
Combining GHOST and Casper

Vitalik Buterin, Diego Hernandez, Thor Kamphefner,
Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok Sin,

Ying Wang, Yan X Zhang

March 9, 2020

We present “Gasper,” a proof-of-stake-based consensus protocol, which
is an idealized version of the proposed Ethereum 2.0 beacon chain. The
protocol combines Casper FFG, a finality tool, with LMD GHOST, a
fork-choice rule. We prove safety, plausible liveness, and probabilistic
liveness under different sets of assumptions.

Contents

1. Introduction 3

2. Setup and Goals 3
2.1. Consensus Protocols, Validators, Blockchain 3
2.2. Messages and Views . 4
2.3. Proof-of-stake . 7
2.4. Byzantine Validators, PBFT . 8
2.5. Safety and Liveness . 9
2.6. Time, Epochs, and Synchrony . 10

3. Main Ingredients 11
3.1. Casper FFG . 11
3.2. LMD GHOST Fork-Choice rule . 13

4. Main Protocol: Gasper 15
4.1. Epoch Boundary Blocks and Pairs 15
4.2. Committees . 17
4.3. Blocks and Attestations . 18
4.4. Justification . 19
4.5. Finalization . 21
4.6. Hybrid LMD GHOST . 23

1

ar
X

iv
:2

00
3.

03
05

2v
1

 [
cs

.C
R

]
 6

 M
ar

 2
02

0

4.7. Slashing Conditions . 24
4.8. Rewards and Penalties . 26

5. Safety 26

6. Plausible Liveness 27

7. Probabilistic Liveness 28
7.1. High Weight After the First Slot - The Equivocation Game 29
7.2. High Weight after First Slot Leads to Justification 30
7.3. Probabilistic Justification Leads to Probabilistic Finalization 34

8. Practice versus Theory 37
8.1. Sharding . 38
8.2. Implementing the View . 38
8.3. Attestation Inclusion Delay . 38
8.4. Attestation Consideration Delay . 39
8.5. A Four-Case Finalization Rule . 39
8.6. Safety - Dynamic Validator Sets . 40
8.7. Extreme Cases; Hard Forks . 44

9. Conclusion 45

A. Technicalities of Views 50

B. The Equivocation Game 51
B.1. The Pessimistic Regime - High Latency 52
B.2. The Optimistic Regime - Low Latency 54
B.3. An Example Inbetween . 54

2

1. Introduction

Our goal is to create a consensus protocol for a proof-of-stake blockchain. This paper
is motivated by the need to construct Ethereum’s “beacon chain” in its sharding
design. However, the construction can also be used for a solo blockchain with no
sharding.

We present Gasper, a combination of Casper FFG (the Friendly Finality Gadget)
and LMD GHOST (Latest Message Driven Greediest Heaviest Observed SubTree).
Casper FFG [7] is a “finality gadget,” which is an algorithm that marks certain
blocks in a blockchain as finalized so that participants with partial information can
still be fully confident that the blocks are part of the canonical chain of blocks.
Casper is not a fully-specified protocol and is designed to be a “gadget” that works
on top of a provided blockchain protocol, agnostic to whether the provided chain
were proof-of-work or proof-of-stake. LMD GHOST is a fork-choice rule where
validators (participants) attest to blocks to signal support for those blocks, like
voting. Gasper is a full proof-of-stake protocol that is an idealized abstraction of the
proposed Ethereum implementation.

In Sections 2 and 3, we define our primitives, provide background knowledge,
and state our goals, In Section 4, we give our main protocol Gasper. In Sections 5,
6, and 7, we formally prove Gasper’s desired qualities. In Section 8, we summarize
some differences between Gasper and the actual planned Ethereum implementation,
such as delays in accepting attestations, delaying finalization, and dynamic validator
sets. We conclude with some thoughts and ideas for future research in Section 9.

2. Setup and Goals

The main goal of this paper is to describe and prove properties of a proof-of-stake
blockchain with certain safety and liveness claims. In this section, we give some
general background on consensus protocols and blockchain. As the literature uses a
diverse lexicon, the primary purpose of this section is to clearly pick out a specific
set of vocabulary to be reused for the rest of the paper.

2.1. Consensus Protocols, Validators, Blockchain

Our goal is to create a consensus protocol (or protocol for short from this point on),
which is an agreed suite of algorithms for a set of entities (nodes, people, etc.) to
follow in order to obtain a consensus history of their state, even if the network is
unreliable and/or if many validators are malicious.

We call the entities (people, programs, etc.) who participate in protocol validators,
denoted by the set V. They are called “validators” because of their data-validation
role in the Ethereum 2.0 beacon chain, though the specifics of this role are not part of
our abstract protocol. Other works use many different words for the same concept:

3

e.g. “replicas” in classic PBFT literature, “block producers” in DPoS and EOS,
“peers” on Peercoin and Nxt, or “bakers” on Tezos. The validators are connected
to each other on a (peer-to-peer) network, which means they can broadcast messages
(basically, packets of data) to each other. In the types of protocols we are interested
in, the primary types of messages are blocks, which collect bundles of messages.
The first block is called the genesis block and acts as the initial “blank slate” state.
Other blocks are descriptions of state transitions with a pointer to a parent block1. A
blockchain is just an instantiation (i.e. with specific network conditions, validators,
etc.) of such a consensus protocol where we use blocks to build the overall state.

We do not want all blocks seen on the network to be accepted as common history
because blocks can conflict with each other. These conflicts can happen for honest
reasons such as network latency, or for malicious reasons such as byzantine valida-
tors wanting to double-spend. Byzantine refers to a classic problem in distributed
systems, the Byzantine Generals Problem, and is used in this instance to describe a
validator who does not follow the protocol, either because they are malicious or ex-
periencing network latency. Graph-theoretically, one can think of a choice of history
as a choice of a “chain” going from the genesis block to a particular block. Thus, a
consensus history is a consensus of which chain of blocks to accept as correct. This
is why we call such an instantiation of our protocol a “blockchain.”

Example 2.1. Assume the goal of a protocol is to keep a ledger of every validator’s
account balances. Then their collective state is the ledger, and each block captures a
state transition, such as a monetary transaction from one validator to another (e.g.,
“Yunice sends coin with ID 538 to Bureaugard,”). One type of conflict we may want
to avoid is having both the aforementioned transaction and another transaction
with content “Yunice sends coin with ID 538 to Carol” be accepted into consensus
history, an act commonly called double-spending. The current consensus state can
be determined by starting from a “genesis state” and sequentially processing each
message in the consensus history (hopefully one that all honest validators will agree
with), starting from the genesis block.

2.2. Messages and Views

In our model, a validator V interacts with the network by broadcasting messages,
which are strings in some language. When an honest validator V broadcasts a
message M , we assume M is sent to all validators on the network2.

1Our choice that each block has a unique parent is almost taken for granted in blockchains; one
can imagine blockchains where blocks do not need to have parents, or can have more than one
parent. See, for instance, Hashgraph [2]. Even the very general structure of “block” itself may
be limiting!

2We model the validators as sending a single message to an abstract “network,” which handles
the message. In practice, it may be part of the protocol that e.g., every honest validator
rebroadcasts all messages that they see, for robustness. We consider these implementation
details not important to our paper.

4

The main type of message proposes a block, which is a piece of data, to the network.
Other messages can be bookkeeping notices such as voting for blocks (“attestation”),
putting new validators on the blockchain (“activation”), proving bad actions of
other validators (“slashing”), etc. depending on the specific protocol. We assume
that each message is digitally signed by a single validator, which means we can
accurately trace the author of each message and attacks such as impersonation of
honest validators are not possible.

Due to network latency and dishonest validators (delaying messages or relaying
incorrect information), validators may have different states of knowledge of the full
set of messages given to the network; we formalize this by saying that a validator
either sees or does not see each message given to the network at any given time.

Each message may have one or more dependencies, where each dependency is
another message. At any time, we accept a message if and only if all of its depen-
dencies (possibly none) are accepted, defined recursively. We now define the view
of a validator V at a given time T , denoted as view(V, T), as the set of all the ac-
cepted messages the validator has seen so far. We also have a “God’s-eye-view”
that we call the network view, defined to be the set of accepted messages for a hy-
pothetical validator that has seen (with no latency) all messages any validator has
broadcast at any time (this includes messages sent by a malicious validator to only
a subset of the network). We will treat the network as a “virtual validator”, so we
use view(NW, T) to denote the network view at time T . For any validator V and
any given time T , view(NW, T) includes all the messages in view(V, T), though the
timestamps may be mismatched. Finally, since usually the context is that we are
talking about a specific point in time, we will usually just suppress the time and use
notation such as view(V) to talk about view(V, T), unless talking about the specific
time is necessary.

Example 2.2. At time T , suppose validator V sees the message M with content
“Yunice sends coin number 5340 to Bob,” but has not yet seen the message M ′

containing “Yunice obtains coin number 5340” (which is on the network but has not
yet made its way to V). Also suppose that in our protocol M depends on M ′ (and
no other message), which captures the semantic meaning that we need to obtain
a coin before spending it, and that V cannot and should not act on M without
seeing M ′. In this situation we say that V has seen but has not accepted M , so
M /∈ view(V, T). However, the network has seen both; so if the network accepts M ′,
we have M ∈ view(NW, T).

We now make some assumptions on the structure of views:

• Everyone (the validators and the network) starts with a single message (with
no signature) corresponding to a single agreed-upon genesis block, denoted
Bgenesis, with no dependencies (so it starts out automatically accepted into all
views).

5

• Each block besides Bgenesis refers to (and depends on) a parent block as part of
its data. Thus, we can visualize view(V) as a directed acyclic graph (in fact,
a directed tree3) rooted at Bgenesis, with an edge B ← B′ if B is the parent of
B′, in which case we say B′ is a child of B. We call these parent-child edges
to differentiate from other types of edges.

• We say that a block is a leaf block if it has no children.

• A chain in such a protocol would then be a sequence of pairwise parent-child
edges B1 ← B2 ← · · · If there is a chain from B to B′, we say B′ is a descendant
of B. We say B is an ancestor of B′ if and only if B′ is a descendant of B.
We say two blocks B and B′ conflict if they do not equal and neither is a
descendant of the other.

• The above setup implies each block B uniquely defines a (backwards) chain
starting from Bgenesis to B, and this must be the same chain in any view that
includes B (thus we do not need to include a view as part of its definition).
We call this the chain of B, or chain(B).

Bgenesis

A

B

C D

E

Figure 1: A graph visualization of a view (only visualizing blocks and not other
messages) that occurs in the types of protocols we care about.

Example 2.3. See Figure 1 for an example of a view, limited to blocks. Arrows
portray parent-child edges. The blocks in a view form a tree rooted at a single
genesis block Bgenesis. Here blocks C and D conflict (as well as E and D). E has
the longest chain, which is chain(E) = (Bgenesis, A,B,C,E).

3This statement already captures the primary reason we define both seeing and accepting; the
blocks a validator accepts must be a single rooted tree, though the blocks a validator sees can
be some arbitrary subset of the tree, so limiting our attention to the tree allows cleaner analysis
and avoids pathological cases. Beyond this reason, the distinction between the two words is
unimportant for the rest of this paper.

6

There are some technicalities to our wording in this section that motivates our
definition of views but are not very important to the core of this paper. To not
distract the reader, we defer these details to Appendix A.

2.3. Proof-of-stake

The first and most influential approach to blockchain protocols is Bitcoin [16], using
a proof-of-work model. This approach makes it computationally difficult to propose
blocks, using the simple and intuitive fork-choice rule, “the block with the heaviest
chain is the head of the chain.” Miners (the analogy of validators) simply propose
blocks to build on the heaviest chain (the chain with the most amount of compu-
tational work), which does not mathematically guarantee any non-genesis block as
“correct” but offers a probabilistic guarantee since it becomes less and less likely to
conflict with a block once other miners build on top of it. Then the consensus history
is simply the chain with the heaviest amount of work, which ideally keeps growing.
The elegance of proof-of-work is paid for by the expensive cost of computational
work / electricity / etc. to propose a block.

In this paper, we want to create a proof-of-stake blockchain, where a validator’s
voting power is proportional to their bonded stake (or money) in the system. Instead
of using computational power to propose blocks, proposing blocks is essentially free.
In exchange, we need an additional layer of mathematical theory to prevent perverse
incentives that arise when we make proposing blocks “easy.” We now shift our
paper’s focus to a family of blockchain designs with proof-of-stake in mind.

To start, we assume we have a set of N validators V = {V1, . . . , VN} and that each
validator V ∈ V has an amount of stake w(V), a positive real number describing
an amount of collateral. We make the further assumption that the average amount
of stake for each validator is 1 unit, so the sum of the total stake is N . All of
our operations involving stake will be linear, so this scaling does not change the
situation and makes the bookkeeping easier. We assume validator sets and stake
sizes are fixed for the sake of focusing on the theoretical essentials of the protocol.
We address issues that occur when we relax these conditions in practical use in later
sections, especially Section 8.

The main ingredients we need are:

• A fork-choice rule: a function fork() that, when given a view G, identifies a
single leaf block B. This choice produces a unique chain fork(G) = chain(B)
from Bgenesis to B called the canonical chain. The block B is called the head
of the chain in view G. Intuitively, a fork-choice rule gives a validator a “law”
to follow to decide what the “right” block should be. For example, the longest
chain rule is a fork-choice rule that returns the leaf block which is farthest
from the genesis block. This rule is similar with the “heaviest chain rule” used
by Bitcoin.

7

• A concept of finality : formally, a deterministic function F that, when given a
view G, returns a set F (G) of finalized blocks. Intuitively, finalized blocks are
“blocks that everyone will eventually think of as part of the consensus history”
or “what the blockchain is sure of.”

• Slashing conditions: these are conditions that honest validators would never
violate and violating validators can be provably caught, with the idea that
violators’ stake would be slashed, or destroyed. Slashing conditions incentivize
validators to follow the protocol (the protocol can reward honest validators for
catching dishonest validators violating the conditions, for example).

