
1 Zk-Snark

The following is a collection of materials regarding this hardly believable technology. Some subjects are

objectively complex, but even though ‘white papers’ are necessary, sometimes they seem to be a narcissistic

exercise of beautiful complex formulas, that nobody except the writers can understand. Technologies are

sometimes complex and not for everyone, but there is too often a lack of easier documentation with simple

examples to understand the low level details. Something that should be good for security reasons but more

in general to help everyone to understand the technologies. One of the problems of the crypto world, in my

opinion, is that they are too hard and complex to understand for most of the people, and probably this is

why there are still people who think that Bitcoin is bullshit, because “there’s nothing behind it”. There’s a

lack of efforts to produce easier and understandable documentation.

Chapter 2 is an introduction to this topic with a few simple examples on what is zk-snark, and why it could be

useful. This is something that everybody could read and understand, it only takes 5 minutes or so.

Chapter 3 is an explanation to better understand the post from Vitalik Buterin, which lacks some steps to

understand the topic in more detail. This is where I have put most of my efforts to better clarify things.

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

The most important and complete explanation on the subject are from this guy, who made a wonderful job:

https://twitter.com/maksympetkus

https://arxiv.org/pdf/1906.07221.pdf

https://medium.com/@imolfar/why-and-how-zk-snark-works-1-introduction-the-medium-of-a-proof-

d946e931160

The 8 posts have been detailed in chapters 5-10, they have been simply copied and pasted.

Another very well done site, full of interesting high level material, is the following:

https://zkproof.org/2020/10/15/information-theoretic-proof-systems-part-ii/

This doc is long and full of many potentially boring details, in case the math behind this technology is not of

your interest, just stop after the first pages that are a general introduction to the problem and the infinite

areas of its applicability.

“ZK STARK” is an evolution of the zk-snark algorithm, it’s simpler since it doesn’t use elliptic curves and

homomorphic concepts, and uses quantum proof hashes to produce computation proofs, which are slightly

longer than those produced with zk-snark algorithm. When proofs need to be stored on public block chains

systems, this should be taken into consideration. Moreover, they scale better with the problem’s complexity,

and they don’t need the so called ‘cerimony’ for the non-interactive case, thus it could be considered more

secure, since no trap doors that could compromise the system exist. The balance is between security, the

length of the produced proof, interactivity between the prover and the verifier.

https://starkware.co/stark/

Some more details could be added about the above topic in the future, trying to demystify a bit the following

(in my opinion still not trivial) explanations:

https://vitalik.ca/general/2017/11/09/starks_part_1.html

https://vitalik.ca/general/2017/11/22/starks_part_2.html

https://vitalik.ca/general/2018/07/21/starks_part_3.html

In any case, understanding zk-snark is useful anyway also tohelp you understading zk-stark, since many

concepts about polynomials are the same.

2 Introduction

The concept of ‘proof of computation’ is surprisingly old and there is a paper published in 1989 by “Shafi
Goldwasser, Silvio Micali, and Charles Rackoff”. Silvio Micali is the same one, the founder of Algorand, a public
proof of steak blockchain system.
https://epubs.siam.org/doi/10.1137/0218012

Due to the rising of blockchain technologies, these kind of techniques, adding privacy features, have become
more and more important for a couple of reasons:

- adding privacy to public blockchain systems, could make these systems available and attractive also
for private companies

- offloading computations and saving just the small proofs that complex computations have been
correctly performed, helps scaling the most used layer1 blockchains like Ethereum, which start
getting overloaded (with a substantial increase in gas fees). These techniques are usually referred to
as “zk rollups”.

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK) is the truly ingenious method
of proving that something is true without revealing any other information, however, why it is useful in the first
place? Zero-knowledge proofs are advantageous in a myriad of application, including:

1) Proving statement on private data:
• Person A has more than X in his bank account
• In the last year, a bank did not transact with an entity Y
• Matching DNA without revealing full DNA
• One has a credit score higher than Z

2) Anonymous authorization:
• Proving that requester R has right to access web-site’s restricted area without revealing its identity (e.g.,

login, password)
• Prove that one is from the list of allowed countries/states without revealing from which one exactly
• Prove that one owns a monthly pass to a subway/metro without revealing card’s id

3) Anonymous payments:
• Payment with full detachment from any kind of identity [Ben+14]
• Paying taxes without revealing one’s earnings

4) Outsourcing computation:
• outsource an expensive computation and validate that the result is correct without redoing the

execution; it opens up a category of trustless computing
• changing a blockchain model from everyone computes the same to one party computes and everyone

verifies

• scale the TPS value by performing computations on ‘parachains’ or secondary chains, and putting on a
main chain only the necessary data (e.g. a merkle root hash), that can be verified in an easy, fast and
cheap way with a smart contract

As great as it sounds on the surface the underlying method is a “marvel” of mathematics and cryptography
and is being researched for the 4th decade since its introduction in 1985 in the principal work “The
Knowledge Complexity of Interactive Proof-systems” [GMR85] with subsequent introduction of the non-
interactive proofs [BFM88] which are especially essential in the context of blockchains.
In any zero-knowledge proof system, there is a prover who wants to convince a verifier that some statement is
true without revealing any other information, e.g., verifier learns that the prover has more than X in his bank
account but nothing else (i.e., the actual amount is not disclosed). A protocol should satisfy three properties:

• Completeness — if the statement is true then a (honest) prover can convince a verifier
• Soundness — a cheating prover can not convince a verifier of a false statement
• Zero-knowledge — the interaction only reveals if a statement is true and nothing else

The zk-SNARK term itself was introduced in [Bit+11], building on [Gro10] with following Pinocchio protocol
[Gen+12; Par+13] making it applicable for general computing. Pinocchio is a character of the Italian fairy tales
writer Carlo Collodi: Pinocchio is a wooden child whose nose grows up when he lies. Follow hereafter some
other examples of ‘zero knowledge interactive proofs’.

2.1 Ali Baba Cave
https://en.wikipedia.org/wiki/Zero-knowledge_proof

Victor wants to be sure that Peggy has the secret code to open the door at the end of the cave. How can
Peggy demonstrate this to Victor, without actually giving him the key to try himself to open the door ? This
would be the interactive zero knowledge algorithm (or protocol):

Peggy randomly takes either path A or B, while Victor waits outside (i.e. Victor doesn’t know if Peggy has
chosen path A or B).

Victor chooses an exit path.

Peggy reliably appears at the exit Victor names.

Of course, Peggy could have just been lucky, because Victor has chosen the same exit that Peggy decided to

enter at the beginning. But repeating this many times, for example 100 times, there are two possibilities:

1. Peggy comes back from the wrong side for more or less 50% of the times

2. Peggy come always back from the right side that Victor chose

In the latter case, Peggy has the key to open the cave’s door, otherwise she doesn’t have it.

2.2 Colored balls
https://www.notboring.co/p/zero-knowledge

Bob is color blind and can’t say if the two balls he holds are of the same color or not. Mark claims he can
demonstrate that to Bob, without telling Bob the color of the balls. The protocol is the following one:

Bob hides the balls behind his back, and decides to switch them or not. Than shows them to Mark, who has to
say if Bob switched the balls in his hands or not. If the game is repeated 100 times, averagely speaking Mark:

- will answer in the right way 100% of the times if the two balls are of different colors
- will answer in the right way 50% of the times if the two balls are of the same color

In any case, supposing Mark is trusted and doesn’t lie, Bob will know if the two balls are of the same color or
not.

2.3 Leaves on the tree
Victor has some kind of super powers, so he can count the number of leaves on a tree. Alice doesn’t believe
him (of course not in this case), so she wants to be sure about it, but Victor doesn’t want to reveal the total
number of leaves on the tree. So Victor doesn’t look to Alice when se removes N leaves (not all of them

obviously, just a few of them …) from the tree. Victor looks again at the tree, and tells to Alice how many
leaves she has stolen from the tree. In this case we probably don’t need to repeat the experiment many
times.

3 Vitalik Buterin example with R1cs ‘circuits’

At the following link you can find some explanations from Vitalik Buterin, Ethereum’s co-founder together
with Gavin Wood. We copy hereafter the same example, adding some more details that have been omitted
and prevent from fully understand the topic. Moreover, it introduces the concept of R1CS which is anyway
useful in this context.

https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

The purpose of this post is not to serve as a full introduction to zk-SNARKs; it assumes as background
knowledge that (i) you know what zk-SNARKs are and what they do, and (ii) know enough math to be able to
reason about things like polynomials (if the statement P(x) + Q(x) = (P + Q)(x) , where P and Q are polynomials,
seems natural and obvious to you, then you’re at the right level). Rather, the post digs deeper into the
machinery behind the technology, and tries to explain as well as possible the first half of the pipeline, as
drawn by zk-SNARK researcher Eran Tromer here:

The steps here can be broken up into two halves. First, zk-SNARKs cannot be applied to any computational
problem directly; rather, you have to convert the problem into the right “form” for the problem to operate
on. The form is called a “quadratic arithmetic program” (QAP), and transforming the code of a function into
one of these is itself highly nontrivial. Along with the process for converting the code of a function into a QAP
is another process that can be run alongside so that if you have an input to the code you can create a
corresponding solution (sometimes called “witness” to the QAP). After this, there is another fairly intricate
process for creating the actual “zero knowledge proof” for this witness, and a separate process for verifying a
proof that someone else passes along to you, but these are details that are out of scope for this post.
The example that we will choose is a simple one: proving that you know the solution to a cubic equation:

𝑥3 + 𝑥 + 5 = 35

This problem is simple enough that the resulting QAP will not be so large as to be intimidating, but nontrivial
enough that you can see all of the machinery come into play. Let us write out our function as follows:

def qeval(x):

 y = x**3

 return x + y + 5

The simple special-purpose programming language that we are using here supports basic arithmetic (+, -, *, /),

constant-power exponentiation (𝑥7 but not 𝑥𝑦) and variable assignment, which is powerful enough that you
can theoretically do any computation inside of it (as long as the number of computational steps is bounded;
no loops allowed). Note that modulo (%) and comparison operators (<, >, ≤, ≥) are NOT supported, as there is
no efficient way to do modulo or comparison directly in finite cyclic group arithmetic (be thankful for this; if
there was a way to do either one, then elliptic curve cryptography would be broken faster than you can say
“binary search” and “Chinese remainder theorem”).

You can extend the language to modulo and comparisons by providing bit decompositions (eg. 13 = 23 + 22+
1) as auxiliary inputs, proving correctness of those decompositions and doing the math in binary circuits; in
finite field arithmetic, doing equality (==) checks is also doable and in fact a bit easier, but these are both
details we won’t get into right now. We can extend the language to support conditionals (eg. if x < 5: y = 7;
else: y = 9) by converting them to an arithmetic form: y = 7 * (x < 5) + 9 * (x >= 5); though note that both
“paths” of the conditional would need to be executed, and if you have many nested conditionals then this can
lead to a large amount of overhead.
Let us now go through this process step by step. If you want to do this yourself for any piece of code,
I implemented a compiler here (for educational purposes only; not ready for making QAPs for real-world zk-
SNARKs quite yet!).

3.1 Flattening
The first step is a “flattening” procedure, where we convert the original code, which may contain arbitrarily
complex statements and expressions, into a sequence of statements that are of two forms:x = y (where y can
be a variable or a number)and x = y (op) z (where op can be +, -, *, / and y and z can be variables, numbers or
themselves sub-expressions). You can think of each of these statements as being kind of like logic gates in a
circuit. The result of the flattening process for the above code is as follows:

sym_1 = x * x

y = sym_1 * x

sym_2 = y + x

~out = sym_2 + 5

If you read the original code and the code here, you can fairly easily see that the two are equivalent. Hereafter
is represented a “circuit scheme” that perform the SAME above operations:

As ‘x’ changes as an input variable, the output variable changes as well. The equation corresponding to this
circuit is supposed to be known to the prover and the verifier, while the verifier needs to ensure, given a
certain output, that the computation has been correctly performed. The ‘zero knowledge’ will be added
encrypting values in the proper way, but in this example we just want to show how the algorithm works. Many
complex equations can be translated happily into a R1CS circuit, in real life applications there could potentially
be millions of parameters and gates. The calculation of a hash value could by itself imply thousands of gates.
For example the following piece of code:

function calc(w, a, b)

 if w then

 return a × b

 else

 return a + b

 end if

end function

could be represented as follows, with the input variable ‘w’ used to decide which is the output:

See also the following site:
https://zokrates.github.io/introduction.html

The above circuit is somewhat similar to neural networks (the gates being somewhat like the neurons), except
for the fact that everything is deterministic here, while on neural networks you change x and try to find the
middle layer parameters to minimize the observed output y. Beware that the above circuit is valid for ANY x
and y (or output), so that once you have solved it, you can re-use it for ANY possible input. This will be clear
after having read the rest of the document.

