
SMART CONTRACT AUDIT

Dec 14th, 2021 | v.	1.0

99
Score

PASS
Zokyo Security team has
concluded that these smart
contracts pass security
qualifications and are fully
production-ready

This document outlines the overall security of the StampsDaq smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the StampsDaq smart contract codebase
for quality, security, and correctness.

. . .

1

StampsDaq Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 100%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the StampsDaq team put in
place a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

StampsDaq Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure​ ​and​ ​Organization​ ​of​ ​Document

7Complete​ ​Analysis

13Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

13Tests written by Zokyo Secured team

3

StampsDaq Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the StampsDaq repository.

. . .

Repository:
https://github.com/STAMPSDAQ-LLC/audit/commit/
ecbbe07fa63327080413ef1aa6a2487a8f65997e

Last commit:
e9d6cd59915e71ecacf00e7ecc9ed91071f9008c

Contracts under the scope:

ComissionManager;
DestructibleInterface;
OwnableInterface;
Postdollar;
RewardPool;
Sell;
StampToken.

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

4

StampsDaq Contract Audit

. . .

Zokyo's Security Team has followed best practices and industry-standard techniques to verify
the implementation of StampsDaq smart contracts. To do so, the code is reviewed line-by-line
by our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Summary

. . .

5

StampsDaq Contract Audit

The Zokyo team has conducted a security audit of the given codebase. The contracts provided
for an audit are well written and structured. All the findings within the auditing process are
presented in this document.

During the auditing process, our auditor's team found 1 issue with a high severity level, 2
issues with a low severity level, and a couple of informational issues which were successfully
resolved by the StampsDaq team.

Based on the results of the audit, we can give a score of 99 and state that the audited
contracts are fully production-ready.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

StampsDaq Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete​ ​Analysis

. . .

7

StampsDaq Contract Audit

HIGH

The contracts that are implementing the DesctructibleInterface give the owner too much
control, the owner can call the destroyAndSend function and transfer all the ether from the
contracts to an arbitrary address this is a risk especially if the private key of the owner gets
compromised, this kind of functionalities should be used with a multi-sig.

Recommendation:
Implement a multi-signature functionality to be able to call the functions from the Destructible
contract.

LOW

An malicious entity can forcefully send ether to the RewardPool contract by creating another
contract, sending ether to it, and then calling the selfdestruct function with the parameter
being the RewardPool address, and then call the fill function with value 0, this way making the
_fill variable true, but the value of the other variables like _collectorPool will be 0, this holds no
security risk at the moment from what I can observe because funds can be unlocked by
adding more ether through the fill function or by calling self-destruct with the parameter
being the owner address, but it’s clearly not intended behavior because from the design of the
RewardPool contract we can observe it is built to not accept ether through the fallback or
receive functions.

Recommendation:
To mitigate this exact scenario where _fill variable will be true and the other variables will have
the value 0, add a sanity check for the msg.value variable at the beginning of the function.

. . .

8

StampsDaq Contract Audit

LOW

In the RewardPool contract, the functions payReward and fill should be made external to
optimize the gas cost, the external functions are cheaper to call than the public function, and
there are no cases when you call these functions internally, so it will make more sense to be
external.

Recommendation:
Change the accessibility of the functions payReward and fill from public to external to optimize
gas costs.

informational

Some require functions in the project (for example RewardPool, lines 49, 65, 66, 68, 72,...),
does not contain a message, to be fully compatible with best standards, all required messages
should contain a message, to be able to tell where the error happened in case of revert.

Recommendation:
Be sure that all the required functions from the project contain a descriptive error message.

informational

For gas optimization and reusability the function _compareStrings from RewardPool, _concat,
and _uintToString from StampToken should be moved in a library and imported from there.

Recommendation:
Create libraries to improve accessibility, modularity, and gas costs.

. . .

9

StampsDaq Contract Audit

informational

Specifying a pragma version with the caret symbol (^) upfront which tells the compiler to use
any version of solidity bigger than specified considered not a good practice. Since there could
be major changes between versions that would make your code unstable. The latest known
versions with bugs are .0.8.3 and 0.8.4

Recommendation:
Set the latest version without the caret. (The latest version that is also known as bug-free is
0.8.9)

. . .