The key concept we use to define these ingredients are attestations, which are votes
(embedded in messages) for which blocks “should” be the head of the chain. To pre-
vent validators from double-voting or voting in protocol-breaking ways, we enforce
slashing conditions which can be used to destroy a validator’s stake, incentivizing
validators to follow the protocol.

Bgenesis

A

B

C

blocks:

attestations:

BA
B depends on A

Bgenesis A B C
The chain of C or chain(C)

Figure 2: An ideal view with both blocks and attestations.

One can see an idealized version of the protocol we will present in Figure 2; in each
time period, a new block is created with the parent block being the last head of chain
(which is ideally just the last block created), and validators in the corresponding
committee all perfectly attest to the new block. In less idealized situations, the
blocks may fork, we may have missing attestations, etc. and the attestations will
come to play by helping validators decide the correct head of the chain. In Section 4
we will define all the details.

2.4. Byzantine Validators, PBFT

In a protocol, we call a validator honest if he/she follows the protocol, and byzantine
otherwise. We typically assume strictly less than p = 1

3 of validators are byzantine.
This constant can be traced to Practical Byzantine Fault Tolerance (PBFT) from

8

[8], a classic consensus protocol in byzantine tolerance literature; PBFT ensures
that the system runs correctly as long as less than 1

3 of the replicas (synonymous
with our validators) are byzantine, as proven in [3]. This constant 1

3 tolerance
appears frequently in many works based on PBFT (the main idea is that a pigeonhole
principle argument needs the 1/3 to work, such as in our proof in Section 5), with
Casper FFG [7] being the most directly relevant to our work, which we review in
Section 3.1.

Concretely, we define a blockchain running the protocol to be p-slashable if val-
idators with a total of pN stake can be provably slashed by a validator with the
network view, and most of our results will take the form “at any time, our blockchain
either has (good) property X or is (1/3)-slashable ,” because we really cannot guar-
antee having any good properties when we have many byzantine actors, so this is
the strongest type of statement we can have. Also note that having (1/3)-slashable
is a stronger and much more desirable result than just having (1/3) of the stake
belonging to byzantine validators, because if we only had the latter guarantee, we
may still incentivize otherwise honest validators to cheat in a way they do not get
caught.

One of the most important aspects of PBFT is that it works under asynchronous
conditions, which means we have no bounds on how long it may take for messages
to be received. Thus, it is robust to the demands of blockchains and cryptocurren-
cies, where we often worry about adversarial contexts. We will discuss synchrony
assumptions further in Section 2.6.

2.5. Safety and Liveness

The ultimate goal for the honest validators is to grow a finalized chain where all
blocks form “logically consistent” state transitions with each other (despite hav-
ing validators potentially go offline, suffer latency problems, or maliciously propose
conflicting state changes). Formally, this translates to two desired properties:

Definition 2.4. We say a consensus protocol has:

• safety, if the set of finalized blocks F (G) for any view G can never contain
two conflicting blocks. A consequence of having safety is that any validator
view G’s finalized blocks F (G) can be “completed” into a unique subchain of
F (view(NW)) that starts at the genesis block and ends at the last finalized
block, which we call the finalized chain.

• liveness, if the set of finalized blocks can actually grow. There are different
ways to define liveness. For our paper, we say the protocol has:

– plausible liveness, if regardless of any previous events (attacks, latency,
etc.) it is always possible for new blocks to be finalized (alternatively,
it is impossible to become “deadlocked”). This is to prevent situations

9

where honest validators cannot continue unless someone forfeits their own
stake.

– probabilistic liveness, if regardless of any previous events, it is probable for
new blocks to be finalized (once we make some probabilistic assumptions
about the network latency, capabilities of attackers, etc.).

On first glance, the latter implies the former, but the situation is more sub-
tle; the former is a purely non-probabilistic property about the logic of the
protocol; the latter requires (potentially very strong) assumptions about the
context of the implementation to guarantee that the protocol “usually works
as intended.” We discuss this contrast further in Section 7.3.

Our main goal in this paper is to prove these vital properties for our main protocol
in Section 4.

Remark (Syntax versus Semantics). It should not be immediately obvious that
chains have anything to do with logical consistence of state transitions, and this
requires more work on the part of the protocol designer to ensure. For example, one
can dictate a protocol where a block that allows a user to spend a coin S forbids
an ancestor block from using S in another transaction. In this situation, if Xander
obtained a coin S from block Bx and writes two blocks By and Bz, such that By’s
data includes Xander paying S to Yeezus and Bz’s data includes Xander paying S
to Zachariah, then the logical idea that these actions are inconsistent corresponds
to the graph-theoretical property that By and Bz conflict as blocks. The language
of chains and conflicting blocks is enough to serve any such logic, so we assume in
our paper that the syntax of what blocks can be children of what other blocks has
already been designed to embed the semantics of logical consistency, which allows
us to ignore logic and only think in terms of chains and conflicting blocks.

2.6. Time, Epochs, and Synchrony

In our model, we measure time in slots, defined as some constant number of seconds
(tentatively 12 seconds in [11]). We then define an epoch to be some constant number
C (tentatively 64 slots in [11]) of slots. The epoch j of slot i is ep(i) = j = b iC c. In
other words, the blocks belonging to epoch j have slot numbers jC + k as k runs
through {0, 1, . . . , C − 1}. The genesis block Bgenesis has slot number 0 and is the
first block of epoch 0.

The main purpose of epochs is to divide time into pieces, the boundaries between
which can be thought of as “checkpoints.” This allows concepts from Casper FFG
to be used, as we will see in Section 3.1.

We should not assume the network is guaranteed to have the validators see the
same messages at any given time, or even that different validators have the same
view of time. The study of consensus protocols address this issue by having different
synchrony conditions, such as:

10

• a synchronous system has explicit upper bounds for time needed to send mes-
sages between nodes;

• an asynchronous system has no guarantees; recall that PBFT [8] works under
asynchrony.

• a partially synchronous system can mean one of two things depending on
context: (i) explicit upper bounds for delays exist but are not known a priori;
(ii) explicit upper bounds are known to exist after a certain unknown time
T . The work [12] establishes bounds on fault tolerance in different fault and
synchrony models, focusing on partial synchrony.

For us, we make no synchrony assumptions when studying safety and plausible
liveness. When studying probabilistic liveness (i.e. trying to quantify liveness under
“realistic” conditions), we will use the notion (ii) of partial synchrony above. We
say that the network is t-synchronous at time T (where T and t are both in units
of slots) if all messages with timestamps at or before time (T − t) are in the views
of all validators at time T and afterwards; e.g., if each slot is 12 seconds, then
(1/2)-synchrony means that all messages are received up to 6 seconds later.

Remark. It is possible to e.g., receive messages “from the future.” Suppose Alexis
sends a message timestamped at 00:01:30 PT and Bob receives it 1 second later
with a clock that is 3 seconds behind Alexis’s. Bob sees this 00:01:30 PT message
on his own clock timestamped at 00:01:28 PT because he is a net total of 2 seconds
behind. To make analysis easier, we can assume that all (honest) validators always
delay the receiving of a message (i.e., do not add it into their view) until their own
timestamps hit the message’s timestamp. This allows us to assume no messages are
read (again, by honest validators) in earlier slots than they should.

3. Main Ingredients

3.1. Casper FFG

Buterin and Griffith introduce Casper the Friendly Finality Gadget (FFG) in [7].
This tool defines the concepts of justification and finalization inspired by practical
Byzantine Fault Tolerance (PBFT) literature. Casper is designed to work with a
wide class of blockchain protocols with tree-like structures.

• Every block has a height defined by their distance from the genesis block
(which has height 0). Equivalently, the height of B is the length of chain(B)−1.

• We define checkpoint blocks to be blocks whose height is a multiple of a con-
stant H (in [7], H = 100). We define the checkpoint height h(B) for a check-
point block B as the height of B divided by H, which is always an integer.

11

Thus, we can think of the subset of checkpoints in the view as a subtree,
containing only blocks whose heights are multiples of H.

• Attestations are signed messages containing “checkpoint edges” A→ B, where
A and B are checkpoint blocks. We can think of each such attestation as a
“vote” to move from block A to B. The choices of A and B depend on the
underlying blockchain and is not a part of Casper. Each attestation has a
weight, which is the stake of the validator writing the attestation. Ideally,
h(B) = h(A) + 1, but this is not a requirement. For example, if H = 100, it is
possible for an honest validator to somehow miss block 200, in which case their
underlying blockchain may want them to send an attestation from checkpoint
block 100 to checkpoint block 300.

Remark. Observe we setup time in units of slots, which are grouped into epochs.
This is analogous to (but not exactly identical to) block heights and checkpoint
blocks. We discuss this further in Section 4.1.

Casper FFG also introduces the concepts of justification and finalization, which
are analogous to phase-based concepts in the PBFT literature such as prepare and
commit, e.g., see [8]:

• In each view G, there is a set of justified checkpoint blocks J(G) and a subset
F (G) ⊂ J(G) of finalized checkpoint blocks.

• In a view G, a checkpoint block B is justified (by a checkpoint block A) if
there are attestations voting for A→ B with total weight at least 2/3 of total

validator stake. Equivalently, we say there is a supermajority link A
J−→ B.

This is a view-dependent condition, because the view in question may have
or have not seen all the relevant attestations to break the 2/3 threshold (or
even having seen the block B itself), which is why the set of justified blocks
is parametrized by G.

• In a view G, if A ∈ J(G) (equivalently, A is justified), and A
J−→ B is a

supermajority link with h(B) = h(A)+1, then we say A ∈ F (G) (equivalently,
A is finalized).

Finally, Casper introduces slashing conditions, which are assumptions about hon-
est validators. When they are broken by a validator V , a different validator W can
slash V (destroy V ’s stake and possibly getting some sort of “slashing reward”) by
offering proof V violated the conditions.

Definition 3.1. The following slashing conditions, when broken, cause a validator
violating them to have their stake slashed:

• (S1) No validator makes two distinct attestations α1 and α2 corresponding to
checkpoint edges s1 → t1 and s2 → t2 respectively with h(t1) = h(t2).

12

• (S2) No validator makes two distinct attestations α1 and α2 corresponding
respectively to checkpoint edges s1 → t1 and s2 → t2, such that

h(s1) < h(s2) < h(t2) < h(t1).

As Casper is a finality gadget and not a complete protocol, it assumes the under-
lying protocol has its own fork-choice rule, and at every epoch all the validators run
the fork-choice rule at some point to make one (and only one) attestation. It is as-
sumed that honest validators following the underlying protocol will never be slashed.
For example, if the protocol asks to make exactly one attestation per epoch, then
honest validators will never violate (S1).

The main theorems in Casper are (slightly paraphrased):

Theorem 3.2 (Accountable Safety). Two checkpoints on different branches cannot
both be finalized, unless a set of validators owning stake above some total provably
violated the protocol (and thus can be held accountable).

Theorem 3.3 (Plausible Liveness). It is always possible for new checkpoints to be-
come finalized, provided that new blocks can be created by the underlying blockchain.

Remark. Jain et al. [14] observed and provided some solutions to the limitations
of Casper FFG in [7] and the Proof-of-Stake model. Palmskog et al. [17] provided
a mechanical proof assistant for Casper FFG’s accountable safety and plausible
liveness in the Coq Proof Assistant. The authors modified the blockchain model in
Coq, Toychain, to use for the Casper FFG with Ethereum’s beacon chain specs in
order to see how Casper FFG’s proofs will work in practice.

3.2. LMD GHOST Fork-Choice rule

The Greediest Heaviest Observed SubTree rule (GHOST) is a fork-choice rule in-
troduced by Sompolinsky and Zohar [20]. Intuitively, GHOST is a greedy algorithm
that grows the blockchain on sub-branches with the “most activity.” It is a flex-
ible fork-choice rule; one can use it for either a proof-of-work or a proof-of-stake
blockchain.

13

Bgenesis

8

8

5 3

113

1

3

1 2

2

1

Figure 3: An example of the LMD-GHOST fork-choice rule. The number in each
block B is the weight (by stake), with all attestations (circles) having
weight 1 in our example. A validator using this view will conclude the
blue chain to be the canonical chain, and output the latest blue block on
the left, with weight 3, to be the head of the chain.

We now introduce the Latest Message Driven Greediest Heaviest Observed Sub-
Tree (LMD GHOST) rule, the most natural way to adapt GHOST to our setup. We
need the following definition:

Definition 3.4. Given a view G, Let M be the set of latest attestations, one per
validator. The weight w(G,B,M) is defined to be the sum of the stake of the
validators i whose last attestation in M is to B or descendants of B.

Algorithm 3.1 LMD GHOST Fork Choice Rule.

1: procedure LMD-GHOST(G)
2: B ← Bgenesis

3: M ← the most recent attestations of the validators (one per validator)
4: while B is not a leaf block in G do
5: B ← arg max

B′ child of B
w(G,B′,M)

6: (ties are broken by hash of the block header)

7: return B

Note that LMD GHOST does not provide details on how and when attestations
are made; those are details to be filled in by the protocol, like how Casper does not
specify details on how blocks are constructed. We merely need that the concepts of

14

blocks and attestations exist, and then LMD GHOST defines an algorithm to find
a block given a view.

The idea of LMD GHOST is that at any fork, we use the weights of the subtrees
created by the fork as a heuristic and assume the subtree with the heaviest weight
is the “right” one, as evident from the name of the algorithm. We will always end
up at a leaf block, which defines a canonical chain. See Algorithm 3.1 for a formal
description; see Figure 3 for a graphical visualization. In Section 4 we will modify
the rule to satisfy our other purposes.