3.2 Gates to R1CS
Now, we convert this into something called a rank-1 constraint system (R1CS). An R1CS is a sequence of
groups of three vectors (a, b, c), and the solution to an R1CS is a vector s, where s must satisfy the equation:

s . a * s . b - s . c = 0

where . represents the dot product - in simpler terms, if we "zip together" a and s, multiplying the two values
in the same positions, and then take the sum of these products, then do the same to b and s and then c and s,
then the third result equals the product of the first two results. For example, this is a satisfied R1CS:

A few more important details here: the above is NOT a multiplication of matrixes, since dimensions are clearly
WRONG. A multiplication between a matrix A of N rows and M columns and a matrix B of M rows (yes, the
row number of B MUST be equal to the column’s number of A) and P columns is a matrix C of N rows and P
columns. The vector S (also called witness) is that of the variables we have used in the circuit, adding ‘1’ to
represent constants:

['1', 'x', 'out', 'sym_1', 'y', 'sym_2']

Let’s first consider the first gate, representing the equation:

sym_1 = x * x

x * x - sym_1 = 0

The equation:

s . a * s . b - s . c = 0

or equivalently:

a. s * b . s - c . s = 0

for the first gate becomes:

(

 [0, 1,0,0, 0,0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚_1

𝑦
𝑠𝑦𝑚_2]

)

 ∗

(

[0, 1,0,0, 0, 0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

)

 − [0, 0,0,1, 0,0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

= 0

Considering just one single gate, this representation works fine even with matrixes multiplication. But adding
the subsequent gates, this is not true anymore. For the sake of space and for a more ‘elegant’ and compact
representation, we will keep a matrix representation, just keep in mind that the ‘*’ does NOT represent a
matrix multiplication, but rather a LINE by LINE multiplication. Let’s consider the second gate:

y = sym_1 * x

sym_1 * x – y = 0

(

 [0, 0,0,1, 0,0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚_1

𝑦
𝑠𝑦𝑚_2]

)

 ∗

(

[0, 1,0,0, 0, 0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

)

 − [0, 0,0,0, 1,0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

= 0

Third gate:

sym_2 = y + x

(y + x)*1 – sym_2 = 0

(

 [0, 1,0,0, 1,0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚_1

𝑦
𝑠𝑦𝑚_2]

)

 ∗

(

[1, 0,0,0, 0, 0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

)

 − [0, 0,0,0, 1,0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

= 0

Fourth gate:

out = sym_2 + 5

(sym_2 + 5)*1 – out = 0

(

 [5, 0,0,0, 0, 1] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚_1

𝑦
𝑠𝑦𝑚_2]

)

 ∗

(

[1, 0,0,0, 0, 0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

)

 − [0, 0,1, 0,0, 0] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

= 0

Providing a compact representation similar to:

a. s * b . s - c . s = 0

we obtain the following:

(

 [

0, 1,0,0, 0, 0
0, 0,0, 1, 0, 0
0, 1,0, 0, 1, 0
5, 0,0,0, 0, 1

] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚_1

𝑦
𝑠𝑦𝑚_2]

)

 ∗

(

[

0, 1,0,0, 0,0
0, 1,0,0, 0,0
1, 0,0,0, 0,0
1, 0,0,0, 0,0

] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

)

 − [

0, 0,0, 1,0, 0
0,0,0, 0,1, 0
0,0,0, 0,1, 0
0,0,1, 0,0, 0

] ∗

[

1
𝑥

𝑜𝑢𝑡
𝑠𝑦𝑚1

𝑦
𝑠𝑦𝑚2]

= 0

As already said, don’t confuse the ‘*’ symbol with the matrix multiplication (the values are instead simply
multiplied row by row). The witness is simply the assignment to all the variables, including input, output and
internal variables:

['1','x','~out','sym_1','y','sym_2'] → [1, 3, 35, 9, 27, 30]

You can compute this for yourself by simply “executing” the flattened code above, starting off with the input
variable assignment x=3, and putting in the values of all the intermediate variables and the output as you
compute them. The above equation becomes:

(

 [

0, 1,0,0, 0,0
0, 0, 0,1, 0, 0
0, 1, 0,0, 1, 0
5, 0,0,0, 0,1

] ∗

[

1
3
35
9
27
30]

)

 ∗

(

[

0, 1,0,0, 0,0
0, 1,0,0, 0,0
1, 0,0,0, 0,0
1, 0,0,0, 0,0

] ∗

[

1
3
35
9
27
30]

)

 − [

0, 0,0,1, 0, 0
0, 0,0,0, 1, 0
0, 0,0,0, 0, 1
0, 0,1,0, 0, 0

] ∗

[

1
3
35
9
27
30]

= 0

([

3
9

3 + 27
5 + 30

]) ∗ ([

3
3
1
1

]) − [

9
27
30
35

] = 0

where the last equation stands considering the multiplication ‘*’ of the two matrixes as a line by line
multiplication.

3.3 R1CS to QAP
The next step is taking this R1CS and converting it into QAP (quadratic arithmetic program) form, which
implements the exact same logic except using polynomials instead of dot products.

𝐴 = [

0, 1, 0, 0,0, 0
0, 0, 0, 1,0, 0
0, 1, 0, 0,1, 0
5, 0, 0, 0,0, 1

] 𝐵 = [

0, 1, 0, 0, 0,0
0,1, 0, 0, 0,0
1,0, 0, 0, 0,0
1,0, 0, 0, 0,0

] 𝐶 = [

0, 0, 0,1, 0, 0
0, 0, 0,0, 1, 0
0, 0, 0,0, 0, 1
0, 0, 1,0, 0, 0

]

We go from four groups of three vectors of length six, to six groups of 3 degree polynomials, where evaluating
the polynomials at each x coordinate represents one of the constraints. Let’s consider the first column of
matrix A, the constraints are the following:

𝐴1(𝑥 = 1) = 0
𝐴1(𝑥 = 2) = 0
𝐴1(𝑥 = 3) = 0
𝐴1(𝑥 = 4) = 5

Beware that the 4 ‘x’ values can be arbitrarily chosen, but they MUST be the same for all polynomials, to have
a valid equation. Since the number of gates is equal to the polynomial’s degree (i.e. 4 in this example), we
need to find the following coefficients:

𝑎3𝑥
3+𝑎2𝑥

2+𝑎1𝑥
1 + 𝑎0

… to respect to above values for x=1, x=2, x=3, x=4.
Let’s consider the second column of matrix A, the constraints are the following:

𝐴2(𝑥 = 1) = 1
𝐴2(𝑥 = 2) = 0
𝐴2(𝑥 = 3) = 1
𝐴2(𝑥 = 4) = 0

Since we have imposed 4 constraints for a polynomial of degree 3, there is just one solution for such a
polynomial (this is intuitive but can be demonstrated). The same can be done for columns 3,4,5,6 of matrix A,
and for matrixes B and C for a total of 18 polynomials.

We can make this transformation using something called a Lagrange interpolation. The problem that a
Lagrange interpolation solves is this: if you have a set of points (ie. (x, y) coordinate pairs), then doing a
Lagrange interpolation on those points gives you a polynomial that passes through all of those points. We do
this by decomposing the problem: for each x coordinate, we create a polynomial that has the desired y
coordinate at that x coordinate and a y coordinate of 0 at all the other x coordinates we are interested in, and
then to get the final result we add all of the polynomials together. For example, for the first polynomial we
have the following 4 equations:

(1) 𝑎3(𝑥 = 1)3+𝑎2(𝑥 = 1)2 + 𝑎1(𝑥 = 1)1 + 𝑎0 = 0
(1) 𝑎3+𝑎2+𝑎1+𝑎0 = 0

(2) 𝑎3(𝑥 = 2)3+𝑎2(𝑥 = 2)2 + 𝑎1(𝑥 = 2)1 + 𝑎0 = 0
(2) 8𝑎3+4𝑎2+2𝑎1+𝑎0 = 0

(3) 𝑎3(𝑥 = 3)3+𝑎2(𝑥 = 3)2 + 𝑎1(𝑥 = 3)1 + 𝑎0 = 0
(3) 27𝑎3+9𝑎2+3𝑎1+𝑎0 = 0

(4) 𝑎3(𝑥 = 4)3+𝑎2(𝑥 = 4)2 + 𝑎1(𝑥 = 4)1 + 𝑎0 = 0
(4) 64𝑎3+16𝑎2+4𝑎1+𝑎0 = 0

The above system of equations have a unique solution, you solve equation (1) for a specific parameter, for
example:

(1) 𝑎3+𝑎2+𝑎1 = −𝑎0

Replace the above parameter in the other 3 equations, thus obtaining 3 linear equations with 3 parameters.
Repeat the process to find out the exact values of the 4 coefficients.

With exactly the coordinates that we want. The algorithm as described above takes O(𝑛3) time, as there are n

points and each point requires O(𝑛2) time to multiply the polynomials together; with a little thinking, this can
be reduced to O(𝑛2) time, and with a lot more thinking, using fast Fourier transform algorithms and the like, it
can be reduced even further — a crucial optimization when functions that get used in zk-SNARKs in practice
often have many thousands of gates.

Now, let’s use Lagrange interpolation to transform our R1CS. What we are going to do is take the first value
out of every a vector, use Lagrange interpolation to make a polynomial out of that (where evaluating the
polynomial at i gets you the first value of the ith a vector), repeat the process for the first value of
every b and c vector, and then repeat that process for the second values, the third, values, and so on. For
convenience I'll provide the answers right now:

𝐴 = [

−5
9.166
−5

0.833

8
−11.333

5
−0.666

0
0
0
0

−6
9.5
−4
0.5

4
 −7
3.5

−0.5

−1
1.833
−1

0.166

]

Coefficients are in ascending order, so the first polynomial above is actually 0.833 * 𝑥3 — 5*𝑥2+ 9.166*x - 5.

𝐵 = [

3
−5.166

2.5
−0.333

−2.0
5.166
−2.5

0.333

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

]

𝐶 = [

0
0
0
0

0
0
0
0

−1
1.833
−1

0.166

4
−4.333

1.5
−0.166

−6
9.5
−4
0.5

4.0
−7
3.5

−0.5

]

This set of polynomials (plus a Z polynomial that I will explain later) makes up the parameters for this
particular QAP instance. Note that all of the work up until this point needs to be done only once for every
function that you are trying to use zk-SNARKs to verify; once the QAP parameters are generated, they can be
reused (of course, to solve the same problem but with different inputs).
Let’s try evaluating all of these polynomials at x=1. Evaluating a polynomial at x=1 simply means adding up all
the coefficients (as 1**k = 1 for all k), so it’s not difficult. We get:

A results at x=1

0

1

0

0

0

0

B results at x=1

0

1

0

0

0

0

C results at x=1

0

0

0

1

0

0

And lo and behold, what we have here is exactly the same as the set of three vectors for the first logic gate
that we created above.

From the following site:
https://devdocs.platon.network/docs/en/Verifiable_Computation/

The above picture seems to be clear about how values are used and correlated, but it’s probably wrong to
write that Z(n) also has a zero for n=5 and n=6. Z(n) has zeroes on n=1,2,3,4 while H(n) has to be calculated
dividing the left side of the equation for Z(n) (no remainder is expected), but it doesn’t necessarily have zeroes
for n=5 and n=6.

3.4 Checking the QAP
Now what’s the point of this crazy transformation? The answer is that instead of checking the constraints in
the R1CS individually, we can now check all of the constraints at the same time by doing the dot product
check on the polynomials.

Because in this case the dot product check is a series of additions and multiplications of polynomials, the
result is itself going to be a polynomial. If the resulting polynomial, evaluated at every x coordinate that we
used above to represent a logic gate, is equal to zero, then that means that all of the checks pass; if the
resulting polynomial evaluated at at least one of the x coordinate representing a logic gate gives a nonzero
value, then that means that the values going into and out of that logic gate are inconsistent (ie. the gate is y =
x * sym_1 but the provided values might be x = 2,sym_1 = 2 and y = 5).

Note that the resulting polynomial does not itself have to be zero, and in fact in most cases won’t be; it could
have any behavior at the points that don’t correspond to any logic gates, as long as the result is zero at all the
points that do correspond to some gate. To check correctness, we don’t actually evaluate the polynomial:

t = A . s * B . s - C . s

… at every point corresponding to a gate; instead, we divide t by another polynomial, Z, and check
that Z evenly divides t - that is, the division t / Z leaves no remainder.