10

StampsDaq Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

ComissionManager

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

DestructibleInterface

. . .

11

StampsDaq Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

OwnableInterface

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Postdollar

. . .

12

StampsDaq Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

RewardPool

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Sell

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

StampToken

. . .

13

StampsDaq Contract Audit

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests written by Zokyo Security team

As part of our work assisting StampsDaq in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the StampsDaq
contract requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE

ComissionManager.sol

DestructibleInterface.sol

UNCOVERED LINES

Helpers.sol

OwnableInterface.sol

100.00

100.00

% STMTS

100.00

100.00

88.99

100.00

% BRANCH

100.00

100.00

100.00

100.00

% FUNCS

100.00

100.00

100.00

100.00

100.00

Postdollar.sol 100.00 100.00 100.00 100.00

100.00

RewardPool.sol 100.00 85.71 100.00

Sell.sol 100.00 87.59 100.00 100.00

100.00

StampToken.sol 100.00 100.00 100.00 100.00

% LINES

All files 100.00 91.00 100.00 100.00

. . .

14

StampsDaq Contract Audit

Test Results

Contract: Postdollar

✓ should deploy with correct token name
✓ should deploy with correct token symbol
✓ should mint initial supply to owner correctly

✓ should transfer tokens correctly
✓ cannot transfer with zero sender address
✓ cannot transfer with zero recipient address
✓ cannot transfer more tokens than sender balance

✓ should transfer tokens correctly
✓ cannot transfer with zero sender address
✓ cannot transfer with zero recipient address
✓ cannot transfer more tokens than sender balance

✓ should approve tokens correctly
✓ cannot approve with zero spender address

✓ should return allowance correctly
✓ should increase allowance correctly
✓ should decrease allowance correctly
✓ cannot decrease allowance if subtracted amount more than current allowance

Contract: ComissionManager

✓ should revert if co-owners are not set
✓ only owner or co-owners can update the global commission
✓ should update global commission correctly
✓ should revert if new global commission is greater than 333 or is equal to 0

✓ should set special commission for one address correctly
✓ should revert if exclusive commission owner is a zero address or this contract
✓ should revert if special commission is greater than 333 or is equal to 0

. . .

15

StampsDaq Contract Audit

✓ should return commission value for specified address correctly
✓ should return the global commission if the special commission for one address is zero
✓ should revert if the payer is a zero address or this contract

✓ should return commissioned price for specified address correctly
✓ should revert if the payer is a zero address or this contract

✓ should revert

✓ should revert

Contract: RewardPool

✓ should revert if co-owners are not setted
✓ should receive and distribute rewards correctly
✓ should catch event

✓ should revert if the pool is not filled
✓ should send rewards correctly
✓ should catch event
✓ should revert if the payee is a zero address or this contract
✓ should revert if the amount exceeds pool balance

✓ should revert

✓ should revert

✓ should revert if the recipient is a zero address
✓ should terminate contract and send balance to the recipient

Contract: StampToken

✓ should deploy with correct token name
✓ should deploy with correct token symbol

✓ should mint token sequential correctly

. . .

16

StampsDaq Contract Audit

✓ should set uri correctly for the created token

✓ should mint multiple sequential tokens correctly
✓ should set uri correctly for the created tokens

Contract: Sell

✓ cannot deploy if the STAMPSDAQ NFT contract is a zero address or this contract
✓ cannot deploy with zero price
✓ cannot deploy if the deployer does not own the token

✓ should revert if amount is less than endPrice
✓ should revert if token is not approved
✓ should revert if _tokenOwner address does not own the token
✓ should buy token correctly
✓ should catch event
✓ should revert if the offer is already complete

✓ should return commissioned price for payer address correctly

✓ should revert

✓ should revert

61 passing (50s)

We are grateful to have been given the opportunity to work
with the StampsDaq team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the StampsDaq team
put in place a bug bounty program to encourage further
analysis of the smart contract by third parties.