4. Main Protocol: Gasper

We now define our main protocol Gasper, which is a combination of the GHOST
and Casper FFG ideas. The main concepts are:

• (Epoch boundary) pairs of a chain: given a chain, certain blocks are picked
out, ideally one per epoch, to play the role of Casper’s checkpoints. However,
a block may appear more than once as a checkpoint on the same chain (this is
a nuance not found in Casper; we expound on this in Section 4.1), so we use
ordered pairs (B, j), where B is a block and j is an epoch, to disambiguate.
These will be called epoch boundary pairs, or pairs for short.

• Committees: the validators are partitioned into committees in each epoch,
with one committee per slot. In each slot, one validator from the designated
committee proposes a block. Then, all the members of that committee will
attest to what they see as the head of the chain (which is hopefully the block
just proposed) with the fork-choice rule HLMD GHOST (a slight variation of
LMD GHOST).

• Justification and Finalization: these concepts are virtually identical to that
of Casper FFG, except we justify and finalize pairs instead of justifying and
finalizing checkpoint blocks, i.e., given a view G, J(G) and F (G) are sets of
pairs.

4.1. Epoch Boundary Blocks and Pairs

Recall any particular block B uniquely determines a chain, chain(B). For a block
B and an epoch j, define EBB(B, j), the j-th epoch boundary block of B, to be the
block with the highest slot less than or equal to jC in chain(B). Let the latest
such block be LEBB(B), or the last epoch boundary block (of B). We make a few
observations:

• For every block B, EBB(B, 0) = Bgenesis.

• More generally, if slot(B) = jC for some epoch j, B will be an epoch boundary
block in every chain that includes it.

15

• However, without such assumptions, a block could be an epoch boundary block
in some chains but not others.

To disambiguate situations like these, we add precision by introducing epoch
boundary pairs (or pairs for short) (B, j), where B is a block and j is an epoch. Our
main concepts of justification and finalization will be done on these pairs. Given a
pair P = (B, j), we say P has attestation epoch j, using the notation aep(P) = j,
which is not necessarily the same as ep(B).

63 64

“63”

65

66

Epoch 0 Epoch 1

LEBB(65) = 64

LEBB(66) = 63

EBB(66, 1) = (63, 1)

Figure 4: Example of epoch boundary blocks and pairs. Blocks are labeled with
their slot numbers. “63” is not an actual block but illustrates the perspec-
tive of 66 needing an epoch boundary block at slot 64 and failing to find
one.

Example 4.1. Suppose blocks (labeled by slots) form a chain 63 ← 64 ← 65 and
there is a fork 63 ← 66. Then EBB(65, 1) = 64 since 64 is in chain(65). When we
try to find EBB(66, 1), we look for block 64 because we are in epoch 1 and realize
it is not in chain(66), so we have to look backwards and “pull up” block 63 from
the previous epoch to serve as the epoch boundary block in this chain. This is
visualized by the dashed components in Figure 4. Observe even though aep(63, 1)
and ep(63) = 0, ep() is a local property that only depends on the block’s slot, and
epoch boundary concepts like aep() depend on the context of the chain.

Remark. We further address why we use pairs instead of checkpoint blocks. Casper
FFG is a “finality gadget,” meaning it is designed to place a layer of finality on top
of a blockchain which has probabilistic liveness, which gives a steady new supply of
checkpoint blocks. Probabilistic liveness assumes good synchrony conditions. For
the safety part of the design, we would want to make fewer assumptions and take
into account worst-case scenarios where we may be put into a state where we have
not seen a new block for a while.

As an example, block B may be the head of the chain from epoch 1, but be
currently at epoch 3 with no new block built on top of B. In the original Casper
FFG, we expect probabilistic liveness so we would have a different checkpoint at

16

every epoch. However, when we have no synchrony assumptions, in the analysis we
would need to differentiate the idea of “checkpoint in epoch 2” and “checkpoint in
epoch 3” even though the best candidate for both is B, which is itself still only in
epoch 1! This naturally induces the concepts (B, 2) and (B, 3), which represents
the best approximation to a checkpoint in a later epoch if the checkpoint block that
“should have been there” is missing.

Also, Casper FFG makes no assumptions about time in the underlying blockchain
– only block heights are important, with no notion of slots or epochs. The use of block
height is a natural choice in proof-of-work blockchains due to the Poisson process
of mining new blocks serving somewhat as a system clock, with blocks coming at
fairly irregular times. Gasper, as a proof-of-stake protocol, can have blocks coming
in at controlled regular intervals as part of the protocol (instead of depending on a
random process), so instead the notion of time is explicitly desired in the protocol.
To capture this notion of time, each object in our blockchain then naturally requires
the knowledge of both the data (captured in a block) and the time (captured in the
epoch count), which also leads naturally to the idea of pairs.

4.2. Committees

The point of committees is to split up the responsibilities among the validators. To
start, assume the validators have access to a sequence of random length-N permu-
tations ρ0, ρ1, . . ., as functions {1, 2, . . . , N} → {1, 2, . . . , N}. In the scope of this
article, we assume we get these random permutations from a random oracle4.

Recall time is split into epochs, of C slots each. Each permutation ρj will be
used only during epoch j. Its role is to pseudorandomly select validators into C
committees, each of whom has responsibilities for one slot of the epoch. To be
precise:

• During epoch j, we would like to split the set of validators V into C equal-size
committees S0, S1, . . . , SC−1 (we assume C|N for easier notation; dealing with
“roughly equal” size committees does not change the essence of our approach).

• Therefore, for each k ∈ {0, 1, . . . , C−1}, we define Sk to be the set of the N/C
validators of the form Vρj(s), where s ≡ k (mod C). Note, for an epoch j, the
sets S0, S1, . . . , SC−1 partition the entire set of validators {V1, . . . , VN} across
all the slots of epoch j, as desired.

To summarize, in each epoch j, ρj allows us to shuffle the validators into C
committees. Our work does not assume more than this intuition.

4Achieving non-exploitable randomness on the blockchain is itself an interesting problem, stim-
ulating research such as verifiable delay functions; however, in this article we will take this
randomness for granted.

17

4.3. Blocks and Attestations

Now, in each slot, the protocol dictates 2 types of “committee work” for the commit-
tee assigned to their respective slot: one person in the committee needs to propose
a new block, and everyone in the committee needs to attest to their head of the
chain. Both proposing blocks and attesting mean immediately adding a correspond-
ing message (a block and an attestation, respectively) to the validator’s own view
and then broadcasting the message to the network. Recall the messages proposing
(non-genesis) blocks and publishing attestations have digital signatures.

Both proposing and attesting requires the committee member to run the same
fork-choice rule HLMD() on the validator’s own view, which is a variation of the
LMD GHOST fork-choice rule. HLMD()’s definition requires concepts that we have
not introduced yet, so we delay its definition to Section 4.6. For now, the only thing
we need to know is, like LMD GHOST, HLMD() takes a view G and returns a leaf
block B as the head of the chain, making chain(B) the canonical chain of G.

We now present the responsibilities of the protocol during slot i = jC + k, where
k ∈ {0, 1, . . . , C − 1}. All mentions of time are computed from the point-of-view of
the validator’s local clock, which we assume to be synced within some delta.

Definition 4.2. At the beginning of slot i = jC+k, designate validator V = Vρj(k),
i.e., the first member of the committee Sk of epoch j, as the proposer for that
slot. The proposer computes the canonical head of the chain in his/her view, i.e.,
HLMD(view(V, i)) = B′, then proposes a block B, which is a message containing:

1. slot(B) = i, the slot number.

2. P (B) = B′, a pointer to the parent block; in other words, we always build a
block on top of the head of the chain.

3. newattests(B), a set of pointers to all the attestations (to be defined next) V
has accepted, but have not been included in any newattests(B′) for a block B′

who is an ancestor of B.

4. Some implementation-specific data (for example, “Yunice paid 4.2 ETH to
Brad” if we are tracking coins), the semantics of which is irrelevant for us.

For dependencies, B depends on P (B) and all attestations in newattests(B). (so for
example, if we see a block on the network but do not see its parent, we ignore the
block until we see its parent).

In typical (honest) behavior, we can assume each slot number that has a block
associated with it also has at most one such block in view(NW). By default, Bgenesis

is the unique block with slot 0. A dishonest validator can theoretically create a
block with a duplicate slot number as an existing block, but we can suppose the
digital signatures and the pseudorandom generator for block proposal selection are
set up so such behavior would be verifiably caught. For example, every time a

18

digitally signed block enters the view of a validator, the validator can immediately
check if the block proposer is the unique person allowed to propose a block for that
respective slot. A validator can also prove the same person proposed two blocks in
the same slot by just pointing to both blocks.

Definition 4.3. At time (i+1/2), the middle of slot i = jC+k, each validator V in
committee Sk computes B′ = HLMD (view(V, i+ 1/2)), and publishes an attestation
α, which is a message containing:

1. slot(α) = jC + k, the slot in which the validator is making the attestation.
We will also use ep(α) as shorthand for ep (slot(α)).

2. block(α) = B′. We say α attests to block(α). We will have slot (block(α)) ≤
slot(α), and “usually” get equality by quickly attesting to the block who was
just proposed in the slot.

3. A checkpoint edge LJ(α)
V−→ LE(α). Here, LJ(α) and LE(α) are epoch boundary

pairs in view(V, i+ 1/2). We define them properly in Section 4.4.

For dependencies, α depends on block(α). So we ignore an attestation until the
block it is attesting to is accepted into our view (this is one of the bigger differences
between theory and implementation; we discuss this more in in Section 8).

Intuitively, α is doing two things at once: it is simultaneously a “GHOST vote”
for its block and also a “Casper FFG vote” for the transition between the two epoch
boundary pairs (akin to Casper’s checkpoint blocks).

4.4. Justification

Definition 4.4. Given a block B, we define5 view(B), the view of B, to be the view
consisting of B and all its ancestors in the dependency graph. We define ffgview(B),
the FFG view of B, to be view(LEBB(B)).

The definition view(B) is “agnostic of the viewer” in which any view that accepted
B can compute an identical view(B), so we do not need to supply a validator (or
NW) into the argument. Intuitively, view(B) “focuses” the view to chain(B) and
ffgview(B) looks at a “frozen” snapshot of view(B) at the last checkpoint. Casper
FFG operates only on epoch boundary pairs, so the FFG view of a block B extracts
exactly the information in chain(B) that is relevant to Casper FFG.

We now define the main concepts of justification. To start, recall an attestation

α for Gasper contains a checkpoint edge LJ(α)
V−→ LE(α), acting as a “FFG vote”

between two epoch boundary pairs. After a couple of new definitions, we can finally
explicitly define these notions.

5We have tyrannically overworked the notation view() by this point, but there should be no
ambiguity when we know the type of its parameter.

19

Definition 4.5. We say there is a supermajority link from pair (A, j′) to pair (B, j)

if the attestations with checkpoint edge (A, j′)
V−→ (B, j) have total stake more than

2N
3 out of all attestations in epoch j. In this case, we write (A, j′)

J−→ (B, j).

Definition 4.6. Given a view G, we define the set J(G) of justified pairs as follows:

• (Bgenesis, 0) ∈ J(G);

• if (A, j′) ∈ J(G) and (A, j′)
J−→ (B, j), then (B, j) ∈ J(G) as well.

If (B, j) ∈ J(G), we say B is justified in G during epoch j.

Definition 4.7. Given an attestation α, let B = LEBB(block(α)). We define:

1. LJ(α), the last justified pair of α: the highest attestation epoch (or last) jus-
tified pair in ffgview(block(α)) = view(B).

2. LE(α), the last epoch boundary pair of α: (B, ep(slot(α))).

While we define J(G) for any view G, we are typically only interested in J(G) for
G = ffgview(B). We can think of each chain as having its own “state” of justified
blocks/pairs that is updated only at the epoch boundaries.

0 1 . . . 63 64 64

130

129 131 . . . 180 180 193

α

Epoch 0 Epoch 1 Epoch 2 Epoch 3

Figure 5: A validator’s view G as she writes an attestation in epoch 3. During
epoch 1, latency issues make her not see any blocks, so block 64 is both
EBB(193, 1) and EBB(193, 2). She ends up writing an α with a “GHOST
vote” for block(α) = 193 and a “FFG vote” checkpoint edge (single arc

edge) (64, 2)
V−→ (180, 3) for α. We use slot numbers for blocks, so block 0 is

just Bgenesis. Blocks in red are justified (inG). Double edges corresponding
to supermajority links.

Example 4.8. A validator runs HLMD(G) on her view G to obtain her head of the
chain, which is block 193. She is then supposed to attest to 193 with an attestation
α.

On chain(193) portrayed in Figure 5, LE(α) = (180, 3), even though ep(180) = 2,
because our attestation has epoch 3, and we were looking for 3 ∗ 64 = 192 but did
not see it (one can imagine, like in our figure, that we “pull up” block 180 to show

20

that it is EBB(193, 3)). In ffgview(193) = view(180), the last justified (by epoch
number, not slot) pair is (64, 2), so LJ(α) = (64, 2).

Note that this relies on view(180) to include attestations worth at least (2N/3)-
stake pointing to (64, 2). It would be possible to have a case where this did not
happen by 180, but the chain does see (2N/3) worth of attestations by 193. In
this case, (64, 2) is in J(G), but (64, 2) is not in J(ffgview(193)), so the resulting

checkpoint edge would be, e.g., (64, 1)
V−→ (180, 3) instead, assuming the attestations

for (64, 1) are in view(180). The checkpoint edge could even end up being (0, 0)
V−→

(180, 3), if 180 did not see those attestations; note that this is very possible if the
attestations for (64, 1) were only included in the blocks that forked off of chain(193)
(such as block 130), as the forking may be an indication of network problems causing
those attestations to be temporarily unavailable to validators on chain(193).

Everything here is analogous to Casper FFG. Inside the chain of block(α) is a sub-
chain created by the epoch boundary blocks of that chain, starting from Bgenesis and
ending at B = LEBB(α). We want to focus on this subchain of blocks (represented
by pairs to allow for boundary cases) and justify epoch boundary pairs with many
attestations; this sub-chain is exactly what’s captured by ffgview(block(α))). α is
a vote to transition from some last justified pair (B′, j′) to the new pair (B, j),

visualized as the checkpoint edge (A, j′)
V−→ (B, j). If (2N/3) stake worth of such

votes happen, we create a supermajority link (A, j′)
J−→ (B, j) and justify (B, j).