Z is defined as (x - 1) * (x - 2) * (x - 3) ... - the simplest polynomial that is equal to zero at all points that
correspond to logic gates. It is an elementary fact of algebra that any polynomial that is equal to zero at all of
these points has to be a multiple of this minimal polynomial, and if a polynomial is a multiple of Z then its
evaluation at any of those points will be zero; this equivalence makes our job much easier. Now, let’s actually
do the dot product check with the polynomials above. First, the intermediate polynomials:

𝐴. 𝑠 = [

−5
9.166 ∙ 𝑥
−5 ∙ 𝑥2

0.833 ∙ 𝑥3

8
−11.333 ∙ 𝑥

5 ∙ 𝑥2

−0.666 ∙ 𝑥3

0
0
0
0

−6
9.5 ∙ 𝑥
−4 ∙ 𝑥2

0.5 ∙ 𝑥3

4
 −7 ∙ 𝑥
3.5 ∙ 𝑥2

−0.5 ∙ 𝑥3

−1
1.833 ∙
−1 ∙ 𝑥2

𝑥

0.166 ∙ 𝑥3

]

[

1
3
35
9
27
30]

 =

[

−5 + 24 − 64 + 108 − 30
(9.166 − 34 + 85.5 − 189 + 55) ∙ 𝑥

(−5 + 15 − 36 + 94.5 − 30) ∙ 𝑥2

(0.833 − 2 + 4.5 − 13.5 + 5) ∙ 𝑥3

]

 = [

43
−73.333
38.5 ∙ 𝑥2

∙ 𝑥

−5.166 ∙ 𝑥3

]

Also beware that if we sum up the above 18 polynomials that we retrieved through matrix A, matrix B and
matrix C, the equation A . s * B . s - C . s becomes the following one:

(𝐴1(𝑥) ∙ 1 + 𝐴2(𝑥) ∙ 3 + 𝐴3(𝑥) ∙ 35 + 𝐴4(𝑥) ∙ 9 + 𝐴5(𝑥) ∙ 27 + 𝐴6(𝑥) ∙ 30) ∗ (𝐵1(𝑥) ∙ 1 + 𝐵2(𝑥) ∙ 3 + 𝐵3(𝑥) ∙
35 + 𝐵43(𝑥) ∙ 9 + 𝐵5(𝑥) ∙ 27 + 𝐵6(𝑥) ∙ 30) − (𝐶1(𝑥) ∙ 1 + 𝐶2(𝑥) ∙ 3 + 𝐶3(𝑥) ∙ 35 + 𝐶5(𝑥) ∙ 9 + 𝐶6(𝑥) ∙ 27 +
𝐴6(𝑥) ∙ 30)

This is a generic polynomial that can be solved for any x, but its value is exactly 0 for x=1, 2, 3, 4 (or any 4
values of ‘x’ we chose, in the world of numbers we’re working) : this is because we have found all the
coefficients of the 18 polynomials to respect the initial equation.
In the same way we obtain:

𝐵. 𝑠 = [

−3
10.333 ∙ 𝑥
−5 ∙ 𝑥2

0.666 ∙ 𝑥3

]

𝐶. 𝑠 = [

−41
71.666 ∙ 𝑥
−24.5 ∙ 𝑥2

2.833 ∙ 𝑥3

]

Now we need to calculate (again the multiplication A.s with B.s has NOTHING to do with matrix multiplication,
this can create quite a lot of confusion …):

A . s * B . s — C . s = t(x)

t(x) = (-5.166∙ 𝑥3 + 38.5∙ 𝑥2 - 73.333∙ 𝑥 + 43) ∙ (−0.666 ∙ 𝑥3 − 5 ∙ 𝑥2 + 10.333 ∙ 𝑥 − 3) − (2.833 ∙ 𝑥3 −
 24.5 ∙ 𝑥2 + 71.666 ∙ 𝑥 − 41)

t = [-88.0, 592.666, -1063.777, 805.833, -294.777, 51.5, -3.444]

t (x) = -3.444∙ 𝑥6 + 51.5∙ 𝑥5 – 294.777∙ 𝑥4 + 805.833 ∙ 𝑥3 − 1063.777 ∙ 𝑥2 + 592.666 ∙ 𝑥 − 88

Since t(x) has zeroes for x=1,2,3,4 this means it can be written as:

t(x)= H(x) ∙ Z(x)

Now let’s calculate the polynomial Z(x):
Z = (x - 1) * (x - 2) * (x - 3) * (x - 4):
Z = [24, -50, 35, -10, 1]
Z = 𝑥4 - 10∙ 𝑥3 + 35∙ 𝑥2 − 50 ∙ 𝑥 + 24

Since the minimal polynomial t(x) for the way the constraints has been imposed must have zeroes for x=1,
x=2, x=3 and x=4, this means it can be written as:

t(x) = H(x) ∙ Z(x)

If we divide the result above by Z(x), we get:

H(x) =
𝑡(𝑥)

𝑍(𝑥)
 = [-3.666, 17.055, -3.444] = -3.444∙ 𝑥2 + 17.055 ∙ 𝑥 − 3.666

(As we have previously noted, H(x) doesn’t have zeroes for x=5 and x=6)

With no remainder (since t(x) MUST be divisible by Z(x), since they have been built in this way).

And so we have the solution for the QAP. If we try to falsify any of the variables in the R1CS solution that we
are deriving this QAP solution from — say, set the last one to 31 instead of 30, then we get a t polynomial that
fails one of the checks (in that particular case, the result at x=3 would equal -1 instead of 0), and
furthermore t would not be a multiple of Z; rather, dividing t / Z would give a remainder of [-5.0, 8.833, -4.5,
0.666].
Note that the above is a simplification; “in the real world”, the addition, multiplication, subtraction and
division will happen not with regular numbers, but rather with finite field elements — a spooky kind of
arithmetic which is self-consistent, so all the algebraic laws we know and love still hold true, but where all
answers are elements of some finite-sized set, usually integers within the range from 0 to n-1 for some n. For
example, if n = 13, then 1 / 2 = 7 (and 7 * 2 = 1), 3 * 5 = 2, and so forth. Using finite field arithmetic removes
the need to worry about rounding errors and allows the system to work nicely with elliptic curves, which end
up being necessary for the rest of the zk-SNARK machinery that makes the zk-SNARK protocol actually secure.

3.5 Summary
Now let’s recap what we have achieved now:

1- a way to transform a computer program into a circuit, using libraries or other techniques
2- the circuit is ‘transformed’ into a polynomial, which when evaluated on a certain number of x

values, is equal to zero and this has the consequence that input values, output values and
intermediate values of the calculation that the circuit represents, are correct with no doubts

So if the prover and the verifier BOTH know this polynomial, the verifier could choose a certain random value
‘𝑥’, and ask to the prover what is the value ‘𝑦’ of such a polynomial for such a random value. What is the
probability that the prover is just lucky and answers with the right value, if he doesn’t know the polynomial ?
it is intuitively true that two polynomials with degree N can only have the same values (i.e. intersect each
other) on N points, in any case it can be proven. For example two lines are a polynomial of degree 1, they can
be parallel or cross in just one point. If you can choose x in a space of 1077 numbers, such probability would
be negligible: N/1077. Choosing one value of ‘𝑥’ instead of all values provides the concept of ‘succinctness’
(producing a proof can take a lot of time, but verification is extremely fast). This example is just to have an
idea of where we’re going to, and how zero knowledge proofs are related to such arguments like r1cs circuits,
QAP. Privacy is related to perform calculations and checks in another ‘world’, that of the encrypted values.
We’ll go in more detail afterwards.

3.6 Working in a finite field world of numbers Zp
Working with real numbers is not the best thing to do, equal is equal and rounding errors are not safe nor
secure for any protocol or algorithm (coefficients like 0.333 are not good). Rounding errors are one of the
most frequent errors when working with ‘Solidity’ and smart contracts, where tokens, Ether, gas are all
represented by integer values.
For this reason, in real life applications we always work on the world of finite 𝑍𝑝 numbers, ‘p’ being a prime

number and numbers being integers going from 0 to (p-1). Let’s take as an example p=11, just to understand
how things work, but keep in mind that in real life applications p is a very large number made for example of
100 digits.

 𝑍11, 𝑥 є [0,1,2,3,4,5,6,7,8,9,10]

In this world, all the usual rules we know apply, with the only difference that all numbers ‘wrap’ around the
highest possible value p, 11 in this case. So every number 𝑥𝑚𝑜𝑑 𝑝is the rest of the integer division of x for the

prime number ‘p’. Additions and multiplications can be performed in the way we already know, with the usual
rules all valid. For example with p=11:

(5 + 9)𝑚𝑜𝑑 𝑝 = 14𝑚𝑜𝑑 𝑝 = 3

(5 + 15)𝑚𝑜𝑑 𝑝 = 20𝑚𝑜𝑑 𝑝 = 9

(13 + 15)𝑚𝑜𝑑 𝑝 = 13𝑚𝑜𝑑 𝑝 + 15𝑚𝑜𝑑 𝑝 = 2𝑚𝑜𝑑 𝑝 + 4𝑚𝑜𝑑 𝑝 = 6𝑚𝑜𝑑 𝑝

(13 + 15)𝑚𝑜𝑑 𝑝 = 28𝑚𝑜𝑑 𝑝 = 6𝑚𝑜𝑑 𝑝

(5 ∙ 9)𝑚𝑜𝑑 𝑝 = 45𝑚𝑜𝑑 𝑝 = 1

(5 ∙ 15)𝑚𝑜𝑑 𝑝 = 75𝑚𝑜𝑑 𝑝 = 9

(13 ∙ 15)𝑚𝑜𝑑 𝑝 = 13𝑚𝑜𝑑 𝑝 ∙ 15𝑚𝑜𝑑 𝑝 = 2𝑚𝑜𝑑 𝑝 ∙ 4𝑚𝑜𝑑 𝑝 = 8𝑚𝑜𝑑 𝑝

(13 ∙ 15)𝑚𝑜𝑑 𝑝 = 195𝑚𝑜𝑑 𝑝 = (17 ∙ 11 + 8)𝑚𝑜𝑑 𝑝 = 8𝑚𝑜𝑑 𝑝

We can also define the division operation in the following intuitive way. For example suppose we want to find
the inverse of 2 in the world 𝑍11:

2−1 =
1

2

The inverse of 2 is a number 𝑥 є 𝑍11, such that:

(𝑥 ∙ 2)𝑚𝑜𝑑 𝑝 = 1

We can easily find such a number since p is very small:

(6 ∙ 2)𝑚𝑜𝑑 𝑝 = 12𝑚𝑜𝑑 𝑝 = 1

In the same way, we can find the inverse number for all the values belonging to 𝑍11:

1𝑚𝑜𝑑 𝑝
−1 = 1, 2𝑚𝑜𝑑 𝑝

−1 = 6, 3𝑚𝑜𝑑 𝑝
−1 = 4, 4𝑚𝑜𝑑 𝑝

−1 = 3, 5𝑚𝑜𝑑 𝑝
−1 = 9

6𝑚𝑜𝑑 𝑝
−1 = 2, 7𝑚𝑜𝑑 𝑝

−1 = 8, 8𝑚𝑜𝑑 𝑝
−1 = 7, 9𝑚𝑜𝑑 𝑝

−1 = 5, 10𝑚𝑜𝑑 𝑝
−1 = 10

What about the minus operation ? suppose we want to find the negative of 2 in the world 𝑍11, this is a
number 𝑥 such that:

(−2 + 𝑥)𝑚𝑜𝑑 𝑝 = 0

We can easily find such a number since p is very small:

(2 + 9)𝑚𝑜𝑑 𝑝 = 11𝑚𝑜𝑑 𝑝 = 0

In the same way, we can find the inverse number for all the values belonging to 𝑍11:

−1𝑚𝑜𝑑 𝑝 = 10, −2𝑚𝑜𝑑 𝑝 = 9, −3𝑚𝑜𝑑 𝑝 = 8, −4𝑚𝑜𝑑 𝑝 = 7, −5𝑚𝑜𝑑 𝑝 = 6

−6𝑚𝑜𝑑 𝑝 = 5, −7𝑚𝑜𝑑 𝑝 = 4, −8𝑚𝑜𝑑 𝑝 = 3, −9𝑚𝑜𝑑 𝑝 = 2, −10𝑚𝑜𝑑 𝑝 = 1

We now have all the necessary rules and prerequisites to apply the same rules to the equations we have

previously defined in the ‘real’ world of numbers R. As you can see in the following site:

https://asecuritysite.com/encryption/go_qap

… the example we have previously considered is used to provide the polynomial t(x) output in the world of
𝑍11. You can see how the flattening has more gates than necessary, since:

x (Private input): 3, y (Public input): 35
r (Prime): 11
Flat: func exp3(private a):
 b = a * a
 c = a * b
 return c

func main(private s0, public s1):
 s3 = exp3(s0)
 s4 = s3 + s0
 s5 = s4 + 5
 equals(s1, s5)
 out = 1 * 1  this one is completely useless

… so the witness has 8 values (=variables) instead of just 6, adding unnecessary complexity to the solution.
Such optimizations are very important when you work with thousands or millions of gates. Considering again
the first polynomial of matrix A but in the finite world of numbers 𝑍11:

𝐴1(𝑥 = 1) = 0
𝐴1(𝑥 = 2) = 0
𝐴1(𝑥 = 3) = 0
𝐴1(𝑥 = 4) = 5

𝑎3𝑥
3+𝑎2𝑥

2+𝑎1𝑥
1 + 𝑎0 with 𝑥, 𝑎3, 𝑎2, 𝑎1, 𝑎0 є 𝑍11

The system of 4 equations, remembering that we’re working on 𝑍11, becomes the following:

(1) 𝑎3(𝑥 = 1)3+𝑎2(𝑥 = 1)2 + 𝑎1(𝑥 = 1)1 + 𝑎0 = 0
(1) 𝑎3+𝑎2+𝑎1+𝑎0 = 0

(2) 𝑎3(𝑥 = 2)3+𝑎2(𝑥 = 2)2 + 𝑎1(𝑥 = 2)1 + 𝑎0 = 0
(2) 8𝑎3+4𝑎2+2𝑎1+𝑎0 = 0

(3) 𝑎3(𝑥 = 3)3+𝑎2(𝑥 = 3)2 + 𝑎1(𝑥 = 3)1 + 𝑎0 = 0
(3) 27𝑎3+9𝑎2+3𝑎1+𝑎0 = 5𝑎3+9𝑎2+3𝑎1+𝑎0 = 0

(4) 𝑎3(𝑥 = 4)3+𝑎2(𝑥 = 4)2 + 𝑎1(𝑥 = 4)1 + 𝑎0 = 5
(4) 64𝑎3+16𝑎2+4𝑎1+𝑎0 = 9𝑎3+5𝑎2+4𝑎1+𝑎0 = 5

The 4 equations become:
(1) 𝑎0 = −𝑎3−𝑎2−𝑎1 = 10𝑎3+10𝑎2+10𝑎1
(2) 18𝑎3+14𝑎2+12𝑎1 = 7𝑎3+3𝑎2+𝑎1 = 0
(3) 15𝑎3+19𝑎2+13𝑎1 = 4𝑎3 + 8𝑎2+2𝑎1 = 0
(4) 19𝑎3+15𝑎2+14𝑎1 = 8𝑎3 + 4𝑎2 + 3𝑎1 = 0

(2) 𝑎1 = −7𝑎3 −3𝑎2 = 4𝑎3 + 8𝑎2
(3) 4𝑎3+8𝑎2 + 2(4𝑎3 + 8𝑎2) = 12𝑎3 + 24𝑎2 = 𝑎3 +2𝑎2 = 0

(3) 𝑎2 =
1

2
∙ (−𝑎3) = 6 ∙ 10𝑎3 = 60𝑎3 = 5𝑎3

(4) 8𝑎3+4𝑎2 + 3(−7𝑎3 −3𝑎2) = 8𝑎3+4𝑎2 + 3(4𝑎3 + 8𝑎2) = 20𝑎3+28𝑎2 = 160𝑎3 = 6𝑎3 = 5

(4) 𝑎3 =
1

6
∙ 5 = 2 ∙ 5 = 10

Replacing all coefficient with the results we have found, we obtain the following (remember that we’re always
operating in the 𝑍11 world:
𝑎3 = 10
𝑎2 = 5𝑎3 = 50𝑚𝑜𝑑11 = 6
𝑎1 = −7𝑎3 −3𝑎2 = 4𝑎3 + 8𝑎2 = 40 + 48 = 88𝑚𝑜𝑑11 = 0
𝑎0 = −𝑎3−𝑎2−𝑎1 = 10𝑎3 + 10𝑎2 + 10𝑎1 = 100 + 60 + 0 = 160𝑚𝑜𝑑11 = (11 ∗ 14 + 6)𝑚𝑜𝑑11 = 6

So our polynomial 𝐴1(𝑥) becomes:

𝐴1(𝑥) = 𝑎3𝑥

3+𝑎2𝑥
2+𝑎1𝑥

1 + 𝑎0 = 10𝑥3 + 6𝑥2 + 6

We can easily double check that (remember that modulus operation can be applied anywhere to make easier
calculations):

𝐴1(𝑥 = 1) = 10 ∙ 13 + 6 ∙ 12 + 6 = 10 + 6 + 6 = 22𝑚𝑜𝑑11 = 0

𝐴1(𝑥 = 2) = 10 ∙ 23 + 6 ∙ 22 + 6 = 80 + 24 + 6 = 110𝑚𝑜𝑑11 = (11 ∗ 10)𝑚𝑜𝑑11 = 0

𝐴1(𝑥 = 3) = 10 ∙ 33 + 6 ∙ 32 + 6 = 270 + 54 + 6 = 330𝑚𝑜𝑑11 = (11 ∗ 30)𝑚𝑜𝑑11 = 0

𝐴1(𝑥 = 4) = 10 ∙ 43 + 6 ∙ 42 + 6 = 10 ∙ (64𝑚𝑜𝑑11) + 6 ∙ 16𝑚𝑜𝑑11 + 6 = 90 + 30 + 6 = 126𝑚𝑜𝑑11 =
(11 ∗ 11 + 5)𝑚𝑜𝑑11 = 5

3.7 Homomorphic encryption and elliptic curves
The trick to add ‘privacy’, is that of working in an encrypted world with the parameters that need to be passed
between the prover and the verifier, or in any case to provide those parameters in the pre-staging phase, for
the non-interactive proofs. Zk-Snark algorithm uses elliptic curves, thus the same kind of curves used by
Bitcoin wallets to generate public and private keys to sign transactions.

An elliptic curve is the following:

𝑦3 = 𝑥3 + 𝑎𝑥 + 𝑏

Points on the curve are on the red line, the points can be defined in the 𝑍𝑝space of integer numbers. As usual

with cryptography, as you get into the details things become really complex. Based on such curves, there’s
more than one cryptographic algorithm but the one used in Bitcoin is the following:

https://it.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

Given a starting point G on the curve (the Generator), the encrypted version of the private key k is the
multiplication of the two numbers, being 𝑄𝑎=(𝑥1, 𝑦1) the public key.

(𝑥1, 𝑦1) = 𝑘 ∙ 𝐺

The operations seems to be quite simple, but we need to think about how difficult it is to reverse it. The sum
operation in the mathematical group of numbers belonging to the elliptic curve, is graphically showed in the
above picture for point P and Q. If you just know G and (𝑥1, 𝑦1), there is no other way to find k than a brute
force attack. The space of the numbers is so big that this, for non-quantic computers, would require
thousands of years (see the example below to get an idea). Parameters need to be carefully chosen to have
secure curves, for example:

https://en.bitcoin.it/wiki/Secp256k1

The advantage of such a complex approach, is the algorithm efficiency respect to RSA encryption algorithm
(based on two prime numbers p and q in the space of integer numbers 𝑍𝑝𝑞).

Security (In Bits) RSA Key Length
Required (In Bits)

ECC Key Length
Required (In Bits)

80 1024 160-223

112 2048 224-255

128 3072 256-383
192 7680 384-511

256 15360 512+

Some more details can be found here:

https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627

The problem of such an encryption algorithm, is that only the multiplication is preserved in the original and
the encrypted world, meaning that:

𝐸(𝑥 ∙ 𝑦) = 𝐸(𝑥) ∙ 𝐸(𝑦)

Since for the sum of any two values x and y this is not true, it becomes more tricky to elaborate simple zero-
knowledge protocols for the verifier, because you can’t simply pass a random value ‘E(x)’ to the prover, and
the prover calculates E(f(x)), since f(x) contains addition operations that can’t be later on reversed in the
original world by the verifier.
Some Python code to better understand how things work has been written here (by myself):

https://github.com/ricky-andre/Bitcoin/blob/master/Bitcoin_pub_key_gen.py

… and this is just an example of the numbers used in real life applications (the private key of course is not a
used one, at least not by me ☺).

The proven prime

Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1

These two defines the elliptic curve. y^2 = x^3 + Acurve * x + Bcurve

Acurve = 0; Bcurve = 7

Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240

Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

Generator Point

GPoint = (Gx,Gy)

Number of points in the field

N=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141

hex version of the key below, to put it inside www.bitaddress.org

privKey = 0xa665a45920422f9d417e4867efdc4fb8a04a1f3fff1fa07e998e86f7f7a27ae3

privKey = 75263518707598184987916378021939673586055614731957507592904438851787542395619

4 Why and How zk-SNARK Works

Despite the existence of multiple great resources on zk-SNARK construction, from original papers
[Bit+11; Par+13] to explainers [Rei16; But16; But17; Gab17], due to the sheer number of moving parts the
subject remains a black box for many. While some pieces of the puzzle are given one can not see the full
picture without the missing ones.
The first time author discovered how things fit nicely together, one was astounded by the beauty of math, and
the more dimensions were uncovered, the more it kept the spirit of wonderment. Hence the focus of this
work is sharing the experience by shedding light onto the topic with a straightforward and clean approach
based on examples and answering many whys along the way so that more individuals can appreciate the state
of the art technology, its innovators and ultimately the beauty of math.
The work’s contribution is a simplistic exposition with a sufficient level of complexity, necessary to
understand zk-SNARK without any prerequisite knowledge of the subject, cryptography or advanced math.
The primary goal is not only to explain how it works but why it works and how it came to be this way.

5 Factorization

The Fundamental Theorem of Algebra states that any polynomial can be factored into linear polynomials (i.e.,
a degree 1 polynomials representing a line), as long it is solvable. Consequently, we can represent any valid
polynomial as a product of its factors:

Also, if any of these factors is zero then the whole equation is zero, henceforth all the a-s are the only
solutions. In fact, our example can be factored into the following polynomial:

And the solutions are (values of x): 0, 1, 2, you can check this easily on either form of the polynomial, but the
factorized form has all the solutions (also called roots) on the surface.
Getting back to the prover’s claim that he knows a polynomial of degree 3 with the roots 1 and 2, this means
that his polynomial has the form:

In other words (x – 1) and (x – 2) are the cofactors of the polynomial in question. Hence if the prover wants to
prove that indeed his polynomial has those roots without disclosing the polynomial itself, he needs to prove

that his polynomial p(x) is the multiplication of those cofactors t(x) = (x- 1)(x- 2), called target polynomial, and
some arbitrary polynomial h(x) (equals to x – 0 in our example), i.e.:

In other words, there exists some polynomial h(x) which makes t(x) equal to p(x), therefore p(x) contains t(x),
consequently p(x) has all roots of t(x), the very thing to be proven. A natural way to find h(x) is through the
division:

If the prover cannot find such h(x) that means that p(x) does not have the necessary cofactors t(x), in which
case the polynomials division will have a remainder. In our example if we divide p(x) = x³ – 3x² + 2x by the t(x)
= (x – 1)(x – 2) = x² – 3x + 2:

Note: the denominator is to the left, the result is to the top right, and the remainder is to the bottom
(polynomial division explanation with examples is available at [Pik14]).
We have got the result h(x) = x without remainder.
Note: for simplicity, onwards we will use polynomial’s letter variable to denote its evaluation, e.g., p = p(r)

Using our polynomial identity check protocol we can compare polynomials p(x) and t(x) ⋅ h(x):
• verifier samples a random value r, calculates t = t(r) (i.e., evaluates) and gives r to the prover
• prover calculates h(x) =p(x) / t(x) and evaluates p(r) and h(r); the resulting values p, h are provided to the

verifier
• verifier then checks that p = t ⋅ h, if so those polynomials are equal, meaning that p(x) has t(x) as a

cofactor.

To put this into practice, let us execute this protocol for our example:
• Verifier samples a random value 23, calculates t = t(23) = (23 – 1)(23 – 2) = 462 and gives 23 to the

prover
• Prover calculates h(x) =p(x) / t(x) = x, evaluates p = p(23) = t(23)⋅h(23) = 462⋅23 = 10626 and h = h(23) =

23 and provides p, h to the verifier
• Verifier then checks that p = t ⋅ h: 10626 = 462 ⋅ 23, which is true, and therefore the statement is proven

On the contrary, if the prover uses a different p′(x) which does not have the necessary cofactors, for
example p′(x) = 2x³ – 3x² + 2x, then:

Note: although the author’s chief objective is simplicity, including the set of math symbols in use, it would be
detrimental for further sections to omit the ubiquitous symbol prime: ′. Its essential purpose is to signify some
transformation or derivation of the original variable or function, e.g., if we want to multiply v by 2 and assign it
to a separate variable, we could use prime: v′ = 2 ⋅ v.

We will get 2x + 3 with the remainder 7x – 6, i.e.: p(x) = t(x)⋅(2x + 3) + 7x – 6. This means that the prover will
have to divide the remainder by the t(x) in order to evaluate:

Therefore because of the random selection of x by the verifier, there is a low (but still non-negligible)
probability that the evaluation of the remainder 7x – 6 will be evenly divisible by the evaluation of t(x),
henceforth if verifier will additionally check that p and h must be integers, such proofs will be rejected.
However, the check requires the polynomial coefficients to be integers too, creating a significant limitation to
the protocol. That is the reason to introduce cryptographic primitives which make such division impossible,
even if the raw evaluations happen to be divisible.

