
SMART CONTRACT AUDIT

June 12th, 2021 | v.	1.0

score

94

PASS
Zokyo’s Security Team has concluded
that this smart contract passes
security qualifications to be listed on
digital asset exchanges.

This document outlines the overall security of the iTrust smart contracts, evaluated by Zokyo's
Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the iTrust smart contract codebase for
quality, security, and correctness.

There were critical issues found during the audit, but they were resolved by the iTrus team.

Contract Status

low Risk

. . .

1

iTrust Smart Contract Audit

Testable Code

100%75%50%25%0%

your average

INDUSTRY STANDARD

The testable code is 99%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and
rapidly changing environment, we at Zokyo recommend that the iTrust team put in place a
bug bounty program to encourage further and active analysis of the smart contract.

Table of Contents

3Auditing Strategy and Techniques Applied

4Executive Summary

5Structure​ ​and​ ​Organization​ ​of​ ​Document

6Complete​ ​Analysis

14Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

2

iTrust Smart Contract Audit

3

iTrust Smart Contract Audit

Auditing Strategy and Techniques Applied
The Smart contract’s source code was taken from the iTrust archive with source code.

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

SHA256 of the archive:

16dac7428bbc82794141fe7adbe35e9aa77b9090604e2f39ac0e846199cece93

Re-audit SHA256 of the archive: 
dab0be1849bef5bebff33b236fca1aba1433955125b2ab307df408e488220fbe

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):

iTrustVaultFactory.sol

Vault.sol

StakingData.sol

GovernanceDistribution.sol

Burn.sol

BaseContract.sol

RoundData.sol

StakeData.sol

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of iTrust smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

EXECUTIVE Summary

. . .

4

iTrust Smart Contract Audit

There were found several critical issues connected to the missing allowance and error in
calculation - both errors may lead to issues with tokens logic. Also auditors have found
problems in the storage usage, unused methods and local variables, with standard automatic
tools issues’ list violation, and with standard contracts used in the protocol.

There are several findings which have an impact on contracts performance, contract code
style and further development.

Nevertheless, most of the findings were successfully resolved by the iTrust team.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

5

iTrust Smart Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost, allocated incorrectly,
or otherwise result in a significant loss.

Critical

Complete​ ​Analysis

. . .

6

iTrust Smart Contract Audit

CRITICAL

Missing result assignment

Burn.sol, line 130. “_burnData[vaultAddress].totalBurned.add(toBurn);”

Total burned value is not updated - addition result is not placed to storage.

Recommendation:
fix the condition.

CRITICAL

No check for allowance in transferFrom

Vault.sol, line 351

Missing checking sender's allowance in transferFrom method. Thus, anyone can spend other
users' tokens

Recommendation:
check spender's allowance like in ERC20

. . .

7

iTrust Smart Contract Audit

HIGH

Incorrect condition

StakingData.sol, line 416: Condition “i < 0” is always false for uint256. Review the functionality

Recommendation: fix the condition.

MEDIUM

Unused storage variable

BaseContract.sol, _ReentrantCheck

Vault.sol, _ReentrantCheck

Variables are not used in the code.

Recommendation: Remove unused variables.

HIGH

Incorrect contracts used

Some contracts inherit upgradeable contracts from OpenZeppelin contracts-upgradeable. So
it should use all utility contracts from the upgradeable set. For now incorrect contracts from
the “vanilla” set are used in a mixed case with upgradeable ones. Such approach can create
collisions, affect the development and create unpredictable issues in the runtime.

Vault.sol: IERC20, SafeMath and ECDSA

StakingData.sol: SafeMath

Burn.sol: SafeMath

BaseContract.sol: SafeMath

RoundData.sol: SafeMath

StakeData.sol: SafeMath

Recommendation:
Fix the contracts

. . .

8

iTrust Smart Contract Audit

LOW

Unused local variable

StakingData.sol, line 256.

Variable maxIteration is unused in the contract. Review the functionality or remove the
variable.

Recommendation: Review the functionality or remove the variable.

LOW

Unused internal constants

Constants STATUS_DEFAULT and STATUS_CANCELED declared in Burn.sol are never used in
Burn.sol

Recommendation: review the functionality or remove constants.

MEDIUM

Solidity version update

The solidity version should be updated. Throughout the project (including interfaces).

Issue is classified as Medium, because it is included to the list of standard smart contracts’
vulnerabilities. Currently used version (0.7.5) is not the last in the line, which contradicts the
standard checklist.

Recommendation: You need to update the solidity version to the latest one in the branch -
0.7.6.

. . .

9

iTrust Smart Contract Audit

LOW

Unused method for paused status

Vault.sol, 437 _ifNotPaused() is never used.