4.5. Finalization

Given our notion of justification and a new fork-choice rule, we are now ready to
define the notion of finalization. Finalization is a stronger notion of justification in
the sense that the moment any view considers a block B as finalized for some j, no
view will finalize a block conflicting with B unless the blockchain is (1/3)-slashable.

Definition 4.9. For a view G, we say (B0, j) is finalized (specifically, k-finalized)
in G if (B0, j) = (Bgenesis, 0) or if there is an integer k ≥ 1 and blocks B1, . . . , Bk ∈
view(G) such that the following holds:

• (B0, j), (B1, j+1), . . . , (Bk, j+k) are adjacent epoch boundary pairs in chain(Bk);

• (B0, j), (B1, j + 1), . . . , (Bk−1, j + k − 1) are all in J(G);

• (B0, j)
J−→ (Bk, j + k).

We define F (G) to be the set of finalized pairs in the view G; we also say that a
block B is finalized if (B, j) ∈ F (G) for some epoch j.

We expect 1-finalized blocks for the vast majority of time. Specifically, this just

means we have blocks B0 and B1 such that (B0, j) is justified in G and (B0, j)
J−→

21

(B1, j + 1), or “a justified epoch boundary block justifies the next adjacent epoch
boundary block.” This is essentially the original definition of finalized in [7]. With
(1/2)-synchrony and without implementation details that interfere with accepting
messages, we should only get 1-finalization. We include the k > 1 cases to account for
situations where network latency and attestation inclusion delays (see Section 8.3)
are relevant.

B0 B0 B0

B1

B2

...

B1

B2

B3

B4

...

B1

B2

B3

B4

B5

B6

...

k=1

k=2

k=3

Figure 6: Illustrative examples of Definition 4.9 for k = 1, 2, 3, respectively. Double
arrows are supermajority links. The blue block is the one being finalized
in each case.

Remark. In Figure 6, we see some examples of finalization. On the left, we have
1-finalization, which is what we expect to happen in the vast majority of the time.
At the center, we have an example of 2-finalization to account for attestation delays.
The k = 3 example is mainly for the sake of illustration; it takes some contrived
orchestration to create. In practice, the planned implementation for finalization in
[11] does not even include finalization for k ≥ 3. See Section 8.5.

If we define a set of blocks F as finalized and prove safety for them, then safety
remains true automatically if we change the definition of finalized to any subset of
F , because safety is defined by the lack of incomparable pairs of finalized blocks.

22

Thus, it does not hurt to define a very general class of blocks as finalized if we
can prove safety. This is why we include all k in our definition; the more general
definition is easier to analyze.

4.6. Hybrid LMD GHOST

We now have enough notation to define HLMD. Since the final design is fairly
complicated at first glance, we first present Algorithm 4.1, a “prototype” version;
simply put, it starts with the last justified block in the view and then runs LMD
GHOST. It is not obvious (BJ , j) should be unique, but it can be proven to be well-
defined as a consequence of Lemma 4.11 when the blockchain is not (1/3)-slashable.
For implementation it is costless to add a tiebreaker (say via block header hash).

Algorithm 4.1 Prototype Hybrid LMD GHOST Fork Choice Rule

1: procedure HLMD(G)
2: (BJ , j)← the justified pair with highest attestation epoch j in G
3: B ← BJ
4: M ← most recent attestations (one per validator)
5: while B is not a leaf block in G do
6: B ← arg max

B′ child of B
w(G,B′,M)

7: (ties are broken by hash of the block header)

8: return B

However, using this prototype will run into some subtle problems. Because the
“FFG part” of an attestation is a vote between epoch boundary pairs, and LJ(B)
depends only on ffgview(B), we can think of the “last justified pair in a chain” as
“frozen” at the beginning of every epoch, which does not mix well with the “non-
frozen” (BJ , j) being instinctively defined as the last justified block in our entire
view, as the latter definition can shift during an epoch (the reader is encouraged to
think of problems with this, as an exercise). Thus, we need a version of (BJ , j) that
does not change in the middle of an epoch.

Another problem occurs when the algorithm forks: forked blocks can have drasti-
cally different last justified pairs, even if they are next to each other. As a result of
this mismatch, we can create pathological situations where an honest validator may
slash themselves when following Algorithm 4.1, if a validator previously attested to
a higher last justification epoch but then forks into a chain whose last justification
epoch is older (c.f. Definition 4.10, S2).

To resolve these issues, first we “freeze” the state of the latest justified pair (BJ , j)
to the beginning of the epochs; formally, this means when defining (BJ , j) we con-
sider the views of ffgview(Bl) over the leaf blocks Bl as opposed to the entire view.
Then, we filter the branches so we do not go down branches with leaf nodes Bl
where LJ(Bl) has not “caught up” to (BJ , j); formally, we create an auxiliary view

23

G′ from G that eliminates the problematic branches. These fixes give Algorithm 4.2,
the final design.

Algorithm 4.2 Hybrid LMD GHOST Fork Choice Rule

1: procedure HLMD(G)
2: L← set of leaf blocks Bl in G
3: (BJ , j)← the justified pair with highest attestation epoch j in

J(ffgview(Bl)) over Bl ∈ L
4: L′ ← set of leaf blocks Bl in G such that (Bj , j) ∈ J(ffgview(Bl))
5: G′ ← the union of all chains chain(Bl) over Bl ∈ L′
6: B ← BJ
7: M ← most recent attestations (one per validator)
8: while B is not a leaf block in G′ do
9: B ← arg max

B′ child of B
w(G′, B′,M)

10: (ties are broken by hash of the block header)

11: return B

A dual (and possibly simpler) way of understanding Algorithm 4.2 is from the
perspective of a state-based implementation of the protocol. We can think of each
chain of a leaf block Bl as storing the state of its own last justified pair. During
an epoch, new attestations to blocks in the chain updates the GHOST-relevant
list of latest attestations M but not the FFG-relevant justification and finalization
information of the chain until the next epoch boundary block. This way, the “FFG
part” of the protocol always works with the “frozen until next epoch” information,
while the “GHOST part” of the protocol is being updated continuously with the
attestations. This careful separation allows us to avoid pathological problems from
mixing the two protocols.

4.7. Slashing Conditions

In this subsection, we add slashing conditions, analogous to those from Casper in
Definition 3.1. We prove a couple of desired properties, after which we are ready to
use these conditions to prove safety of Gasper in Section 5.

Definition 4.10. We define the following slashing conditions:

(S1) No validator makes two distinct attestations α1, α2 with ep(α1) = ep(α2).
Note this condition is equivalent to aep (LE (α1)) = aep (LE (α2)).

(S2) No validator makes two distinct attestations α1, α2 with

aep (LJ (α1)) < aep (LJ (α2)) < aep (LE (α2)) < aep (LE (α1)) .

24

We now prove a very useful property of the protocol: unless we are in the unlikely
situation that we have enough evidence to slash validators with at least 1/3 of the
total stake, in a view G we may assume all elements in J(G) have unique attestation
epochs (in other words, the view sees at most one pair justified per epoch).

Lemma 4.11. In a view G, for every epoch j, there is at most 1 pair (B, j) in J(G),
or the blockchain is (1/3)-slashable. In particular, the latter case means there must
exist 2 subsets V1,V2 of V, each with total weight at least 2N/3, such that their
intersection violates slashing condition (S1).

Proof. Suppose we have 2 distinct pairs (B, j) and (B′, j) in J(G). This means in
epoch j, more than a total stake of 2N/3 attested with a checkpoint edge to (B, j)
and more than 2N/3 stake attested with a checkpoint edge to (B′, j). These are our
desired V1 and V2.

Remark. The importance of Lemma 4.11 is that assuming reasonable conditions
(we are not (1/3)-slashable), the choice of (Bj , j) in Algorithm 4.2 is unique and
thus well-defined. More generally, we can assume any view only sees at most one
justified pair (B, j) per epoch j over all chains.

Proposition 4.12. An honest validator following the protocol will never acciden-
tally violate the slashing conditions.

Proof. First, notice an honest validator cannot violate (S1) because each validator is
assigned to exactly one committee in each epoch, and is thus asked to attest exactly
once per epoch. Thus, it suffices to consider (S2).

Suppose an honest validator V is about to write an attestation that violates (S2)
in epoch u. This means there are epochs r < s < t < u where in epoch t, V wrote

an attestation αt with checkpoint edge (B2, s)
V−→ (B3, t) and the protocol is telling

V now to write an attestation αu with checkpoint edge (B1, r)
V−→ (B4, u). This

means running HLMD GHOST on V ’s current view ends up at some leaf block B,
which must be a descendent of B4 such that LE(B) = (B4, u).

Because V wrote αt in epoch t < u, we know (B2, s) was a justified pair in ffgview()
of some leaf block at that point in epoch t. As justified blocks remain justified when
their chains grow, we know that now in epoch u, the starting justified pair (BJ , j)
as defined in HLMD GHOST (Algorithm 4.2) must satisfy j ≥ s. Since s > r, we
know that j > r.

However, because of the filtering L′ in Algorithm 4.2, we know that the resulting
leaf block B of running HLMD GHOST (in epoch u) starting at (BJ , j) must satisfy
(BJ , j) ∈ J(ffgview(B)). Since LJ(B) ∈ J(ffgview(B)) by definition and LJ(B) =
(B1, r), we know j ≤ r, a contradiction. Therefore, the protocol cannot force an
honest validator to violate (S2).

25

4.8. Rewards and Penalties

A validator should be rewarded (i.e. have stake increased) for either including valid
attestations in his/her proposed block (in the beacon chain specs [11], proposer
reward) or attesting to the correct block which is justified and finalized as the chain
grows (in [11], attester reward). Meanwhile, a validator should be penalized (have
stake decreased) for violating slashing conditions.

The reward and penalty amounts can be adjusted based on the security level
that needs to be achieved, and the game theory of the situation should be such
that validators are incentivized to perform their tasks and to not violate slashing
conditions. Additionally, it is worth considering more complex incentives, such as
incentivizing validators to catch other misbehaving validators. While this makes
for potentially interesting game theory work, adding a layer of analysis of these
parameters is distracting for the scope of this paper, where we want to focus on
the consensus aspect of Gasper. To be pragmatic, we abstract this analysis away by
assuming these reward and penalty mechanisms provide enough game-theoretical
incentives such that the following holds:

• Honest validators follow the protocol.

• Any honest validator seeing a slashing condition violated will slash the dis-
honest validator.

5. Safety

Recall our main goals are proving safety and liveness. In this section, we prove
safety, which is done similarly as in Casper FFG [7]; the main differences are that
we are using epoch boundary pairs (as opposed to Casper’s checkpoint blocks) and
our finalization definition is more complex. Thus, we need the following Lemma,
which is necessarily more complicated than its counterpart idea in Casper.

Lemma 5.1. In a view G, if (BF , f) ∈ F (G) and (BJ , j) ∈ J(G) with j > f , then
BF must be an ancestor of BJ , or the blockchain is (1/3)-slashable – specifically,
there must exist 2 subsets V1,V2 of V, each with total stake at least 2N/3, such that
their intersection all violate slashing condition (S1) or all violate slashing condition
(S2).

Proof. Anticipating contradiction, suppose there is a pair (BJ , j) with j > f and
BJ is not a descendant of BF . By definition of finalization, in G, we must have

(BF , f)
J−→ (Bk, f + k), where we have a sequence of adjacent epoch boundary pairs

(BF , f), (B1, f + 1), . . . , (Bk, f + k).
Since (BJ , j) is justified and BJ is not a descendant of BF , without loss of gener-

ality (by going backwards with supermajority links), we can assume (BJ , j) is the

earliest such violation, meaning we can assume (Bl, l)
J−→ (B, j) where l < f but

26

j > f (here we are using Lemma 4.11, which tells us no two justified blocks have
the same aep(), else we are done already with 2 validator subsets of weight 2N/3
each violating (S1); this is why we do not worry about the equality case). Since
B1, . . . , Bk are all justified but are descendants of BF , we know BJ cannot be any
of these blocks, so we must have j > f + k. This means the view G sees some
subset V1 of V with total stake more than 2N/3 have made attestations justifying
a checkpoint edge (Bl, l)→ (BJ , j), so for any such attestation α1, aep(LJ(α1)) = l
and ep(α1) = j. Similarly, G also sees more than 2N/3 weight worth of validators
V2 have made attestations justifying (BF , f)→ (Bk, f + k) so for any such attesta-
tion α2, aep(LJ(α2)) = f and ep(α2) = f + k. Thus, for anyone in the intersection
V1 ∩ V2, they have made two distinct attestations α1 of the former type and α2 of
the latter type. Because

l < f < f + k < j,

we know
aep (LJ (α1)) < aep (LJ (α2)) < ep (α2) < ep (α1) ,

which allows them to be provably slashed by (S2).

We are now ready to prove safety.

Theorem 5.2 (Safety). In a view G, if (B1, f1), (B2, f2) ∈ F (G) but B1 and B2

conflict, then G is (1/3)-slashable.

Proof. Without loss of generality, f2 > f1. Since (B2, f2) is finalized, it is justified,
and we can apply Lemma 5.1. This shows that either B2 must be a descendant of B1

(assumed to be impossible since they conflict) or G is (1/3)-slashable, as desired.

6. Plausible Liveness

This section is similar to Casper FFG [7, Theorem 2]. Since our setup is more
complex (in particular, Algorithm 4.2 is much more involved), the results do not
immediately follow from the previous result, despite having the same main ideas.

To do this, we give an auxiliary definition: given a chain c = chain(B) and an
epoch j, we say that c is stable at j if LJ(EBB(B, j)) = (B′, j − 1) for some block
B′.