Remark 3.1 Now we can check a polynomial for specific properties without learning the polynomial itself, so
this already gives us some form of zero-knowledge and succinctness. Nonetheless, there are multiple issues
with this construction:
• Prover may not know the claimed polynomial p(x) at all. He can calculate evaluation t = t(r), select a

random number h and set p = t⋅h, which will be accepted by the verifier as valid, since equation holds.
• Because prover knows the random point x = r, he can construct any polynomial which has one shared

point at r with t(r) ⋅ h(r).
• In the original statement, prover claims to know a polynomial of a particular degree, in the current

protocol there is no enforcement of degree. Hence prover can cheat by using a polynomial of higher
degree which also satisfies the cofactors check p = t⋅h.

We will address all of the issues in the following sections.

5.1 The Medium of a Proof
Let us start simple and try to prove something without worrying about the zero-knowledge, non-interactivity,
its form, and applicability. Imagine that we have an array of bits of length 10, and we want to prove to a
verifier (e.g., program) that all those bits are set to 1.

Verifier can only check (i.e., read) one element at a time. In order to verify the statement one can proceed by
reading elements in some arbitrary order and checking if it is truly equal to 1 and if so the confidence in that

statement is ⅒= 10% after the first check, or statement is invalidated altogether if the bit equals to 0. A
verifier must proceed to the next round until he reaches sufficient confidence. In some cases, one may trust a
prover and require only 50% confidence which means that 5 checks must be executed, in other cases where
95% confidence is needed all cells must be checked. It is clear that the downside of such a proving protocol is
that one must do the number of checks proportionate to the number of elements, which is non-practical if we
deal with arrays of millions of elements.

Let us consider polynomials, which can be visualized as a curve on a graph, shaped by a mathematical
equation:

The above curve corresponds to the polynomial: f(x) = x³ – 6x² + 11x – 6. The degree of a polynomial is
determined by its greatest exponent of x, which in this case is 3.
Polynomials have an advantageous property, namely, if we have two non-equal polynomials of degree at
most d, they can intersect at no more than d points. For example, let us modify the original polynomial
slightly x³ – 6x² + 10x – 5 and visualize it in green:

Such a tiny change produces a dramatically different result. In fact, it is impossible to find two non-equal
polynomials, which share a consecutive chunk of a curve (excluding a single point chunk case).
This property flows from the method of finding shared points. If we want to find intersections of two
polynomials, we need to equate them. For example, to find where a polynomial crosses an x-axis (i.e., f(x) = 0),

we equate x³ – 6x² + 11x – 6 = 0, and solutions to such an equation will be those shared points: x = 1, x = 2
and x = 3, also you can clearly see that this is true on the previous graph, where the blue curve crosses the x-
axis line.
Likewise, we can equate our original and modified version of polynomials to find their intersections.

The resulting polynomial is of degree 1 with an obvious solution x = 1. Hence only one intersection:

The result of any such equation for arbitrary degree d polynomials is always another polynomial of degree at
most d, since there is no multiplication to produce higher degrees. Example: 5x³ + 7x² – x + 2 = 3x³ – x² + 2x –
5, which simplifies to 2x³ + 8x² – 3x + 7 = 0. And the Fundamental Theorem of Algebra tells us that a
degree d polynomial can have at most d solutions (more on this in following parts), and therefore at
most d shared points.
Hence we can conclude that evaluation (more on polynomial evaluation: [Pik13]) of any polynomial at an
arbitrary point is akin to the representation of its unique identity. Let us evaluate our example polynomials
at x = 10.

In fact out of all choices of x to evaluate, only at most 3 choices will have equal evaluations in those
polynomials and all others will differ. That is why if a prover claims to know some polynomial (no matter how
large its degree is) that the verifier also knows, they can follow a simple protocol:

• Verifier chooses a random value for x and evaluates the polynomial locally
• Verifier gives x to the prover and asks to evaluate the polynomial in question
• Prover evaluates his polynomial at x and gives the result to the verifier
• Verifier checks if the local result is equal to the prover’s result, and if so then the statement is proven

with a high confidence

If we, for example, consider an integer range of x from 1 to 10⁷⁷, the number of points where evaluations are
different is 10⁷⁷ – d. Henceforth the probability that x accidentally “hits” any of the d shared points is equal to
(which is considered negligible):

Note: the new protocol requires only one round and gives overwhelming confidence
(almost 100% assuming d is sufficiently smaller than the upper bound of the range) in the statement
compared to the inefficient bit check protocol. That is why polynomials are at the very core of zk-SNARK,
although it is likely that other proof mediums exist as well.

We start with a problem of proving the knowledge of a polynomial and make our way to a generic approach.
We will discover many other properties of polynomials along the way.
The discussion so far has focused on a weak notion of a proof, where parties have to trust each other because
there are no measures yet to enforce the rules of the protocol. For example, the prover is not required to
know a polynomial, and he can use any other means available to him to come up with a correct result.
Moreover, if the amplitude of the verifier’s polynomial evaluations is not large, let us say 10, the prover can
guess a number, and there is a non-negligible probability that it will be accepted. We have to address such
weakness of the protocol, but first what does it means to know a polynomial? A polynomial can be expressed
in the form (where n is the degree of the polynomial):

If one stated that he or she knows a polynomial of degree 1 (i.e., c₁x¹ + c₀=0), that means that what one
really knows is the coefficients c₀, c₁. Moreover, coefficients can have any value, including 0.
Let us say that the prover claims to know a degree 3 polynomial, such that x = 1 and x = 2 are two of all
possible solutions. One of such valid polynomials is x³ – 3x² + 2x = 0.
For x = 1: 1 – 3 + 2 = 0
For x = 2: 8 – 12 + 4 = 0

Let us first look more closely at the anatomy of the solution.

5.2 Obscure Evaluation
Two first issues of remark 3.1 are possible because values are presented at raw, prover knows r and t(r). It
would be ideal if those values would be given as a black box, so one cannot temper with the protocol, but still
able to compute operations on those obscure values. Something similar to the hash function, such that when
computed it is hard to go back to the original input.

5.2.1 Homomorphic Encryption
That is exactly what homomorphic encryption is designed for. Namely, it allows to encrypt a value and be able
to apply arithmetic operations on such encryption. There are multiple ways to achieve homomorphic
properties of encryption, and we will briefly introduce a simple one.
The general idea is that we choose a base (there are certain properties that base number needs to have)
natural number g (say 5) and to encrypt a value we exponentiate g to the power of that value. For example, if
we want to encrypt the number 3:

Where 125 is the encryption of 3. If we want to multiply this encrypted number by 2, we raise it to the
exponent of 2:

We were able to multiply an unknown value by 2 and keep it encrypted. We can also add two encrypted
values through multiplication, for example, 3 + 2:

Similarly, we can subtract encrypted numbers through division, for example, 5 – 3:

However, since the base 5 is public, it is quite easy to go back to the secret number, dividing encrypted by 5
until the result is 1. The number of steps is the secret number.

5.2.2 Modular Arithmetic
That is where the modular arithmetic comes into play. The idea of modular arithmetic is following: instead of
having an infinite set of numbers we declare that we select only first n natural numbers, i.e., 0, 1, …, n – 1, to
work with, and if any given integer falls out of this range, we “wrap” it around. For example, let us choose six
first numbers. To illustrate this, consider a circle with six ticks of equal units; this is our range (usually referred
to as finite field).

Now let us see where the number eight will land. As an analogy, we can think of it as a rope, the length of
which is eight units:

If we attach the rope to the beginning of the circle

and start wrapping the rope around it, after one rotation we still have a portion of the rope left:

Therefore if we continue the process, the rope will end right at the tick #2.

It is the result of the modulo operation. No matter how long the rope is it will always stop at one of the circle’s
ticks. Therefore the modulo operation will keep it in certain bounds (in this case from 0 to 5). The 15-units
rope will stop at 3, i.e., 6 + 6 + 3 (two full circles with 3-units leftover). The negative numbers work the same
way, and the only difference is that we wrap it in the opposite direction, for –8 the result will be 4.
Moreover, we can perform arithmetic operations, and the result will always be in the scope of n numbers. We
will use the notation “mod n” for now on to denote the range of numbers. For example:

Furthermore, the most important property is that the order of operations does not matter, e.g., we can
perform all operations first and then apply modulo or apply modulo after every operation. For example (2 × 4
– 1) × 3 = 3 (mod 6) is equivalent to:

So why on earth is that helpful? It turns out that if we use modulo arithmetic, having a result of operation it is
non-trivial to go back to the original numbers because many different combinations will have the same result:

Without the modular arithmetic, the size of the result gives a clue to its solution. This piece of information is
hidden otherwise, while common arithmetic properties are preserved.

5.2.3 Strong Homomorphic Encryption
If we go back to the homomorphic encryption and use modular arithmetic, for example with modulo 7, we
will get:

And different exponents will have the same result:

This is where it gets hard to find the exponent. In fact, if modulo is sufficiently large, it becomes infeasible to
do so, and a good portion of the modern-day cryptography is based on the “hardness” of this problem.
All the homomorphic properties of the scheme are preserved in the modular realm:

Note: modular division is a bit more complicated and out of the scope.
Let us explicitly state the encryption function:

where v is the value we want to encrypt.
Remark 3.2 There are limitations to this homomorphic encryption scheme while we can multiply an encrypted
value by an unencrypted value, we cannot multiply (and divide) two encrypted values, as well as we cannot
exponentiate an encrypted value. While unfortunate from the first impression, these properties will turn out to
be the cornerstone of zk-SNARK. The limitations are addressed in section “Multiplication of Encrypted Values”.

5.3 Encrypted Polynomial
Armed with such tools, we can now evaluate a polynomial with an encrypted random value of x and modify
the zero-knowledge protocol accordingly.
Let us see how we can evaluate a polynomial p(x) = x³ – 3x² + 2x. As we have established previously to know a
polynomial is to know its coefficients, in this case those are: 1, –3, 2. Because homomorphic encryption does
not allows to exponentiate an encrypted value, we’ve must been given encrypted values of powers of x from 1
to 3: E(x), E(x²), E(x³), so that we can evaluate the encrypted polynomial as follows:

As the result of such operations, we have an encrypted evaluation of our polynomial at some unknown to
us x. This is quite a powerful mechanism, and because of the homomorphic property, the encrypted
evaluations of the same polynomials are always the same in encrypted space.
We can now update the previous version of the protocol, for a polynomial of degree d:

Note: because the prover does not know anything about s, it makes it hard to come up with non-legitimate but
still matching evaluations.

While in such protocol the prover’s agility is limited he still can use any other means to forge a proof without
actually using the provided encryptions of powers of s, for example, if the prover claims to have a satisfactory
polynomial using only 2 powers s³ and s¹, that is not possible to verify in the current protocol.

5.4 Restricting a Polynomial
The knowledge of a polynomial is the knowledge of its coefficients c₀,c₁,…,cᵢ and the way we “assign” those
coefficients in the protocol is through exponentiation of the corresponding encrypted powers of the secret
value s. We do already restrict a prover in the selection of encrypted powers of s, but such restriction is not
enforced, e.g., one could use any possible means to find some arbitrary values Zp and Zh which satisfy
equation:

… and provide them to the verifier instead of gᵖ and gʰ . That is why verifier needs the proof that only
encryptions of powers of s were used and nothing else.
Let us consider an elementary example of a degree 1 polynomial with one variable and one coefficient f(x)
= c⋅x and correspondingly the encryption of the s is provided E(s) = gˢ . What we are looking for is to make
sure that only encryption of s, i.e., gˢ , was homomorphically “multiplied” by some arbitrary coefficient c and
nothing else. So the result must always be of the form (for some arbitrary c):

A way to do this is to require to perform the same operation on another shifted encrypted value alongside
with the original one, acting as an arithmetic analog of “checksum”, ensuring that the result is exponentiation
of the original value.
This is achieved through the Knowledge-of-Exponent Assumption (or KEA), introduced in [Dam91], more
precisely (note the difference between a and α (alpha)):

a) Alice has a value a, that she wants Bob to exponentiate to any power (where a is a generator of a finite field
group used), the single requirement is that only this a can be exponentiated and nothing else, to ensure this
she:

b) because Bob cannot extract α from the tuple (a,a′) other then through a brute-force which is infeasible, it is
conjectured that the only way Bob can produce a valid response is through the procedure:

c) having the response and α, Alice checks the equality:

Conclusions:
• Bob has applied the same exponent (i.e., c) to both values of the tuple
• Bob could only use the original Alice’s tuple to maintain the α relationship
• Bob knows the applied exponent c, because the only way to produce valid (b,b′) is to use the same

exponent
• Alice has not learned c for the same reason Bob cannot learn α *.