So it makes function isPaused() from iTrustVaultFactory.sol unused as well.

Also these method are actual duplicates for isActiveVault() method, so isPaused() can be safely
removed.

Recommendation:
Remove unused method.

LOW

Re-use local variable

Vault.sol, line 188, “require(msg.value == _AdminFee)”

Variable adminFee was added for gas savings and can be re-used in the expression instead of
_AdminFee.

Recommendation:
Re-use local variable

. . .

10

iTrust Smart Contract Audit

LOW

Ignored return value

ITrustVaultFactory.sol, createVault() ignores return value by stakingDataContract.addVault()

Recommendation:
consider adding require statement.

LOW

Unused functions

ITrustVaultFactory.sol: isPaused, _onlyAdmin

Burn.sol: _vaultAddress, _getStartOfDayTimeStamp, validateFactory, _valueCheck

GovernanceDistribution.sol: _getStartOfDayTimeStamp

StakingData.sol: getTotalSupplyForBlock, getHoldingsForIndexAndBlock,
getNumberOfStakingAddresses

Recommendation:
Remove unused functions

LOW

Useless boolean return

StakingData.sol, endRound(), addVault() - always return true, which makes the return value
useless.

Recommendation:

remove return value.

. . .

11

iTrust Smart Contract Audit

LOW

Boolean equality comparison

-require(bool)(_AdminList[newAddress] == false) (iTrustVaultFactory.sol#70)

-require(bool)(_TrustedSigners[newAddress] == false) (iTrustVaultFactory.sol#83)

-_TrustedSigners[account] == true (iTrustVaultFactory.sol#88)

-_AdminList[account] == true (iTrustVaultFactory.sol#144)

-_VaultStatus[msg.sender] == false (iTrustVaultFactory.sol#148)

-_VaultStatus[vaultAddress] == true (iTrustVaultFactory.sol#152)

-require(bool,string)(_AdminList[msg.sender] == true) (iTrustVaultFactory.sol#156-159)

-require(bool,string)(_AdminList[msg.sender] == true) (iTrustVaultFactory.sol#33)

-require(bool)(vaultFactory.isPaused() == false) (vaults\Vault.sol#439)

Recommendation:
Use boolean values directly without equality comparison

LOW

Use storage pointer

StakingData.sol, line 308, _getAllAcountUnstakesForAddress()

StakingData.sol, line 287, _getAccountStakesForAddress()

StakingData.sol, line 225, _getRoundRewardsForAddress()

RoundData.sol, line 15, endRound()

Burn.sol, line 64, getCurrentBurnData()

Burn.sol, line 77, startBurn()

Burn.sol, line 140, endBurn()

Consider usage of storage pointer to mapping member in order to get gas savings since the
function has several calls to this data.

Recommendation:

Use storage pointer.

. . .

12

iTrust Smart Contract Audit

INFORMATIONAL

Consider usage of exponential notation

There are several places with literals with too many digits. Consider usage of constants for
them with exponential notation. It will increase the readability of the code and decrease the
chance of the typo error in the number of digits.

div(1000000000000000000) (vaults\Burn.sol#115)

div(1000000000000000000) (vaults\StakingData.sol#367)

Recommendation:
Use “snake” literals form or use exponential notation.

INFORMATIONAL

Use standard ReentrancyGuard

Throughout the project the variable _Locked together with _nonReentrant() function are used
for the reentrancy prevention, though, for the safety of further development it is
recommended to use standard ReentrancyGuard with modifier. It will increase the overall
code quality.

Recommendation:

Use standard ReentrancyGuard.

. . .

13

iTrust Smart Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under
Flows

Access Management
Hierarchy

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

GovernanceDistribution StakingData, BaseContract Vault

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract
Referencing

Entropy Illusion (Lack of
Randomness)

Unchecked CALL Return
Values

Short Address/
Parameter Attack

Race Conditions / Front
Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security
(backdoors in the
underlying ERC-20)

General Denial Of
Service (DOS)

Floating Points and
Precision

Uninitialized Storage
Pointers

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests written by Zokyo team

. . .

14

iTrust Smart Contract Audit

As part of our work assisting iTrust in verifying the correctness of their contract code, our
team was responsible for writing integration tests using Truffle testing framework.

Tests were based on the functionality of the code, as well as review of the iTrust contract
requirements for details about issuance amounts and how the system handles these.

. . .

15

iTrust Smart Contract Audit

. . .

16

iTrust Smart Contract Audit

We are grateful to have been given the opportunity to work
with the iTrust team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based on
them.

Zokyo's Security Team recommends that the iTrust team put
in place a bug bounty program to encourage further analysis
of the smart contract by third parties.