Theorem 6.1. If at least 2N/3 stake worth of the validators are honest, then it is
always possible for a new block to be finalized with the honest validators continuing
to follow the protocol, no matter what happened previously to the blockchain.

Proof. Suppose we are starting epoch j. Specifically, suppose our current slot is
i = Cj; then it is plausible (by having good synchrony) for everyone to have the
same view. In particular, the proposer, who is plausibly honest, would then propose
a new block B with slot i, which is a child of the output block of HLMD() run on

27

the old view. Call this current view (including B) G and define c = chain(B). Keep
in mind that LEBB(B) = B; we are introducing a new epoch boundary block.

Now, we claim that it is plausible that c extends to a stable chain at the beginning
of the next epoch (j + 1). To see this, note that since at least 2N/3 stake worth of
the validators are honest, it is plausible that they all attest for B or a descendant
(for example, if they are all synced with the network view and vote immediately

after B is created). This creates a supermajority link LJ(B)
J−→ (B, j), justifying

B. Now, in the next epoch (j + 1), it is plausible for the new block B′ with slot
i+C = (j+ 1)C to include all of these attestations (which would happen with good
synchrony), so LJ(B′) = (B, j) and chain(B′) is indeed stable at epoch (j+1). Thus,
by assuming good synchrony and honest validators, it is plausible (possibly having
to wait 1 extra epoch) that the chain of the first epoch boundary block of the new
epoch is stable, no matter what the state of the blockchain was initially.

Thus, we can reduce our analysis to the case that c was stable to begin with,

meaning that we have a supermajority link (B′, j− 1)
J−→ (B, j) in ffgview(B). Then

by the same logic above, it is plausible for the next epoch boundary block (B′′ with
slot (j+1)C) to also be stable, with another supermajority link (B, j)→ (B′′, j+1).
This finalizes the pair (B, j); in particular, it is the special case of 1-finalization.

The original Casper FFG is a “finality gadget” on top of a (presumed proba-
bilistically live) blockchain, so its focus was not on the probabilistic liveness of the
underlying chain, rather that the participants do not get into a situation where we
are forced to slash honest validators to continue. Since our paper also provides the
underlying protocol, we also want a probabilistic guarantee of liveness, which we
will cover in Section 7.

7. Probabilistic Liveness

In this section, we prove probabilistic liveness of our main protocol Gasper from
Section 4, given some assumptions. Our proof consists of the following steps, which
are basically the main ideas of the proof of Theorem 6.1:

1. (assumptions lead to high weight after first slot) Under “good” conditions
(such as having enough honest validators, synchrony conditions, etc. to be
formalized) honest validators have a high probability of finding a block with
a high weight after the first slot.

2. (high weight after first slot leads to high probability of justification) if we
have a block with high weight after one slot, its weight “differential” over
competitors is likely to increase throughout the epoch, meaning that this block
(or a descendent) is likely to be justified.

28

3. (high probability of justification leads to high probability of finalization) if
every epoch is likely to justify a block, then it is very likely for at least one
block to be finalized in a stretch of n epochs as n increases.

This division is not just organizational; it also encapsulates the assumptions into
different parts of the argument so that each part would remain true even if as-
sumptions change. For example, the main theorem corresponding to the 3rd item,
Theorem 7.5, does not make any synchrony assumptions and only relies on a prob-
ability p that a block gets justified (though synchrony assumptions may be required
to bound p given the previous parts). Also, we assume in the second part (as we
do for simulations in Appendix B) that all validators have equal stake, whereas the
third part does not.

This section is the most intricate and dependent on parameters: for one, the cur-
rent planned implementation for Ethereum 2.0 actually skirts a nontrivial portion
of the analysis due to the attestation consideration delay (see Section 8.4); also,
the bounds assume equal stake per validator, which may or may not be a useful
assumption depending on external factors. However, it is still worthwhile to include
an analysis for the “pure” protocol because the proof strategies here, such as using
concentration inequalities, are very generalizable to a whole class of these potential
slot-based approaches to proof-of-stake, and we believe our analysis captures the
heart of what makes these approaches work probabilistically. In fact, “patches”
such as the aforementioned attestation consideration delay exist primarily because
of the types of attacks against the pure protocol, so it is useful for intuition-building
to address these attacks even if the actual implementation sidesteps them. Thus, the
primary value of this section is as a proof-of-concept of the analysis involved in de-
signing probabilistically-live protocols such as Gasper, as opposed to a mathematical
guarantee of the actual implementation.

7.1. High Weight After the First Slot - The Equivocation Game

We define the equivocation game to be the following:

1. The game is parametrized by (V, a, ε1, ε2), where V is a set of validators and
(a, ε1, ε2) are real numbers that parameterize network / synchrony conditions
(for ease of reading we push the details to the Appendix).

2. As in Gasper, |V| = N and each V ∈ V has some fixed stake w(V). We assume
the total stake is N (so the average stake is 1) and the total amount of stake
of honest validators is at least 2N/3.

3. There are 2 options to vote for, which we call O1 and O2 for short. These are
abstractions for voting on 2 conflicting blocks in Gasper, and the concept of
“blocks” are not included in this equivocation game. We (meaning the honest
validators) win if either O1 or O2 obtain at least 2N/3 stake worth of votes,

29

and we lose (i.e., we are in a state of equivocation) otherwise. Note that this
is equivalent to the idea that there is a stake differential of N/3 between the
two choices after the game.

The equivocation game is defined to capture the idea of Gasper with just 2 choices
in one slot. Most of the necessary assumptions for liveness are encoded into the game
so that the other liveness results in this section can be as independent as possible.

In Appendix B, we flesh out the details of the equivocation game and conduct the
simulations of equivocation game with three regimes (a pessimistic regime, an opti-
mistic regime, and a regime in between). The main idea is that under “reasonable”
conditions (V, a, ε1, ε2), it is very likely that after the first slot, we win the game,
meaning that we should expect one of the pairs in Gasper to have 2N/3 worth of
stake supporting it after the first slot.

For the big picture, the only thing we need for the rest of Probabilistic Liveness
is the idea that we “win” the equivocation game (specifically, have a block with a
high number of attestations over the second-best option after the first slot) with
some probability r, and having higher r increases the guarantees that a block will
be justified in Theorem 7.4. For practical purposes, the work in the Appendix seems
like an r of around 80% seems to be a reasonable heuristic under not too strong
or weak synchrony conditions, and that is already assuming a very bad case where
close to 1/3 of validators are dishonest.

Remark. Clearly, the concept of equivocation games can be generalized, and similar
games could be used to study other proof-of-stake models. There are many directions
(the protocols for honest validators, latency modeled by something more than the
uniform distribution, etc.) which may be interesting to study for future work, but
may be too distracting for the purpose of our paper.

7.2. High Weight after First Slot Leads to Justification

In this section, we focus on the j-th epoch [T, T +C], where T = jC. Let S = N/C.
We define the following set of assumptions, which we call A(ε):

• the network is (1/2)−synchronous starting at time T = jC;

• each validator has 1 stake;

• the total number of byzantine validators is equal to N/3 − Cε, meaning the
average number of byzantine validators in each slot’s committee is S/3− ε.

For each i ∈ {0, 1, . . . , C − 1}, define hi to be the number of guaranteed honest
attestors in slot jC + i and bi to be the number of dishonest attestors in the slot.
Let S = N/C, so for all i, hi + bi = S. We show that the distribution of honest /
dishonest attestors should not stray too much from expectation in Proposition 7.2,
using ubiquitous concentration inequalities:

30

Proposition 7.1. Let X = (x1, ..., xN) be a finite list of N values with a ≤ xi ≤ b
and let X1, ..., Xn be sampled without replacement from X . The following hold:

P

(
n∑
i=1

Xi − nE [X] ≥ nδ

)
≤ exp

(
−2nδ2

(1− (n− 1)/N)(b− a)2

)

P

(
n∑
i=1

Xi − nE [X] ≤ −nδ

)
≤ exp

(
−2nδ2

(1− (n− 1)/N)(b− a)2

)
Proof. See e.g. [19].

Proposition 7.2. Suppose the assumptions A(ε) are met. Assume that C = 2L.
Then the conjunction of the following events (we purposefully skip h0):

E1 : h1 ≥ 2 · S3

E2 : h2 + h3 ≥ 22 · S3

E3 : h4 + h5 + h6 + h7 ≥ 23 · S3

· · · : · · ·

EL : hC/2 + · · ·+ hC−1 ≥ 2L · S3

has probability

P

(
L⋂
i=1

Ei

)
≥ 1−

L∑
i=1

exp

− 2iε2(
1− 2i−1S−1

2LS

)
S

 ≥ 1−
L∑
i=1

exp

(
−2iε2

S

)
.

Proof. We use the hypergeometric distribution model; that is, we consider the set
X = (x1, · · · , xN) representing the validators V, where xj = 1 if the j-th validator
is honest and 0 otherwise. Let X1, . . . , X2i−1S be 2i−1S samples from X without
replacement. Then for each j, 1 ≤ j ≤ 2i−1S, E [Xj] = 2/3 + ε/S, so:

E

2i−1S∑
j=1

Xj

 = 2i−1S(2/3 + ε/S) = 2iS/3 + 2i−1ε.

31

We can then bound each Ei (as a sum of Xj ’s) by

P

2i−1S∑
j=1

Xj ≥ 2i
S

3

 = 1− P

2i−1S∑
j=1

Xj < 2i
S

3


= 1− P

2i−1S∑
j=1

Xj −
(

2iS

3
+ 2i−1ε

)
< −(2i−1S)

ε

S


≥ 1− exp

− 2iε2(
1− 2i−1S−1

2LS

)
S

 ,

where the last inequality results from Proposition 7.1, recalling that N = 2LS. The
probability of each event Ei when considered independently of each other is then
bounded below by this value. Using the intersection bound on all Ei we get the
first inequality in the desired statement; the second inequality holds by comparing
denominators.

Remark. It suffices to also use e.g. Hoeffding’s inequality with a binomial model
where the validators are assigned as honest or byzantine with replacement. We leave
it as an exercise to the reader that this method immediately gets the weaker bound

P

(
L⋂
i=1

Ei

)
≥ 1−

L∑
i=1

exp

(
−2iε2

S

)
.

While the binomial model is only an approximation, the model with replacement is
strictly more mean-reverting than the model without, so the approximation is in the
correct direction for us. This could be made rigorous with e.g. coupling methods.
We use the weaker bound because it is algebraically cleaner and loses very little
compared to the stronger bound.

It can be seen that the exponential terms in the result of proposition 7.2 is fairly
small when ε is on the order of

√
S. For example, when C = 64 (a power of 2

actually makes Proposition 7.2 work cleanly, though it is certainly not a crucial
part of the bound) and thus S = 900, picking ε = 30 (meaning we have as many as
17280 byzantine validators out of 57600) gives a probability bound of around 85%;
changing ε to 40 jumps the probability to around 97%.

Lemma 7.3. Suppose the assumptions in A(ε) are met. Then, if view(NW, T +C)
justifies a new block B not in J(view(NW, T)), B must be a descendant of the last
justified block in J(view(NW, T)).

Proof. Recall that honest attestors wait for 1/2 time before attesting to their as-
signed slot. Thus, in the upcoming epoch j, all of the honest attestors in this epoch

32

attest in the time period [T + 1/2, T + C]. Because we have (1/2)-synchrony, it
means their views during this period all include view(NW, T). By the nature of
Algorithm 4.2, this means all of their block proposals and attestations must be to
either:

• a descendant of BJ , the last justified block in view(NW, T), or

• a descendant of some new block justified in epoch j.

Our Lemma only fails in the second case, and if some new block in this epoch obtains
2/3 of the attestations of this epoch.

Luckily, the chicken-and-egg favors us. It is possible for byzantine validators to
propose a new block B′J that’s not a descendant of BJ . However, it would be
impossible for B′J to receive enough votes in this epoch, as all of the attestations
before B′J is justified must go to a descendant of BJ by Algorithm 4.2. Thus, we
know that if we justify a new block, it must be a descendant of BJ .

Theorem 7.4 (Justification Probabilistic Liveness). Suppose the assumptions in
A(ε) are met, and suppose we win the equivocation game corresponding to the first
slot with probability r. Let BJ be the last justified block in J(view(NW, T)). Then,
view(NW, T + C) will justify a new descendant of BJ with probability at least

r −
L∑
i=1

exp

(
−2iε2

S

)
− 1

3C−1
.

Proof. We can think of the first slot of this epoch [T, T + 1] as an equivocation
game with S validators (h0 honest and b0 byzantine) where all of the options are
BJ or a descendant6 of BJ . Thus, with probability r, one of these options receives
at least 2S/3 attestations after slot jC. We call this winning block Bw (ideally, Bw
is simply just the block jC, though this is not necessary). For sake of weighting in
Algorithm 4.2, note that against any other option in the equivocation game, Bw’s
weight is winning by at least (2S/3− S/3) = S/3.

By the intersection bound, with probability at least

r −
L∑
i=1

exp

(
−2iε2

S

)
we also satisfy the events in Proposition 7.2. We now show that when these events
are satisfied, all remaining honest validators in slots (jC+1), . . . , (jC+C−1)
will vote for Bw or a descendant.

6As stated in the proof of Lemma 7.3, it is possible that there are options that are not, but they
will never receive attestations from honest validators, so it would be strictly worse for dishonest
validators to create such options.

33

Consider slot jC+1. Because of E1, we know b1 < S/3, so even if all b1 potentially
byzantine actors conspire to vote for some other option, the weight advantage of Bw
cannot be diminished to 0 by the time the honest validators vote at time (jC+1.5).
This means that all honest validators will keep attesting to Bw or a descendant block
(an honest proposer in slot jC + 1 would propose block jC + 1 as a descendant of
Bw, for example). By E1, we know that Bw gains at least 2S/3 weight while a
rival block gains at most S/3 weight during this slot, which means that the weight
differential preferring Bw changes by at least (2S/3 − S/3) = S/3. This means by
the end of slot jC + 1, Bw is now winning with at least weight S/3 + S/3 = 2S/3.