* Although the c is encrypted its range of possible values might not be sufficient to preserve zero-
knowledge property which will be addressed in the section “Zero Knowledge”.

Ultimately such protocol provides a proof to Alice that Bob indeed exponentiated a by some value known to
him, and he could not do any other operation, e.g., multiplication, addition, since this would erase the α-shift
relationship. In the homomorphic encryption context, exponentiation is the multiplication of the encrypted
value. We can apply the same construction in the case with the simple one-coefficient polynomial f(x) = c ⋅ x:

• Verifier chooses random s,α and provides evaluation for x = s for power 1 and its “shift”:

• Prover applies the coefficient c:

• Verifier checks:

Such construction restricts the prover to use only the encrypted s provided, therefore prover could have
assigned coefficient c only to the polynomial provided by the verifier. We can now scale such one-term
polynomial (monomial) approach to a multi-term polynomial because the coefficient assignment of each term
is calculated separately and then homomorphically “added” together (this approach was introduced by Jens
Groth in [Gro10]). So if the prover is given encrypted exponentiations of s alongside with their shifted values
he can evaluate original and shifted polynomial, where the same check must hold. In particular, for a
degree d polynomial:

For our previous example polynomial p(x) = x³ – 3x² + 2x this would be:

Now we can be sure that the prover did not use anything else other than the provided by verifier polynomial,
since there is no other way to preserve the α-shift. Also if a verifier would want to ensure exclusion of some
power(s) of s in a prover’s polynomial, e.g., j, he will not provide the encryption and its shift:

Compared to what we have started with, we now have a robust protocol. However there is still a significant
drawback to the zero-knowledge property, regardless of encryption: while theoretically polynomial
coefficients cᵢ can have a vast range of values, in reality, it might be quite limited (6 in the previous example),
which means that the verifier could brute-force limited range of coefficients combinations until the result is
equal to the prover’s answer. For instance if we consider the range of 100 values for each coefficient, the
degree 2 polynomial would total to 1 million of distinct combinations, which considering brute-force would
require less than a million iterations. Moreover, the secure protocol should be secure even in cases where
there is only one coefficient, and its value is 1.

6 Zero-Knowledge

Because verifier can extract knowledge about the unknown polynomial p(x) only from the data sent by the
prover, let us consider those provided values (the proof):

They participate in the following checks:

The question is how do we alter the proof such that the checks still hold, but no knowledge can be extracted?
One answer can be derived from the previous section: we can “shift” those values by some random
number δ (delta), e.g.,(gᵖ)ᵟ . Now, in order to extract the knowledge, one first needs to find δ which is
considered infeasible. Moreover, such randomization is statistically indistinguishable from random.

To maintain relationships let us examine the verifier’s checks. One of the prover’s values is on each side of the
equations. Therefore if we “shift” each of them with the same δ the equations must remain balanced.
Concretely, prover samples a random δ and exponentiates his proof values with it

and provides to the verifier for verification:

After consolidation we can observe that the check still holds:

Note: how easily the zero-knowledge is woven into the construction, this is often referred to as “free” zero-
knowledge.

7 Non-Interactivity

Till this point, we had an interactive zero-knowledge scheme. Why is that the case? Because the proof is only
valid for the original verifier, nobody else (other verifiers) can trust the same proof since:

• the verifier could collude with the prover and disclose those secret parameters s,α which allows to fake

the proof, as mentioned in remark 3.1
• the verifier can generate fake proofs himself for the same reason
• verifier have to store α and t(s) until all relevant proofs are verified, which allows an extra attack surface

with possible leakage of secret parameters

Therefore a separate interaction with every verifier is required in order for a statement (knowledge of
polynomial in this case) to be proven. While interactive proof system has its use cases, for example when a
prover wants to convince only a dedicated verifier (called designated verifier, more information in [JSI96])
such that the proof cannot be re-used to prove same statement to others, it is quite inefficient when one
needs to convince many parties simultaneously (e.g., in distributed systems such as blockchain) or
permanently. Prover would be required to stay online at all times and perform the same computation for
every verifier.

Hence, we need the secret parameters to be reusable, public, trustworthy and infeasible to abuse.
Let us first consider how would we secure the secrets (t(s),α) after they are produced. We can encrypt them
the same way verifier encrypts powers of s before sending to the prover. However as mentioned in
the remark 3.2, the homomorphic encryption we use does not support the multiplication of two encrypted
values, which is necessary for both verification checks to multiply encryptions of t(s) and h as well as p and α.
This is where cryptographic pairings fit in.

7.1 Multiplication of Encrypted Values
Cryptographic pairings (bilinear map) is a mathematical construction, denoted as a function e(g*,g*), which
given two encrypted inputs (e.g., gᵃ, gᵇ) from one set of numbers allows to map them deterministically to
their multiplied representation in a different output set of numbers, i.e., e(gᵃ, gᵇ) = e(g, g)ᵃᵇ :

Because the source and output number sets (usually referred to as a group) are different the result of the
pairing is not usable as an input for another pairing operation. We can look at the output set (also called
“target set”) as being from a “different universe.” Therefore we cannot multiply the result by another
encrypted value and suggested by the name itself we can only multiply two encrypted values at a time.
In some sense, it resembles a hash function, which maps all possible input values to an element in the set of
possible output values and it is not trivially reversible.
Note: from first glance, such limitation must only impede a dependent functionality, ironically in the zk-SNARK
case it is a paramount property on which security of the scheme holds, see remark 3.3.
A rudimentary (and technically incorrect) mathematical analogy for pairing function e(g*,g*) would be to
state that there is a way to “swap” each input’s base and exponent, such that base g is modified in the
process of transformation into exponent, e.g., gᵃ → aᵍ . Both “swapped” inputs are then multiplied together,
such that raw a and b values get multiplied under the same exponent, e.g.:

Therefore because the base gets altered during the “swap” using the result (ab)ᵍ in another pairing
(e.g., e((ab)ᵍ, gᵈ)) would not produce desired encrypted multiplication abd. The core properties of pairings
can be expressed in the equations:

Technically the result of a pairing is an encrypted product of raw values under a different generator g of the
target set, i.e., e(gᵃ, gᵇ) = gᵃᵇ . Therefore it has properties of the homomorphic encryption, e.g., we can add
the encrypted products of multiple pairings together:

Note: cryptographic pairing is leveraging elliptic curves to achieve these properties, therefore from now on
notation gⁿ will represent a generator point on a curve added to itself n times instead of a multiplicative group
generator which we have used in previous sections.
The survey [DBS04] provides a starting point for exploration of the cryptographic pairings.

7.2 Trusted Party Setup
Having cryptographic pairings, we are now ready to set up secure public and reusable parameters. Let us
assume that we trust a single honest party to generate secrets s and α. As soon as α and all necessary powers
of s with corresponding α-shifts are encrypted, the raw values must be deleted (for i in 0, 1, …, d):

These parameters are usually referred to as common reference string or CRS. After CRS is generated any
prover and any verifier can use it in order to conduct non-interactive zero-knowledge proof protocol. While
non-crucial, the optimized version of CRS will include encrypted evaluation of the target polynomial gᵗ ⁽ˢ⁾.
Moreover CRS is divided into two groups (for i in 0, 1, …, d):

Being able to multiply encrypted values the verifier can check the polynomials in the last step of the protocol:

7.3 Trusting One out of Many
While the trusted setup is efficient, it is not effective since multiple users of CRS will have to trust that one
deleted α and s, since currently there is no way to prove that (proof of ignorance is an area of active research
[DK18]). Hence it is necessary to minimize or eliminate that trust. Otherwise, a dishonest party would be able
to produce fake proofs without being detected.
One way to achieve that is by generating a composite CRS by multiple parties employing mathematical tools
introduced in previous sections, such that neither of those parties knows the secret. Here is an approach, let
us consider three participants Alice, Bob and Carol with corresponding indices A, B and C, for i in 1, 2, …, d:

As the result of such protocol, we have composite sⁱ and α, where:

and no participant learns secret parameters of other participants unless they are colluding. In fact, in order to
learn s and α, one must collude with every other participant. Therefore even if one out of all is honest, it will
be infeasible to produce fake proofs.
Note: this process can be repeated for as many participants as necessary.

The question one might have is how to verify that participant have been consistent with every value of CRS,
because an adversary can sample multiple different s₁, s₂, … and α₁, α₂, …, and use those randomly for
different powers of s (or provide random numbers as an augmented common reference string), rendering CRS
invalid and unusable. Luckily, because we can multiply encrypted values using pairings, we are able to perform
consistency check, starting with the first parameter and ensuring that every next is derived from it. Every
published CRS by participants can be checked as follows:

• We take power 1 of s as canonical value and check every other power for consistency with it:

• We now check if the α-shift of values in the previous step is correct:

where i ∈ {2, …, d} is a shortened form of “i is in 2, 3, …, d” and [d] is a shortened form of range 1, 2, …, d,
which is the more convenient notation for the next sections.
Notice that while we verify that every participant is consistent with their secret parameters, the requirement
to use previously published CRS is not enforced for every next party (Bob and Carol in our example). Hence if
an adversary is the last in the chain he can ignore the previous CRS and construct valid parameters from
scratch, as if he was the first in the chain, therefore being the only one who knows secret s and α.
We can address this by additionally requiring every participant except the first one to encrypt and publish his
secret parameters, for example, Bob also publishes:

This allows to validate that Bob’s CRS is a proper multiple of Alice’s parameters, for i in 1, 2,…, d:

Similarly Carol will have to prove that her CRS is a proper multiple of Alice-Bob’s CRS.
This is a robust CRS setup scheme which does not rely entirely on any single party. In fact, it is sufficient if only
one party is honest and deletes and never shares its secret parameters, even if all other parties have colluded.
So the more there are unrelated participants in CRS setup (sometimes called ceremony [Wil16]) the faintest
the possibility of fake proofs, the probability becomes negligible if competing parties are participating. The
scheme allows involving other untrusted parties who are in doubt about the legibility of the setup because
verification step ensures they are not sabotaging (which also includes usage of weak α and s) the final
common reference string.

8 Succinct Non-Interactive Argument of

Knowledge of Polynomial

We are now ready to consolidate the evolved zk-SNARKOP protocol. Being formal, for brevity, we will be using
curly brackets to denote a set of elements populated by the subscript next to it, for example:

denotes a set s¹, s², …, sᵈ . Having agreed upon target polynomial t(x) and degree d of the prover’s polynomial:

Remark 3.3 If it would be possible to reuse result of pairing for another multiplication such protocol would be
completely insecure because the prover can assign:

which would then pass the “polynomial restriction” check:

9 Conclusions

We came to the zero-knowledge succinct non-interactive arguments of knowledge protocol for the
knowledge of a polynomial problem, which is a niche use-case. While one can claim that a prover can easily
construct such polynomial p(x) just by multiplying t(x) by another bounded polynomial to make it pass the
test, the construction is still useful.
Verifier knows that the prover has a valid polynomial but not which particular one. We could add additional
proofs of other properties of the polynomial such as: divides by multiple polynomials, is a square of a
polynomial. There could be a service which accepts, stores and rewards all the attested polynomials, or there
is a need in an encrypted evaluation of unknown polynomials of a necessary form. However, having universal
scheme would allow for a myriad of applications.

We have paved our way with a simple yet sufficient example involving most of the zk-SNARK machinery, and it
is now possible to advance the scheme to execute zero-knowledge programs.

10 Computation

Let us consider a simple program in pseudocode:

Algorithm 1: Operation depends on an input

function calc(w, a, b)
 if w then
 return a × b
 else
 return a + b
 end if
end function

From a high-level view, it is quite unrelated to polynomials, which we have the protocol for. Therefore we
need to find a way to convert a program into the polynomial form. The first step then is to translate the
program into the language of math, which is relatively easy, the same statement can be expressed as
following (assuming w is either 0 or 1):

Executing calc(1, 4, 2) and evaluating f (1, 4, 2) will yield the same result: 8. Conversely calc(0, 4, 2) and
 f(0,4,2) would both be resolved to 6. We can express any kind of finite program in such a way.
What we need to prove then (in this example), is that for the input (1, 4, 2) of expression f(w,a,b) the output
is 8, in other words, we check the equality:

10.1 Single Operation
We now have a general computation expressed in a mathematical language, but we still need to translate it
into the realm of polynomials. Let us have a closer look at what computation is in a nutshell. Any computation
at it is core consists of elemental operations of the form:

Two operands (i.e., values) are being operated upon by an operator (e.g., +,–,×,÷). For example for operands 2
and 3 and operator “multiplication” these will resolve to 2 × 3 = 6. Because any complex computation (or a
program) is just a series of operations, firstly we need to find out how single such operation can be
represented by a polynomial.

