORRECT_DIVISOR <= _poolInfo[pid].stakeAmount, "_withdraw: Not enough stakes
in the pool");

 require (_getWithdrawPossibleIn(pid, msg.sender) == 0, "_withdraw: Withdraw time is not expired");

 _saveRewards(pid, 0);

 _poolInfo[pid].poolT.stakedToken.safeTransfer(msg.sender, wAmount);

 _poolInfo[pid].stakeAmount = _poolInfo[pid].stakeAmount - (wAmount / CORRECT_DIVISOR);

 // save the new staked amount of a user (the saved amount is divided by 10**12)

 _userInfo[pid][msg.sender].stakeAmount = _userInfo[pid][msg.sender].stakeAmount - (wAmount /
CORRECT_DIVISOR);

 if (_userInfo[pid][msg.sender].stakeAmount == 0) {

 _poolInfo[pid].userCount -= 1;

 }

 }

// saves the so far earned rewards (by withdrawing the basis for the calculation changes)

// save the new staked amount of the pool (the saved amount is divided by 10**12)

. . .

9

Teneo Finance Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

ReflowStaking

. . .

10

Teneo Finance Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests written by Zokyo Security team

As part of our work assisting Teneo Finance in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Teneo Finance
contract requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE

staking\

ReflowStaking.sol

All files

UNCOVERED LINES

100.00

100.00

% STMTS

100.00

96.97

96.97

% BRANCH

96.97

100.00

100.00

% FUNCS

100.00

100.00

100.00

% LINES

100.00

Test Results

Contract: ReflowStaking

✓ Check for correct deploy of ReflowStaking contract

✓ Must fail if staked/reward token address equal to zero address
✓ Must fail if daoWallet address equal to zero address
✓ Must fail if claimFee bigger than 50%
✓ Must fail if staticWithdrawTime equals to 0
✓ Must setup first pool correctly with 2 different tokens, mode - 0

✓ Must return total rewards per year if stake amount == 0

. . .

11

Teneo Finance Contract Audit

✓ Must return total rewards per year if stake amount != 0, mod 0

✓ Must fail if user try to set RPS to 0
✓ Must fail to set new RPS without increasing period and depositing
✓ Must change RPS correctly with increasing period

✓ Must fail if try to set RPS to 0
✓ Must fail to set new RPS without increasing period and depositing
✓ Must change RPS correctly with increasing period

✓ Must increase period of rewardEndTime correctly

✓ Must fail if caller isn't owner
✓ Must fail if new claim value is bigger than 50%
✓ Must set new claim fee correctly

✓ Must fail if user try to stake less than 1*10**12 wei
✓ Must fail if pool is not filled by reward tokens
✓ Must deposit staked token correctly if depositAmount divisible by correctDivisor
✓ Must deposit staked token correctly if depositAmount isn’t divisible by CorrectDivisor
✓ Must deposit 2 times from one user

✓ Must fail if increase RPS without deposit and rewardEndTime
✓ Must increase RPS without deposit
✓ Must increase RPS correctly
✓ Must increase RPS correctly at the end of the pool

✓ Must get claimable amount from pool with mod 0
✓ Must get claimable amount from pool with mod 1
✓ Must get claimable amount from pool with mod 1 with big lock time

✓ Must fail if try to claim more than user can
✓ Must claim correctly from pool with mod 0
✓ Must claim from pool with another mod
✓ Must claim after pool has ended
✓ Must fail if user has claimed all his reward already
✓ Must claim from pool with another mod

✓ Must fail if user try to withdraw less than 1*10^12 wei

. . .

12

Teneo Finance Contract Audit

✓ Must fail if withdraw amount isn’t divisible by 1*10^12
✓ Must fail if user try to withdraw more than he has
✓ Must fail if user try to withdraw at lock period
✓ Must withdraw correctly from pool with mod 0
✓ Must withdraw correctly, pool with mod 1, before rewards creating
✓ Must withdraw correctly, pool with mod 1, after rewards creating with lock time
✓ Must withdraw and increase RPS correctly, pool with mod 1, after rewards creating

with lock time
✓ Must withdraw not all tokens correctly
✓ Must withdraw all tokens at the end of the pool correctly

✓ Must withdraw and claim rewards correctly, mod 0, before lock time
✓ Must withdraw and claim rewards correctly, mod 0, after lock time
✓ Must withdraw and claim rewards correctly, mod 0, before lock time

✓ Must return 0 if pool has mod 1
✓ Must return correct value if lock period hasn't passed, mod 0
✓ Must return 0 if lock period has passed, mod 0

49 passing (7m)

We are grateful to have been given the opportunity to work
with the Teneo Finance team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Teneo Finance
team put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