Now consider E2 and the next 2 slots, jC+2 and jC+3. Between them, we know
h2 +h3 < 2S/3, so even if all the byzantine actors conspire, they cannot destroy the
winning differential of Bw, which by the end of these 2 next slots will be winning
with at least weight (2S/3− 2S/3 + 4S/3) = 4S/3.

Inductively, this logic continues for all remaining slots in the epoch (specifically, all
honest validators attest to Bw or a descendant. Here the structure of Algorithm 4.2
is important because while honest attestors may (and probably will) attest to new
blocks, the weight of their attestations are added to that of Bw as well.

We have thus concluded that during all remaining slots, Bw accumulates all at-
testations from honest validators. After slot jC, it has at least 2S/3 votes with
probability r. Then, we know it picks up weight at least h1 + h2 + · · ·+ hC−1, for a
total weight of

2

3
S +

L∑
i=1

2i

3
S =

2

3
S +

2

3

(
2L − 1

)
S =

2L+1

3
S =

2

3
N,

so we indeed achieve enough weight for a supermajority link.
To prove BJ is different from Bw, we need at least one honest validator to propose

a new block on top of BJ before or in the first slot of epoch aep(Bw). Since BJ
receives more than 2

3 of votes in epoch aep(Bj), there are more than 2
3 honest

validators in aep(Bj). The chance of no honest validator proposing a block on top
of BJ in aep(Bj) is then bounded above by (13)C−1, which is vanishingly small.

7.3. Probabilistic Justification Leads to Probabilistic Finalization

The main theorem is the following:

Theorem 7.5 (Finalization Probabilistic Liveness). Assume the probability of jus-
tifying a block (as in Proposition 7.2) is independently p ≥ 1/2 for each epoch, the
probability of failing to finalize a block in the next n epochs approaches 0 exponen-
tially as a function of n.

Proof. Recall that we expect most finalization to be 1-finalization, when one justified
block justifies an adjacent epoch boundary block. For this proof, it suffices to show
that the probability of failing to even 1-finalize approaches 0.

34

We consider an epoch a “success” if a block is justified in the epoch, and a
“failure” otherwise. Thus, if 2 adjacent epochs are “successful,” we finalize a block.
Therefore, the probability of not getting a (k = 1) finalization in n epochs is the
probability that no 2 adjacent epochs out of the next n are successful. Using the
independence assumption, this has the probability

n∑
i≥n

2

(
i+ 1

n− i

)
(1− p)ipn−i,

because for a particular i ≥ n/2, there are
(
i+1
n−i
)

ways to select i failures.
Since p ≥ 0.5, we know p ≥ (1− p), so the sum is bounded above byb

n
2 c∑
i=n

(
i+ 1

n− i

) (1− p)n/2pn/2

It is well-known (by e.g. induction) that:

bn2 c∑
i=n

(
i+ 1

n− i

)
=

(
n+ 1

0

)
+

(
n

1

)
+

(
n− 1

2

)
+ · · · = Fn,

the n-th Fibonacci number, which we know is of the form

Fn =
1√
5

[(
1 +
√

5
)

2

]n
− 1√

5

[(
1−
√

5
)

2

]n
The second term vanishes as n −→ ∞, so our desired quantity is bounded above

by (times a constant) [(
1 +
√

5
)√

p (1− p)
2

]n
We have the bound

√
p (1− p) ≤ 1/2 (by, e.g. AM-GM inequality), so the failure

rate is bounded above by

1√
5

(
1 +
√

5

4

)n
,

which goes to 0 as n −→∞. Finally, recall that we are only looking at 1-finalization,
so the chances of finalization is strictly higher (though in practice the other types
of finalization should occur very rarely).

35

root

S

F

S

F

F

root

S

F

F

S

F

root

S

F

F

F

S

root

F

S

F

S

F

root

F

S

F

F

S

root

F

F

S

F

S

Figure 7: The cases where we fail to finalize a block in n = 5 epochs with 3 failing
epochs. “S” denotes success and “F” denotes failsure (with respect to
Proposition 7.2.

Theorem 7.5 is “agnostic” of the justification probability p and how we obtained
it. This means if we tweak the protocol, change the assumptions, etc. and obtain
different bounds/estimates for p than we do from the current Theorem 7.4, our
result still holds. For this reason, we use p as an input to Theorem 7.5 instead of
reusing our actual bound in Theorem 7.4. A secondary effect of abstracting away
justification liveness is that the techniques can be used to prove finalization
probabilistic liveness for general 2-stage protocols, not just Gasper (it could
even be extended easily to protocols with 3 or more stages, though the bounding
would be different). Regardless of the protocol, as n increases, as long as p ≥ 0.5,
the probability of finalizing a block increases rapidly, getting around 99% even for
p = 0.5 after n = 20 epochs. See Table 1 for some computations.

36

Table 1: The probabilities of not finalizing blocks in n epochs, with p the probability
of justification within each epoch.

n p probability of not finalizing any block in n epochs

2 0.5 0.75

5 0.5 0.40625

7 0.5 0.265625

10 0.5 0.140625

20 0.5 0.016890525817871094

2 0.66 0.5644

5 0.66 0.18460210239999997

7 0.66 0.08322669164799996

10 0.66 0.025351233503186934

20 0.66 0.0004854107646743359

Remark (Relationship with Plausible Liveness). It may feel like we technically get
plausible liveness “for free” from probabilistic liveness. So why do we treat them
separately in this paper?

For one, plausible liveness is an immediate consequence from the rules of the
protocol Gasper and requires very few assumptions, while probabilistic liveness is
dependent on probabilistic assumptions (such as network synchrony) and is more
fragile with slight changes to the protocol. In particular, our probabilistic liveness
treatment makes the very strong assumption that all validators have the same stake.
Thus, we choose to present plausible liveness separately to emphasize that even if
these assumptions are not satisfied “in real life,” plausible liveness remains.

For another, the emphasis of plausible liveness is that “honest validators will never
be required by the protocol to voluntarily slash themselves to continue” and the
emphasis of probabilistic liveness is “new blocks will probably be justified/finalized
quickly;” these are different takeaways.

8. Practice versus Theory

Ethereum 2.0’s practical implementation in [11] contains different design decisions
from Gasper, which is meant to be a “clean” and more mathematically tractable
protocol that captures the theoretical core of the beacon chain design. In this
section, we consider the proposed implementation’s differences from Gasper, without
getting lost in the much messier analyses a rigorous study of combining all of these
details would require.

37

8.1. Sharding

Gasper is motivated by the Ethereum 2.0 beacon chain, which is the “main” blockchain
in the Ethereum 2.0 design that stores and manages the registry of validators. In
this implementation, a validator is a registered participant in the beacon chain.
Individuals can become a validator of the beacon chain by sending Ether into the
Ethereum 1.0 deposit contract. As in Gasper, validators create and attest to blocks
in the beacon chain. Attestations are simultaneously proof-of-stake votes for a bea-
con block (as in our design) but also availability votes for a “shard block,” which
contains data in a different “shard chain.” This concept of sharding creates interest-
ing engineering and mathematical questions outside the scope of our paper, which
is limited to the beacon chain.

8.2. Implementing the View

In Gasper, we can treat views and related concepts as abstract mathematical con-
cepts and validators as perfectly reasoning agents with infinite computational power.
In practice, validators will not be directly reasoning with a graphical data structure
of a view; instead, they will use software to parse the view given to them and follow
the protocol. Thus, in the actual implementation [11], validators run a program
that updates the “store”, which is basically a representation of the view. The store,
as the input for LMD GHOST fork choice rule, is updated whenever a block or an
attestation is received. The beacon chain also keeps track of a “state,” a derived
data structure from the view that tracks stake-related data.

Obviously, mistakes when interpreting these structures and their updates may
cause issues with safety and liveness not related to those coming from Gasper itself.
Even though in our work we limit our analysis to the mathematical parts of the
protocol, we remind the reader these other issues are also important; security holes
arising from from a carelessly implemented protocol at the software level are not
protected by the mathematical guarantees of Gasper.

8.3. Attestation Inclusion Delay

In Gasper, when a validator proposes a block, he/she includes all new attestations
in his/her view. In the planned implementation, there is an integer parameter for
the attestation inclusion delay (say n) such that when a validator proposes a block,
he/she only includes attestations that were made at least n slots ago.

The purpose of the attestation inclusion delay is to prevent centralization and
reward advantage. If the slot length is “short” (meaning the latency of attestation
propagation is high for normal nodes in the network), then highly-connected nodes
might be able to get attestation data faster and be able to publish them faster,
which may correspond to various advantages depending on the reward incentives.

The enforced delay allows attestations to disseminate more widely before they can

38

be included in blocks. Thus, nodes have more of an equal opportunity to capture
the attestation inclusion rewards for proposing blocks. The plan is to tune the
attestation inclusion delay (in the range of 1 to 4 slots) depending on real-world
network data. Smaller values improve the transaction processing speed, and larger
values improve decentralization. Note increasing the slot time is an alternative
method to promote decentralization.

8.4. Attestation Consideration Delay

In Gasper, when a validator is supposed to attest at slot N , the validator runs the
HLMD GHOST fork-choice rule considering all attestations in the validator’s view.
In the planned implementation, he/she only considers attestations that are at least
1 slot old. Specifically, the view used as input to the fork-choice rule contains all
valid blocks up to slot N but only contains valid attestations up through slot N −1.

This one-slot delay protects validators from a certain class of timing attacks in
which byzantine validators eagerly broadcast slot N attestations rather than waiting
for the N + 1/2 time when they are “supposed” to attest. This allows them to
theoretically take advantage of the network latency to split the vote of the honest
validators to keep the chain in a state of equivocation. This is an important attack to
counter as publishing attestations at the “wrong” time in a block is not a slashable
offense (since the adversary can theoretically fake timestamps and we did not assume
Gasper has mechanisms that make faking timestamps harder).

We cover the one-shot delay attack in our analysis of the equivocation game (see
Appendix B), and conclude it is plausible for the attack to be effective in very
pessimistic regimes. However, the probability byzantine validators succeed in this
particular type of attack is greatly lowered even in pessimistic regimes if we imple-
ment something like the attestation consideration delay.

Specifically, this delay improves the parameters for probabilistic liveness as ana-
lyzed in Theorem 7.4. As long as an honest validator is selected to propose a block
(with probability at least 2/3 in the worst case) B, then all honest validators will
vote for B in the first slot since they will ignore all the attestations made in the
first slot, including those made by the dishonest validators. In other words, the at-
testation consideration delay neutralizes the 1-st slot equivocation game as a point
of attack, meaning the probabilistic liveness of the proposed implementation comes
with even better guarantees than raw Gasper. A rigorous analysis of the probabilistic
liveness for this setup may make for interesting future work.

8.5. A Four-Case Finalization Rule

While Gasper’s Definition 4.9 captures the “general” version of the mathematical
idea of finalization, the proposed implementation uses a “reduced” version only
looking at the last 4 epochs for practicality. In particular, let B1, B2, B3, B4 be

39

epoch boundary blocks for consecutive epochs, with B4 being the most recent epoch
boundary block.

1. If B1, B2 and B3 are justified and the attestations α that justified B3 have
LJ(α) = B1, we finalize B1.

2. IfB2, B3 are justified and the attestations α that justifiedB3 have LJ(α) = B2,
we finalize B2.

3. If B2, B3 and B4 are justified and the attestations α that justified B4 have
LJ(α) = B2, we finalize B2.

4. IfB3, B4 are justified and the attestations α that justifiedB4 have LJ(α) = B3,
we finalize B3.

These are special cases of Definition 4.9 for cases k = 1 (the first two) and k = 2.
The idea here is Ethereum 2.0 will only honor attestations for up to 2 epochs. This
means only epoch boundary blocks up to 2 epochs in the past can be newly justified
(and thus finalized), which gives the 4 cases. See Figure 8.

...
...

...
...

B1 B1 B1 B1

B2

B3

B4

...

B2

B3

B4

...

B2

B3

B4

...

B2

B3

B4

...

Case 1 Case 2 Case 3 Case 4

Figure 8: From left to right, example of cases 1 to 4 respectively. Both red and blue
colors indicate justified blocks, where the blue blocks are now finalized
because of the observed justification, shown by double arrows.

8.6. Safety - Dynamic Validator Sets

In Gasper’s safety analysis (Section 5), we assumed static validator sets, meaning
the set of validators cannot change over time. Recall our main result, Theorem 5.2,
tells us we are able to catch N/3 weight worth of validators violating the slashing

40

conditions if safety is broken. However, in practice, we would like to support dynamic
validator sets, which means validators are allowed to activate (enter) and exit the
validator set V over time. This means byzantine activators can act maliciously, but
then leave to avoid their stake being slashed. This setup reduces the number of
“active” validators we can punish for violating slashing conditions.

Definition 8.1. Assume there are 2 validator sets, V1 and V2, where V2 is a validator
set later in time compared to V1. We define A(V1,V2), the validators who activated
(from V1 to V2), to be the set of validators who are not in V1 but are in V2, and
E(V1,V2), the validators who exited (from V1 to V2), to be the set of validators who
are in V1 but not in V2.

First, we note our key ideas from Section 5 still hold. To make it clear in our
language, we rewrite them as follows:

Lemma 8.2. Suppose we allow dynamic validator sets. In a view G, if (B1, f1) and
(B2, f2) in F (G) conflict, then the blockchain must be (1/3)-slashable. Specifically,
there must exist 2 justified pairs (BL, jL) and (BR, jR) in G and 2 subsets V1 ⊂
V(BL),V2 ⊂ V(BR), each with weight at least 2/3 of the stake of its corresponding
attestation epoch, such that their intersection V1 ∩ V2 violates (S1) or (S2).

Proof. The proof is essentially identical to that of Lemma 5.1 and the reduction of
Theorem 5.2 to it. The only difference is that we must rephrase the conditions of
Lemma 5.1 as conditions about the validator sets at the time of their attestations.