10.2 Arithmetic Properties of Polynomials
Let us see how polynomials are related to arithmetic operations. If you take two polynomials f(x) and g(x)
and try, for example, to multiply them h(x) = f(x) × g(x), the result of evaluation of h(x) at any x = r will be the
multiplication of results of evaluations of f(r) and g(r). Let us consider two following polynomials: f(x) = 2x²
– 9x + 10 and g(x) = – 4x² + 15x – 9. Visualized in the form of graph:

For x = 1 these will evaluate to: f(1) = 2 – 9 + 10 = 3, g(1) = – 4 + 15 – 9 = 2. Let us multiply the
polynomials: h(x) = f(x) × g(x) = – 8x⁴ + 66x³ – 193x² + 231x – 90. Visually multiplication can be seen as:

If we examine evaluations at x = 1 on the resulting polynomial f(x) × g(x) we will get: h(1) = – 8 + 66 – 193 +
231 – 90 = 6, hence the values at x = 1 of f(x) and g(x) has multiplied, and respectively at every other x.
Likewise if we add f(x) and g(x) we will get –2x² + 6x + 1 which evaluates to 5 at x = 1.

Note: evaluations at other x-s were also added together, e.g., examine x = 2, x = 3.

If we can represent operand values as polynomials (and we indeed can as outlined) then through the
arithmetic properties, we will be able to get the result of an operation imposed by an operand.

10.3 Enforcing Operation
If a prover claims to have the result of multiplication of two numbers how does verifier checks that? To prove
the correctness of a single operation, we must enforce the correctness of the output (result) for the operands
provided. If we look again at the form of operation:

The same can be represented as an operation polynomial:

where for some chosen a:
• l(x) — at a represents (evaluates to) the value of the left operand
• r(x) — at a represents the value of the right operand
• o(x) — at a represents the result (output) of the operation

Therefore if the operands and the output are represented correctly for the operation by those polynomials,
then the evaluation of l(a) operator r(a) = o(a) should hold. And moving output polynomial o(x) to the left
side of the equation l(a) operator r(a) – o(a) = 0 is surfacing the fact that the operation polynomial l(x)
 operator r(x) – o(x) = 0 has to evaluate to 0 at a, if the value represented by the output polynomial o(x) is the
correct result produced by the operator on the values represented by operand polynomials l(x) and r(x).
Henceforth operation polynomial must have the root a if it is valid, and consequently, it must contain cofactor
(x – a) as we have established previously (see factorization section), which is the target polynomial we prove
against, i.e., t(x) = x – a.
For example, let us consider operation:

It can be represented by simple polynomials l(x) = 3x, r(x) = 2x, o(x) = 6x, which evaluate to the
corresponding values for a = 1, i.e., l(1) = 3; r(1) = 2; o(1) = 6.

Note: The value of “a” can be arbitrary.

The operation polynomial then will be:

Which is visualised as:

It is noticeable that the operation polynomial has (x – 1) as a co-factor:

Therefore if the prover provides such polynomials l(x), r(x), o(x) instead of former p(x) then the verifier will
accept it as valid, since it is divisible by t(x). On the contrary if the prover tries to cheat and substitutes output
value with 4, e.g., o(x) = 4x, then the operation polynomial will be 6x² – 4x = 0:

Which is not have a solution x = 1, henceforth l(x) × r(x) – o(x) is not divisible by t(x) without remainder:

Hence such inconsistent operation will not be accepted by the verifier (as described in the factorization
section).

10.4 Proof of Operation
Let us modify our latest protocol to support a single multiplication operation proof. Recall that previously we
had proof of knowledge of polynomial p(x), but now we deal with three l(x), r(x), o(x). While we could define
 p(x) = l(x) × r(x) – o(x) there are two counterargument. Firstly, in our protocol, the multiplication of encrypted
values (i.e., l(s) × r(s)) is not possible in the proving stage, since pairings can only be used once and it is
required for the “polynomial restriction” check. Secondly, this would leave an opportunity for the prover to
modify the structure of polynomial at will but still maintain a valid cofactor t(x), for example p(x) = l(x) or p(x)
= l(x) – r(x) or even p(x) = l(x) × r(x) + o(x), as long as p(x) has root a. Such modification effectively means that
the proof is about a different statement, which is certainly not desired.
That is why the evaluations of polynomials l(s), r(s), o(s) have to be provided separately by the prover. This
means that the knowledge of polynomial must be adjusted. In essence what a verifier needs to check in
encrypted space is that l(s) × r(s) – o(s) = t(s)h(s). While a verifier can perform multiplication using
cryptographic pairings, the subtraction (– o(x)) is an expensive operation (would require to find inverse of gᵒ⁽ˢ⁾
) that is why we move o(x) to the right side of the equation: l(x)r(x) = t(x)h(x) + o(x). In encrypted space
verifier’s check translates to:

Note: recall that the result of cryptographic pairings supports encrypted addition through multiplication,
see section on pairings.

While the setup stage stays unchanged, here is the updated protocol:

Such protocol allows to prove that the result of multiplication of two values is computed correctly.
One might notice that in the updated protocol we had to let go of the zero-knowledge component. The reason
for this is to make the transition simpler. We will get back to it in a later section.

10.5 Multiple Operations
We can prove a single operation, but how do we scale to prove multiple operations (which is our ultimate
goal)? Let us try to add just one another operation. Consider the need to compute the product: a × b × c. In
the elemental operation model this would mean two operations:

As discussed previously we can represent one such operation by making operand polynomials evaluate to a
corresponding value at some arbitrary x, for example 1. Having this the properties of polynomials does not
restrict us in representing other values at different x, for example 2, e.g.:

Such independence allows us to execute two operations at once without “mixing” them together, i.e., no
interfering. The result of such polynomial arithmetic will be:

Where it is visible that the operation polynomial has roots x = 1 and x = 2. Therefore both operations
are executed correctly. Let us have a look at example of 3 multiplications 2 × 1 × 3 × 2, which can be executed
as follows:

We need to represent those as operand polynomials, such that for operations represented by x ∈ {1, 2, 3} the
 l(x) pass correspondingly through 2, 2 and 6, i.e., through points (1, 2), (2, 2), (3, 6), and similarly r(x) ∋
(1, 1),(2, 3),(3,2) and o(x) ∋ (1, 2), (2, 6), (3, 12).
However, how do we find such polynomials which passes through those points? For any case where we have
more than one point, a particular mathematical method has to be used.

10.6 Polynomial Interpolation
In order to construct operand and output polynomials we need a method which given a set of points produces
a curved polynomial in such a way that it passes through all those points, it is called interpolation. There are
different ways available:

• Set of equations with unknowns
• Newton polynomial
• Neville’s algorithm
• Lagrange polynomials
• Fast Fourier transform

Let us use the former for example. The idea of such method is that there exists a unique polynomial p(x) of
degree at most n with yet unknown coefficients which pass through given n + 1 points such that for each point
{(xᵢ, yᵢ)}, i ∈ [n+1], the polynomial evaluated at xᵢ should be equal to yᵢ, i.e. p(xᵢ) = yᵢ for all i. In our case for
three points it will be polynomial of degree 2 of the form:

Let us equalize the evaluated polynomial for each point of the left operand polynomial (green) and solve the
system of equations by expressing each coefficient in terms of others:

Therefore the left operand polynomial is:

Which corresponds to the following graph:

We can find r(x) and o(x) in the same way:

10.7 Multi-Operation Polynomials
Now we have operand polynomials which represent three operations, let us see step-by-step how the
correctness of each operation is verified. Recall that a verifier is looking for equality l(x) × r(x) – o(x) = t(x)h(x).
In this case, because the operations are represented at points x ∈ {1, 2, 3} the target polynomial has to
evaluate to 0 at those x-s, in other words, the roots of the t(x) must be 1, 2 and 3, which in elementary form
is:

Firstly, l(x) and r(x) are multiplied which results in:

Secondly, the o(x) is subtracted from the result of l(x) × r(x):

Where it is already visible that every operands multiplication corresponds to a correct result. For the last step
a prover needs to present a valid cofactor:

Using long division we get:

With h(x) = – 3x + 4 a verifier can compute t(x)h(x):

It is now evident that l(x) × r(x) – o(x) = t(x)h(x) which is what had to be proven.

With the multi-operation polynomials approach introduced in part 4, we can prove many operations at once
(e.g., millions and more), but there is a critical downside to it.
If the “program,” execution for which is being proved, uses the same variable, either as an operand or as
output, in different operations, for example:

The a will have to be represented in the left operand polynomial for both operations as:

Nevertheless, because our protocol allows prover to set any coefficients to a polynomial, he is not restricted
from setting different values of a for different operations (i.e., represented by some x), e.g.:

This freedom breaks consistency and allows prover to prove the execution of some other program which is
not what verifier is interested in. Therefore we must ensure that any variable can only have a single value
across every operation it is used in.
Note: variable in this context differs from the regular computer science definition in a sense that it is
immutable and is only assigned once per execution.

10.8 Single-Variable Operand Polynomial
Let us consider a simple case (as with the current example) where we have only one variable (e.g., a) used in
all left operands represented by the left operand polynomial l(x). We have to find out if it is possible to ensure
that this polynomial represents the same values of a for every operation. The reason why a prover can set
different values is that he has control over each coefficient for every exponentiation of x. Therefore if those
coefficients were constant, that would solve the variability problem. May us have a closer look at polynomials
containing equal values. For example examine two polynomials representing equal values for the two
operations correspondingly (i.e., at x = 1 and x = 2), where the first polynomial contains value 1 and the
second contains value 2:

Notice that the corresponding coefficients are proportional in each polynomial, such that coefficients in the
second are twice as large as in the first, i.e.:

Therefore when we want to change all the values simultaneously in a polynomial we need to change its
proportion, this is due to arithmetic properties of polynomials, if we multiply a polynomial by a number,
evaluations at every possible x will be multiplied (i.e., scaled). To verify, try to multiply the first polynomial by
3 or any other number.
Consequently, if a verifier needs to enforce the prover to set the same value in all operations, then it should
only be possible to modify the proportion and not the individual coefficients.
So how coefficients proportion can be preserved? We can start by considering what is provided as proof for
the left operand polynomial. It is an encrypted evaluation of l(x) at some secret s: gˡ ⁽ˢ⁾, i.e., it is an encrypted
number. We already know from the “restricting a polynomial” section how to restrict a verifier to use only the
provided exponents of s through an α-shift, such that homomorphic multiplication is the single operation
available.
Similarly to restricting a single exponent, the verifier can restrict the whole polynomial at once. Instead of
providing separate encryptions and their α-shifts

the protocol proceeds:

Prover needs to respond with the same α-shift and because he cannot recover α from the proving key the
only way to maintain the shift is to multiply both encryptions

by the same value. Therefore prover cannot modify individual coefficients of l(x), for example if l(x) = ax²
+ bx + c he can only multiply the whole polynomial at once by some value v: v⋅(ax² + bx + c) = v⋅ax²
+ v⋅bx + v⋅c . Multiplication by another polynomial is not available since pairings, and α-shifts of individual
exponents of s are not provided. Prover cannot add or subtract either since:

This, again, requires the knowledge of unencrypted α
We now have the protocol, but how operand polynomial l(x) should be constructed? Since any integer can be
derived by multiplying 1, the polynomial should evaluate to 1 for every corresponding operation, e.g.:

This allows a prover to assign the value of a:

Remark 4.1 Since verification key contains encyrpted α it is possible to add (or subtract) an arbitrary value v′ to
the polynomial, i.e.:

Therefore it is possible to modify the polynomial beyond what is intended by the verifier and prove a different
statement. We will address this shortcoming in a further section.