As in the proof of Theorem 5.2, if we have 2 conflicting blocks (B1, f1) and (B2, f2),
then either f1 = f2 or f1 6= f2. If f1 = f2, then we can set (BL, jL) = (B1, f1)
and (BR, jR) = (B2, f2) to satisfy our claim, as their intersection violates (S1). If
f1 6= f2, without loss of generality, f1 < f2. Since (B2, f2) is finalized, it is also
justified, and we now satisfy the the setup for Lemma 5.1 where (BF , f) = (B1, f1)
and (BJ , j) = (B2, f2). Applying the Lemma, we conclude that either B2 is a
descendent of B1 (a contradiction as they are conflicting), or there must be some pair
of pairs (not necessarily (BF , f) or (BJ , j) themselves), each of whose attestations
have 2N/3 stake, and whose intersections violate (S1) or (S2).

In our setup, we suppose that the last finalized block observed in a view was B0 at
time T0, and the view contains two conflicting finalized blocks BL and BR that were
published at time TL and TR respectively. Let the blocks B0, BL, BR have validator
sets V0,VL,VR respectively. Let aL = w(A(V0,VL)) and eL = w(E(V0,VL)) be the
total weight of activations and exits between V0 and VL respectively, and similarly
define aR and eR. Our goal is to see what stake worth of validators can be provably
slashed, in terms of aL, aR, eL, and eR, which are numbers we can control via our
activation and exit policies.

41

Theorem 8.3. If a view contains two conflicting finalized blocks BL and BR as
defined in the setup above, then the view has enough evidence to slash validators
with total weight at least

X − w(VL)/3− w(VR)/3,

where
X = max(w(VL)− aL − eR, w(VR)− aR − eL).

Proof. By assumption, BL and BR are finalized, so by Lemma 8.2 we have quorums
QL ⊂ VL and QR ⊂ VR, both with at least 2/3 of their corresponding attestations,
such that their intersection can be slashed.

We denote the different sets created by the overlap of our 3 validator sets to be
A,B,C,D,E, F,G, as in Figure 9.

Figure 9: A Venn diagram of the initial validator set V0 and two validator sets VL
and VR, the letters A through G pictorially represent how many validators
are in each overlap.

42

Figure 10: The quorums QL and QR have overlapping validators between the con-
flicting blocks BL and BR.

Next, we wish to bound the intersection of the quorums QL and QR as depicted
in Figure 10. Let VLR = VL ∩ VR = C ∪ F , we have:

w(QL ∩QR) ≥ w(QL ∩ VLR) + w(QR ∩ VLR)− w(C ∪ F)

≥ 2w(VL)/3− w(B ∪ E) + 2w(VR)/3− w(D ∪G ∪ C ∪ F)

= 2w(VL)/3 + 2w(VR)/3− (w(B ∪ C ∪D ∪ E ∪ F ∪G))

= w(C) + w(F)− w(VL)/3− w(VR)/3.

Let X = w(C) + w(F). We know

X = w(VL)− w(B ∪ E)

≥ w(VL)− w(A ∪B ∪ E ∪ F)

= w(VL)− aL − eR,

and similarly
X ≥ w(VR)− aR − eL.

If we wanted to avoid negative signs in front of the validator sets, one could, e.g.,
use a linear combination of the two bounds for X to get the bound

w(VL)/3− (2aL/3 + 2eR/3 + aR/3 + eL/3) .

As a sanity check, note all the a’s and e’s are zero in the extreme case of no exits
or activations, so we recover the original bound of w(VL)/3 = N/3.

The power of the bound depends on our policies on activating and exiting. Here
are some examples:

43

• If we allow a constant stake of k worth of new validators to activate per epoch,
then we can bound

aL, aR ≤ k (Tnow − T0) ,

where Tnow is the epoch when we observe the conflicting blocks in our view
and T0 is the epoch of the last finalized block. We can do the same with
exiting and obtain bounds on eL and eR, possibly with a different constant in
the same protocol.

• If we allow activating proportional to validator stake, e.g., up to k · w(V) can
activate in one epoch, then the bounds become exponential:

aL, aR ≤ w(V)(1 + k)Tnow−T0 ;

In the limit this becomes an exponential bound.

Our bounds can also take care of latency; if we are prepared for up to δ epochs of
latency, then we effectively add δ to computations where (Tnow − T0) occur in our
bounds of a’s and e’s, which we can then feed back into Theorem 8.3.

These bounds show a tradeoff between the flexibility of entering and ex-
iting the blockchain and the ability to catch malicious actors. Our static
result, Theorem 5.2, has the intuition “if our protocol breaks safety, we can provably
slash 1/3 worth of validators” to imply safeness of our protocol as long as we have
a strong enough belief in the validators. Our dynamic result, Theorem 8.3, is of
the more nuanced form “if our protocol breaks safety, then as long as the attackers
cannot create a fork with long branch lengths, we can provably slash a little less
than 1/3 worth of validators.” This means pure Gasper is susceptible to attacks such
as malicious actors shutting down the whole network for many7 epochs and then
suddenly appearing with a conflicting fork, such that we cannot slash much stake
worth of validators since they have already exited during this time. Such situations
can be safeguarded in practice by simply not including old attestations into one’s
view; the current Ethereum 2.0 spec, for example, does not accept attestations 2 or
more epochs old, which avoids this attack.

8.7. Extreme Cases; Hard Forks

Even though we have fairly unconditional plausible liveness with a 2
3 majority of hon-

est stakeholders and probabilistic liveness under “good” conditions, it is important
to take into account of worst-case scenarios. In the case of extended forking and
lack of finality due to lots of non-live (non-participating) validators who are not
necessarily malicious (and thus not slashed), the Ethereum 2.0 beacon chain has

7For reference, it takes roughly 2.5 months in the concrete protocol to turn over 1/3 of the validator
set, given the queuing mechanism in the Ethereum implementation, which is on the order of
20000 epochs.

44

a mechanism by which live (participating) validators on a fork retain their stake,
whereas the non-live validators “bleed” stake such that the live validators eventually
become a 2

3 majority, in time on the order of magnitude of weeks. Such a case may
happen if, e.g., the global internet is partitioned such that 50% of validators are on
one side and 50% on the other.

A different extreme case is where a chain “flip-flops” continuously such that there
is no distinct partition, and instead the majority just keeps switching forks each
epoch. The ultimate backup plan for this situation or more severe cases is making
hard forks (or manual forks), points at which the community running a blockchain
chooses to alter the consensus rules (famous such cases include Bitcoin vs. Bitcoin
Cash, or ETH vs. ETH Classic). This might be due to upgrading or adding features,
fixing critical issues in production, or addressing a fractured community or political
split. Usually, this results in a new set of protocol rules being run starting at
some particular point in the blockchain. It is an important engineering problem,
again outside of our mathematical scope, that the state transition and fork-choice
functions can handle these changes smoothly. In most considerations the HLMD
GHOST fork-choice rule would be untouched. However, when the alterations are
“deep” inside the logic, considerations beyond the built-in forking mechanism would
have to be taken and manual forks might be implemented.

9. Conclusion

We presented an abstract protocol, Gasper, that combines LMD GHOST and Casper
FFG for a full proof-of-stake based blockchain design. This is the first formal proof-
of-concept of Casper FFG to a complete blockchain protocol. Our goal was to
separate the “mathematically clean” part of the Ethereum 2.0 design from the im-
plementation details. Some of the analytical techniques are general enough to be
useful for studying other protocols, such as the proofs of probabilistic liveness and
the equivocation game construction. In practice, much of the worst-case worlds from
the analysis can be patched by ideas such as in Section 8.

For transparency, it is important to note that it is possible for “patches” or
even “implementation details” to change safety/liveness assumptions, or even for
2 otherwise innocuous “patches” to combine in undesirable ways. However, it is
impossible to predict all the potential implementation changes the protocol will
eventually receive, or which of the current proposed patches would be included or
removed from implementation for possibly unrelated reasons. Thus, we wrote this
paper to analyze the main theoretical foundations of the protocol and we simply
sketched an analysis of each implementation detail as an isolated change instead of
in conjunction with others. As the protocol solidifies, possibly with real-life testing,
it would be meaningful to reassess the effects of patches that would become “core”
to the protocol. In particular, some version (possibly significantly differently from
what we proposed) of dynamic validator sets would be indispensable; once its design

45

is finalized, it would be important to revisit the safety/liveness implications.
There exist many other proof-of-stake based protocols in the cryptocurrency

space. Some examples include:

• Tendermint [4]: a very “pure” design that is a simplification of PBFT applied
to a blockchain proof-of-stake context. This design favors safety over liveness.
All validators participate in every consensus round and no consensus happens
faster than those rounds, with progress only possible if ≥ 2/3 stake worth of
validators are online.

• Casper CBC [5]: an alternative proposal to Casper FFG, focusing on math-
ematical correctness by construction. Casper CBC does not have fixed in-
protocol thresholds, based on an emergent approach to safety arising from
nodes following the majority of what other nodes have done in the past and
making finality inferences about blocks. Besides being a proposed protocol,
Casper CBC is also meant to be a general framework for analyzing consensus
designs.

• Hotstuff (v6) [21]: has many similar properties as Casper FFG, with a flexible
mathematical framework; one key difference is that Hotstuff uses an exponen-
tial backoff mechanism to be able to make progress under arbitrary network
delays.

• Ouroboros [15]: a protocol under the “synchronous” school which assumes
synchrony for fault-tolerance (and thus gets stronger 50% bounds for fault-
tolerance). It uses the longest-chain rule and reward mechanisms to incen-
tivize participation and prevent passive attacks. In Ouroboros Praos [15], the
protocol is updated in response to vulnerabilities against “message delay” at-
tacks. In Ouroboros Genesis in [1], the protocol is further expanded to allow
for the ability for a participant to bootstrap the consensus from the gene-
sis block (hence the name), proving globally universally composable (GUC)
security against a 50% adversary.

• Snow White [10]: a protocol where the committee leader can extend the
blockchain with a block that includes a reference to the previous block, simi-
lar to block dependencies, and a nonce that can be used to verify the block’s
validity against some a priori difficulty constant. Valid timestamps must in-
crease and “any timestamp in the future will cause a chain to be rejected”.
Participants only accept incoming chains that have not been modified too far
in the past, similar to accepting views within a certain number of epochs.

• Nxt [9]: a proof-of-stake protocol that has a finite number of tokens. Nxt uses a
stake-based probability for the right to generate a block, but it imposes trans-
action fees to circulate currency since it does not generate new tokens. Nxt

46

contrasts themselves from Peercoin, noting that Peercoin’s algorithm grants
more power to miners who have had coins on the network for a long time. The
protocol also describes certain restrictions on block creation and transferring
tokens to prevent standard attacks and moving stake between accounts.

• Thunderella [18]: a proof-of-stake protocol that aims to achieve optimal trans-
action verification relative to message delay, assuming “good conditions” that
the leader of a committee is honest and has a super-majority of honest val-
idators. A new leader will be implemented to build upon a back-up network
in the event of a stall. The protocol also allows for dynamic validators with
cool-down periods.

• Dfinity [13]: beacon-notarization protocol that works with both proof-of-work
and proof-of-stake. The system uses a random beacon that selects block pro-
posers, and a decentralized notary chooses the highest-ranked block based on
a criteria described in [13]. Their analogues of validators and committees are
called replicas and groups respectively, and the decentralized notary depends
on the same Byzantine fault-tolerance to notarize blocks and reach consensus.
They only have a passive notion of finalization, but the notarization process is
quite fast, and blocks do get published in a timely manner. Replicas do need
permission to leave the chain.

Our goal is not to show that our design is strictly better than any of these other
designs. All of these protocols contain tradeoffs based on different design goals
and assumptions about the network. Our design is guided by a balance between
simplicity, understandability, and practicality, with a mixed emphasis on safety and
liveness. For example, if the context of a proposed blockchain prioritizes safety
over speed, then one may, e.g., select or modify a proposal more in the direction of
Tendermint.

Acknowledgments

We thank the Ethereum Foundation and the San Jose State University Research
Foundation for support for this program. This project is made possible by the
SJSU Math and Statistics Department’s CAMCOS (Center for Applied Mathemat-
ics, Computation, and Statistics) program. We also thank Musab Alturki, Carl
Beekhuizen, Dankrad Feist, Brian Gu, Brice Huang, Ryuya Nakamura, Daejun Park,
Juan Sanchez, Yi Sun, Mayank Varia, and Sebastien Zany for helpful comments. Au-
thor Yan X Zhang is the director of CAMCOS; authors Vitalik Buterin and Danny
Ryan are members of the Ethereum Foundation.

47

References

[1] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 913–930. ACM, 2018.

[2] L. Baird, M. Harmon, and P. Madsen. Hedera: A public hashgraph network
& governing council. 2018. https://www.hedera.com/hh-whitepaper-v1.

4-181017.pdf.

[3] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols.
Journal of the Association for Computing Machinery (JACM), 32(4):824–840,
1985.

[4] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus.
CoRR, abs/1807.04938, 2018.

[5] V. Buterin. A cbc casper tutorial. 2018. https://vitalik.ca/general/2018/
12/05/cbc_casper.html.

[6] V. Buterin. Sharding. https://vitalik.ca/files/Ithaca201807_Sharding.
pdf, 2018.

[7] V. Buterin and V. Griffith. Casper the friendly finality gadget. CoRR,
abs/1710.09437, 2017.

[8] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In Operating
Systems Design and Implementation, volume 99, pages 173–186, 1999.

[9] N. Community. Nxt whitepaper. 2018. https://nxtwiki.org/wiki/

Whitepaper:Nxt.

[10] P. Daian, R. Pass, and E. Shi. Snow white: Robustly reconfigurable consensus
and applications to provably secure proofs of stake. Cryptology ePrint Archive,
2017.

[11] E. Developers. Ethereum 2.0 phase 0: The beacon chain. 2019.
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/core/0_

beacon-chain.md.

[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of par-
tial synchrony. Journal of the Association for Computing Machinery (JACM),
35(2):288–323, 1988.

[13] T. Hanke, M. Movahedi, and D. Williams. DFINITY technology overview
series, consensus system. CoRR, abs/1805.04548, 2018.

48

https://www.hedera.com/hh-whitepaper-v1.4-181017.pdf
https://www.hedera.com/hh-whitepaper-v1.4-181017.pdf
https://vitalik.ca/general/2018/12/05/cbc_casper.html
https://vitalik.ca/general/2018/12/05/cbc_casper.html
https://vitalik.ca/files/Ithaca201807_Sharding.pdf
https://vitalik.ca/files/Ithaca201807_Sharding.pdf
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/core/0_beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/core/0_beacon-chain.md

[14] A. Jain, S. Arora, Y. Shukla, T. Patil, and S. Sawant-Patil. Proof of stake
with casper the friendly finality gadget protocol for fair validation consensus in
ethereum. International Journal of Scientific Research in Computer Science,
Engineering and Information Technology, 3(3):291–298, 2018.

[15] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference, pages 357–388. Springer, 2017.

[16] S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[17] K. Palmskog, M. Gligoric, L. Peña, B. Moore, and G. Rosu. Verification of
casper in the coq proof assistant. Technical report, 2018.

[18] R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confir-
mation. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 3–33. Springer, 2018.

[19] R. J. Serfling. Probability inequalities for the sum in sampling without replace-
ment. The Annals of Statistics, 2(1):39–48, 01 1974.

[20] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bit-
coin. In International Conference on Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[21] M. Yin, D. Malkhi, G. G. G. Reiter, Michael K., and I. Abraham. Hotstuff:
Bft consensus in the lens of blockchain. CoRR, abs/1803.05069, 2018.

49

A. Technicalities of Views

In Section 2, we defined view in a streamlined treatment. We provide a more detailed
treatment in this section that offers further intuition.

First, we give a different definition from view that should seem more intuitive to
some readers. We define the full view of a validator V at a given time T to be the
set of all messages (and timestamps) that have been seen by V by time T . We can
denote the full view as fv(V, T). Similarly to the network view view(NW, T), we also
define a “God’s-eye-view” fv(NW, T), the full network view, as the collection of all
messages any validator has broadcast at any time to the network. As with views,
for any validator V and any given time T , fv(NW, T) includes all the messages for
any fv(V, T), though the timestamps may be mismatched. With this definition, our
definitions view(V, T) and view(NW, T) respectively are just subsets of the accepted
messages in fv(V, T) and view(NW, T) respectively.

Now, it is completely possible to describe everything in terms of full views instead
of views. However, there are many reasons why we work with views instead of full
views in this paper (and why we leave the concept of full views to the appendix).
To give a few:

• We can visualize views as a connected tree of blocks and attestations (with
edges corresponding to dependencies). To visualize full views, we necessarily
have to use a possibly disconnected graph.

• Motivated by real-life concerns, a protocol working with full views would have
to contain instructions that differ on how to handle messages a validator V has
seen (but shouldn’t act on, as it depends on a possibly nonexistent message
V has not seen) versus a message a validator has accepted and fully “un-
derstands”. As an example, a cryptocurrency protocol may have to contain
statements of the sort “when a full view sees a transaction about a coin B,
if the parent blocks of B exist (recursively) and are all signed correctly, then
consider the transaction valid.” This is very clunky, whereas if parent-child
relationships were dependencies then using views abstracts away the recursive-
checking logic, and we just need to say “when a view sees a transaction about
a coin B, consider the transaction valid.”

• It is always possible to have a protocol that works on views: if message B
depends on message A but we receive B first, then working with views is
equivalent to ignoring the existence of message B when making choices as a
validator until A (and other dependencies) come.

To summarize: even though the full view is somewhat intuitively easier to under-
stand than the view, since all the dependencies are met in a view by construction,
what the view sees forms a “coherent” state where the validator can reason about
any message with no ambiguity, whereas reasoning about the full view will usually

50

come with caveats about checking that all dependencies of the messages involved in
the reasoning are met (probably recursively).

B. The Equivocation Game

Recall that in Section 7, we abstracted a single slot of Gasper into a one-shot game
called the equivocation game, parametrized by (V, a, ε1, ε2), where V votes on 2
options O1 and O2. In this Appendix, we give some further details and perform
some simulations.

First, we explicitly discuss how time and synchrony conditions are modelled in
this game:

1. There is a single time period in this game, formalized as the real interval [0, 1].
This interval corresponds to the 1 slot of time in Gasper.

2. Honest validators follow the following protocol: “vote at [your] t = 0.5 for the
option with more total stake voted in your view; in the case of a tie, vote O1.”
This protocol corresponds to the instruction in Gasper that attestors for slot i
are supposed to attest at time i+ 1/2 (and tiebreakers are broken by a hash,
which is an arbitrary but fixed value).

3. Synchrony model:

a) We assume that all validators have perfectly synced clocks, but each val-
idator attempting to vote at time t actually votes at “real” time t + X
(rounding to inside the interval [0, 1]), where X is a uniform random
variable with support [−ε1, ε1], independently re-sampled for each mes-
sage. We can think of ε1 as a “timing error” bound, accounting for clock
differences, client-side timing issues, etc.

b) When a validator votes at “real” time t′, all other validators obtain the
vote at time t′ + a+ Y , where Y is a uniformly distributed variable with
support [−ε2, ε2]. We can think of a as the average delay per message,
and ε2 a noise on top of the delay. Combining with the previous point,
we have that a validator attempting to vote at time t actually has his/her
vote received by another validator at t+ a+X + Y , where the X and Y
are independently re-sampled for each event.

For our analysis in this section, we make the following additional assumptions
and notations:

• Every validator has exactly 1 unit of stake. Barring further knowledge (such as
empirical data) about validator stake distributions, this is the most intuitive
choice for our toy model.

51

• We define Nh ≥ 2N/3 to be the total number of honest validators (which is
equivalent to their total amount of stake). In reality (and in Section 7), we
expect Nh to be a bit bigger at 2N/3 + εN for small ε.

• Similarly, we define Nb ≤ N/3 to be the number of byzantine validators. We
use p = Nb

N to be the proportion of byzantine validators.

Finally, for our computer simulations, we additionally set the parameters to
V = 111, Nh = 74, Nb = 37. The total number of validators of 111 is based
on [6], as a heuristic lower bound for making the committees safe. Erring on the
conservative side, we pick the maximally pessimistic parameter of p = 1/3 frac-
tion of byzantine validators. Having more honest validators than this assumption
significantly improves our chances of winning.

B.1. The Pessimistic Regime - High Latency

This pessimistic regime is a mental experiment to show that under certain conditions
fair to both sides, the power of collusion is enough to make the game favor the
dishonest side.

We assume that a (the delay for messages from one validator to another) is big
compared to ε1 (the error in timing a vote). In this situation, we argue that the
dishonest validators can perform the following “smoke bomb attack”: at time close
to 0.5−a, all the dishonest validators vote in a way that the votes are split between
the 2 options, for a total of pN/2 votes for each option, all with fake timestamps for
time close to 0.5.

When this attack activates, from the view of each honest validator, at time 0.5
they will see some random votes from the dishonest validators. As a is big com-
pared to ε1, they almost never see other votes from honest validators. Thus, the
dishonest validators and honest validators both end up splitting the vote: the dis-
honest validators end up splitting pN of the votes, and the honest validators split
the remaining (1− p)N probabilistically.

Assuming the honest validators all have 1 stake, the honest validator’s votes can
be modeled by (1 − p)N Bernoulli trials between the two outcomes, ending up
close to a normal distribution around a tie, with a standard deviation proportional
to
√

(1− p)N votes. In particular, for large N , it is very unlikely for one of the
options to get anywhere near 2N/3 stake worth of votes.

Remark. As an extension of this example, we can also consider the case where the
protocol tiebreaker is “flip a coin,” the situation becomes even worse: the dishonest
validators can simply wait until the end to vote. Because a is big compared to ε1,
the honest validators are still essentially making coin flips since they have not seen
any other votes. Our tiebreaker rule (vote for option O1 if there is a tie) solves
this problem. The main takeaway here is that these protocols (including attacks on
them) are very sensitive to very small implementation details.

52

In Figure 11, we have four cases that demonstrate different outcomes of the pes-
simistic regime with a = 0.15, ε1 = 0.05, and ε2 = 0.15. This ensures that messages
sent at time t are received uniformly randomly in the interval [t, t + 0.3]. Note
that having smaller ε2 would be even more pessimistic, almost ensuring that honest
validators cannot see each other’s votes.

In Case 1, dishonest validators vote much earlier than honest validators do, so
most of the attestations made by the former are visible to the latter when they vote.
Thus, the honest validators are likely to vote for the same option. For Cases 2 and 3,
dishonest validators vote closer and closer to when the honest validators do, which
increases the power of the attack; in Case 3 dishonest validators win at 42% of the
time. In Case 4, dishonest validators vote at the same time as honest validators;
because of the delay, the dishonest votes do not confuse the honest validators, so
honest validators almost always win (because they are likely to vote for the default
option O1, barring seeing any votes).

0 10.15 0.25 0.45 0.55

0 10.25 0.35 0.45 0.55 0.65

0 10.25 0.35 0.45 0.55 0.65 0.75

0 10.25 0.35 0.45 0.55 0.65 0.75 0.85

* : dishonest validators’ voting time frame

* : honest validators’ voting time frame

* : interval of possible time to obtain dishonest validators’ votes

Dishonest voting time Win

0.2 96%

0.3 74%

0.4 58%

0.5 100%

Figure 11: Pessimistic regime simulations with a = 0.15, ε1 = 0.05, ε2 = 0.15 for the
4 cases above in order. Each row has a different coordinated dishonest
voting time, which affects the winning rates of honest validators.

53

B.2. The Optimistic Regime - Low Latency

For this regime, we go to the other extreme and assume perfect synchrony (a = ε2 =
0). This means all decisions are immediately propagated to all other validators on
the network.

In this game, the moment one choice has a lead (by default, O1), everybody is
aware of the lead and all honest validators will vote for the choice in the lead. Thus,
the optimal strategy for dishonest validators is to keep the voting exactly at a tie
(in which case the next honest validator will vote for O1) or such that O2 has one
extra vote (in which case the next validator will vote O2). However, as it takes more
votes to get the count to under O1, the dishonest validators really can do no better
than as if they voted at the very end in the wrong direction, which still gives the
honest validators (1 − p)N votes in the correct direction. In our situation where
p = 1/3, this gives a total vote differential of (1 − 2p)N = N/3, which is good for
us. One can see a simulated outcome of this case in Figure 12.

0 10.25 0.35 0.45 0.55 0.65 0.75 0.85

Dishonest voting time Win

0.5 100%

Figure 12: Optimistic regime simulation outcome with a = 0, ε1 = 0.05, ε2 = 0 with
both dishonest and honest validators voting in the same time frame.
Honest validators always win.

B.3. An Example Inbetween

We make a specific set of assumptions somewhere between the extremes presented in
sections B.1 and B.2. These assumptions are fairly arbitrary and hopefully presents
a realistic example. It would be good to find principled “bottom truth” parameters
somehow (such as after the actual blockchain is implemented).

In Figure 13, we have three cases that demonstrate the outcomes of the inbetween
examples with a = 0.1, ε1 = 0.05 and ε2 = 0.1. Thus, a is comparable to ε1 (avoiding
the pessimistic case) but fairly big (avoiding the optimistic case). Making ε2 bigger
doesn’t really change the results much until ε2 becomes around the order of a.

In Case 1, some dishonest validators vote earlier than honest validators do and
their “smoke bomb attack” has some impact; however, the amount of votes are not
distracting enough compared to the amount of votes honest validators are able to
vote following the protocol. In case 2, as we earlier discussed in the pessimistic
regime, dishonest validators vote closer to when the honest validators do, which
boosts the effectiveness of the attack. In Case 3, dishonest validators vote at the

54

same time as honest validators do; as in the pessimistic regime, honest validators
still almost always win.

0 10.25 0.35 0.45 0.55

0 10.35 0.45 0.55 0.65

0 10.45 0.55 0.65 0.75

Dishonest voting time Win

0.3 93%

0.4 79%

0.5 99%

Figure 13: Simulation outcomes with a = 0.1, ε1 = 0.05, ε2 = 0.1.

55

	1 Introduction
	2 Setup and Goals
	2.1 Consensus Protocols, Validators, Blockchain
	2.2 Messages and Views
	2.3 Proof-of-stake
	2.4 Byzantine Validators, PBFT
	2.5 Safety and Liveness
	2.6 Time, Epochs, and Synchrony

	3 Main Ingredients
	3.1 Casper FFG
	3.2 LMD GHOST Fork-Choice rule

	4 Main Protocol: Gasper
	4.1 Epoch Boundary Blocks and Pairs
	4.2 Committees
	4.3 Blocks and Attestations
	4.4 Justification
	4.5 Finalization
	4.6 Hybrid LMD GHOST
	4.7 Slashing Conditions
	4.8 Rewards and Penalties

	5 Safety
	6 Plausible Liveness
	7 Probabilistic Liveness
	7.1 High Weight After the First Slot - The Equivocation Game
	7.2 High Weight after First Slot Leads to Justification
	7.3 Probabilistic Justification Leads to Probabilistic Finalization

	8 Practice versus Theory
	8.1 Sharding
	8.2 Implementing the View
	8.3 Attestation Inclusion Delay
	8.4 Attestation Consideration Delay
	8.5 A Four-Case Finalization Rule
	8.6 Safety - Dynamic Validator Sets
	8.7 Extreme Cases; Hard Forks

	9 Conclusion
	A Technicalities of Views
	B The Equivocation Game
	B.1 The Pessimistic Regime - High Latency
	B.2 The Optimistic Regime - Low Latency
	B.3 An Example Inbetween