10.9 Multi-Variable Operand Polynomial
We are now able to singularly set value only if all left operands use the same variable. What if we add another
one d:

If we have used the same approach we would not be able to set the value separately for each variable, and
every distinct variable will be multiplied altogether. Hence such restricted polynomial can support only
one variable. If we examine properties of polynomials, we will see that adding polynomials together adds
distinct evaluations of those polynomials. Therefore we can separate the operand polynomial l(x)
into operand variable polynomials

(note the subscripts) such that variables a and b are assigned and restricted separately similarly to the
previous section and then added together to represent variables of all left operands. Because we add operand
variable polynomials together, we need to ensure that only one of all the variables is represented for each
operation by the operand polynomial.
Using the arithmetic properties we can construct each operand variable polynomial such that if variable is
used as an operand in the corresponding operation then it evaluates to 1, otherwise to 0. Consecutively 0
multiplied by any value will remain zero and when added together it will be ignored. For our example the
variable polynomials must conform to evaluations:

In graph form:

Consequently we can set the value of each variable separately and just add them together to get the operand
polynomial, for example if a = 3 and d = 2:

Note: we are using subscript next to a value to indicate which variable it represents, e.g., 3ₐ is a variable a
instantiated with value 3.
Let us denote such composite operand polynomial with an upper-case letter from now on, e.g. :

and its evaluation value as L, i.e., L = L(s). This construction will only be effective if each operand variable
polynomial is restricted by the verifier, the interaction concerning left operand shall be altered accordingly:

Note: L(s) and αL(s) represent all variable polynomials at once and since α is used only in evaluation of variable
polynomials, the prover has no option but to use provided evaluations and assign same coefficients to original
and shifted variable polynomials.
As a consequence the prover:
• is not able to modify provided variable polynomials by changing their coefficients, except “assigning”

values, because prover is presented only with encrypted evaluations of these polynomials, and because
necessary encrypted powers of s are unavailable separately with their α-shifts

• is not able to add another polynomial to the provided ones because the α-ratio will be broken
• is not able to modify operand polynomials through multiplication by some other polynomial u(x), which

could disproportionately modify the values because encrypted multiplication is not possible in pre-
pairings space

Note: if we add (or subtract) one polynomial, e.g., lₐ(x), to the other, e.g.,

that is not really a modification of the polynomial ld(x), but rather changing of the resulting coefficient of the
la(x), because they are summed up in the end:

While the prover restricts the use of polynomials, there is still some freedoms which are not necessary to
counteract:
• it is acceptable if the prover decides not to add some of the assigned variable polynomials lᵢ(x) to form

the operand polynomial L(x) because it is the same as to assign the value 0:

• it is acceptable if the prover adds same variable polynomials multiple times because it is the same as to

assign the multiple of that value once, e.g.:

This approach is applied similarly to the right operand and output polynomials R(x), O(x).

10.10 Constant Coefficients
In the above construction, we have been using evaluations of unassigned variable polynomials 1 or 0 as a
means to signify if the variable is used in operation or not. Naturally, there is nothing that stops us from using
other coefficients as well, including negative ones, because we can interpolate polynomials through any
necessary points (provided that no two operations occupy same x). Examples of such operations are:

Therefore our program can now use constant coefficients, for example:

Algorithm 2: Constant coefficients
——
function calc(w, a, b)
 if w then
 return 3a × b
 else
 return 5a × 2b

 end if
end function

These coefficients will be “hardwired” during the setup stage and similarly to 1 or 0 will be immutable. We can
modify the form of operation accordingly:

Or more formally, for variables vᵢ ∈ {v₁, v₂, …, vₙ}:

where subscripts l, r and o are indices of a variable used in operation.
Note: constant coefficient for the same variable can be different in different operations and operands/outputs.

10.11 Addition for Free
Considering the updated construction, it is apparent that in polynomial representation
every operand expressed by some distinct x is a sum of all operand variable polynomials such that only
single used variable can have a non-zero value and all others are zero. The graph demonstrates it best:

We can take advantage of such construction and allow to add any number of necessary variables for each
operand/output in operation. For example in the first operation, we can add a + c first and only then multiply
it by some other operand, e.g., (a + c) × b = r , this can be represented as:

Therefore it is possible to add any number of present variables in a single operand, using arbitrary coefficients
for each of them, to produce an operand value which will be used in a corresponding operation, as needed in
a respective program. Such property effectively allows changing the operation construction to:

Or more formally, for variables vᵢ ∈ {v₁, v₂, …, vₙ} and operand variable coefficients:

the construction is:

Note: each operation’s operand has its own set of coefficients c.

10.12 Addition, Subtraction and Division
We have been focusing on multiplication operation primarily until now. However, in order to be able to
execute general computations, a real-life program will also require addition, division, and subtraction.
Addition In previous section we have established that we can add variables in context of a single operand,
which is then multiplied by another operand, e.g., (3a + b) × d = r , but what if we need just addition without
multiplication, for example, if a program needs to compute a + b, we can express this as:

Note: because our construction requires both a constant coefficient and a variable (c ⋅ v) for every operand, the
value of 1 is expressed as c₁ ⋅ v₁, and while c₁ = 1 can be “hardwired” into a corresponding polynomial, the v₁ is
a variable and can be assigned any value, therefore we must enforce the value of v₁ through constraints as
explained in a further section.

Subtraction Subtraction is almost identical to addition, the only difference is a negative coefficient, e.g., for a –
b:

Division If we examine the division operation

we would see that the result of the division is the number we need to multiply divisor by to produce the
factor. Therefore we can express the same meaning through multiplication: divisor x result = factor.
Consequently, if we want to prove the division operation a / b= r , it can be expressed as:

Note: the operation’s construction is also called “constraint” because the operation represented by polynomial
construction does not compute results per se, but rather checks that the prover already knows variables
(including result), and they are valid for the operation, i.e., the prover is constrained to provide consistent
values no matter what they are.
Note: all those arithmetic operations were already present; therefore modification of the operation’s
construction is not needed.

10.13 Example Computation
Having the general operation’s construction, we can convert our original algorithm 1 into a set of operations
and further into polynomial form. Let us consider the mathematical form of the algorithm (we will use
variable v to capture the result of evaluation):

It has three multiplications, and because the operation construction supports only one, there will be at least 3
operations. However, we can simplify the equation:

Now it requires two multiplications while maintaining same relationships. In complete form the operations
are:

We can also add a constraint that requires w to be binary, otherwise a prover can use any value
for w rendering computation incorrect:

To see why w can only be 0 or 1, we can represent the equation as w² – w = 0 and further as (w – 0)(w – 1) = 0
where 0 and 1 are the only solutions.
These totals to 5 variables, with 2 in the left operand, 4 in the right operand and 5 in the output. The operand
polynomials are:

where each variable polynomial must evaluate to a corresponding coefficient for each of 3 operations or to 0
if the variable isn’t present in the operation’s operand or output:

Consequently the cofactor polynomial is t(x) = (x – 1)(x – 2)(x – 3), which will ensure that all three operations
are computed correctly.

Next we leverage polynomial interpolation to find each variable polynomial:

Which are plotted as:

We are ready to prove computation through polynomials. Firstly, let us choose input values for the function,
for example w = 1, a = 3, b = 2. Secondly, calculate values of intermediary variables from operations:

After, we assign all values involved in the computation of the result to the corresponding variable polynomials
and sum them up to form operand and output polynomials:

and in the graph form these are:

Summed up to represent operand and output values in corresponding operations:

We need to prove that L(x) × R(x) – O(x) = t(x)h(x), therefore we find h(x):

In a graph form it is represented as:

Where it’s visible that polynomial L(x) × R(x) – O(x) has solutions x = 1, x = 2 and x = 3, and therefore t(x) is its
cofactor, which would not be the case if we used inconsistent values of variables.
That is how the knowledge of variable values for a correct computation execution is proven on the level of
polynomials. A prover is then proceeding with a cryptographic portion of the protocol.

We went through many important modifications of the knowledge of polynomial protocol to make it general-
purpose, so let us see how it is defined now. Assuming agreed upon function f(*) the result of computation of
which is the subject of the proof, with the number of operations d, the number of variables n and
corresponding to them coefficients

Note: using symbol ∏ allows for a concise way to express product of multiple elements, e.g.:

The set of all the variable polynomials {lᵢ(x), rᵢ(x), oᵢ(x)} for i ∈ {1, …, n} and the target polynomial t(x) is called
a quadratic arithmetic program (QAP, introduced in [Gen+12]).
While the protocol is sufficiently robust to allow a general computation verification, there are two security
considerations that must be addressed.

10.14 Non-Interchangeability of Operands and Output
Because we use the same α for all operands of variable polynomials restriction check there is nothing that
prevents prover from:
• using variable polynomials from other operands, e.g., L′(s) = o₁(s) + r₁(s) + r₁(s) + …
• swapping operand polynomials completely, e.g., O(s) with L(s) will result in operation O(s) × R(s) = L(s)
• re-using same operand polynomials e.g., L(s) × L(s) = O(s)

This interchangeability means that the prover can alter the execution and effectively prove some other
computation. The obvious way to prevent such behavior is to use different α-s for the different operands,
concretely we modify:

It is now not possible to use variable polynomials from other operands since following α-s are not known to
the prover:

10.15 Variable Consistency Across Operands
For any variable vᵢ we have to assign its value to a variable polynomial for each corresponding operand, i.e.:

Because the validity of each of the operand polynomials is checked separately, no enforcement requires to
use same variable values in the corresponding variable polynomials. This means that the value of variable v₁ in
left operand can differ from variable v₁ in the right operand or the output.
We can enforce equality of a variable value across operands through already familiar approach of restricting a
polynomial (as we did with variable polynomials). If we can create a “shifted checksum” variable polynomial
across all operands, that would restrain prover such that he can assign only same value. A verifier can
combine polynomials for each variable into one, e.g.,

and shift it by some other random value β, i.e.,

This shifted polynomials are provided to the prover to assign values of the variables alongside with variable
polynomials:

And the β is encrypted and added to the verification key gᵝ . Now, if the values of all vᵢ were the same, i.e.,

the equation shall hold:

While this is a useful consistency check, due to the non-negligible probability that at least two of l(s), r(s), o(s)
could either have same evaluation value or one polynomial is divisible by another etc., this would allow the
prover to factor values such that at least two of them are non-equal but the equation holds, rendering the
check ineffective:

For example, let us consider a single operation, where it is the case that l(x) = r(x). We will denote evaluation
of those two as w = l(s) = r(s) and the y = o(s). The equation then will look as:

Hence such consistency strategy is not effective. A way to mitigate this is to use different β for each operand,
ensuring that operand’s variable polynomials will have unpredictable values. Following are the protocol
modifications:

Same variable values tempering technique will fail in such construction because different β-s makes the same
polynomials incompatible for manipulation. There is however a flaw similar to the one in remark 4.1,
concretely because the terms

are publicly available an adversary can modify the zero-index coefficient of any of the variable polynomials
since it does not rely on s, i.e.,

10.16 Non-malleability of Variable and Variable Consistency Polynomials

Let us exemplify remark 4.1 with the following two operations:

The expected result is b = a and c = 3a, with clear relationship c = 3b. This implies that the left operand’s
variable polynomial has evaluations lₐ(1) = 1 and lₐ(2) = 3. Regardless of the form of lₐ(x), a prover can
unproportionately assign the value of a, by providing modified polynomial lₐ′(x) = alₐ(x) + 1. Therefore
evaluations will be lₐ′(1) = a + 1 and lₐ′(2) = 3a + 1, hence the results b = a + 1 and c = 3a + 1 where c ≠ 3b,
effectively meaning that the value of a is different for different operations.
Because the prover has access to

he can satisfy both the correct operand polynomials and variable values consistency checks:

10.17 Malleability of Variable Consistency Polynomials
Moreover the availability of:

allows to use different values of same variable in different operands. For example, if we have an operation:

Which can be represented by the variable polynomials:

While the expected output is b = a², we can set different values of a, for example a = 2 (left operand), a = 5
(right operand) as following:

Such ability sabotages the soundness of proof. It is clear that encrypted β-s should not be available to a
prover.

10.18 Non-Malleability
One way to address malleability is to make encrypted β-s from verification key incompatible with
encrypted Z(s) by multiplying them in encrypted space by a random secret γ (gamma) during setup stage:

Consecutively such masked encryptions does not allow feasibility to modify encrypted Z(s) in a meaningful
way since Z(s) is not a multiple of γ, e.g.,

Because a prover does not know the γ the alteration will be random. The modification requires us to balance
the variable values consistency check equation in the protocol multiplying Z(s) by γ:

It is important to note that we exclude the case when variable polynomials are of 0-degree (e.g., l₁(x) = 1x⁰),
which otherwise would allow to expose encryptions of β in variable consistency polynomials of proving key

in case when any two of operands / output is zero, e.g., for l₁(x) = 1, r₁(s) = 0, o₁(s) = 0 this will result in

We could also similarly mask the α-s to address the malleability of variable polynomials. However it is not
necessary since any modification of a variable polynomial needs to be reflected in variable consistency
polynomials which are not possible to modify.

10.19 Optimization of Variable Values Consistency Check
The variable values consistency check is effective now, but it adds 4 expensive pairing operations and 4 new
terms to the verification key. The Pinocchio protocol [Par+13] uses a clever selection of the generators g for
each operand ingraining the “shifts”:

Such randomization of the generators further adds to the security making variable polynomials malleability,
described in remark 4.1, ineffective because for intended change it must be a multiple of either:

raw or encrypted versions of which are not available (assuming, as stated previously that we’re not dealing
with 0-degree variable polynomials which could expose encrypted versions).
The optimization makes verification key two elements smaller and eliminates two pairing operations from the
verification step.
Note: there are further protocol improvements in the Jens Groth’s 2016 paper [Gro16].

10.20 Constraints
Our analysis has been primarily focusing on the notion of operation. However, the protocol is not actually
“computing” but rather is checking that the output value is the correct result of an operation for the
operand’s values. That is why it is called a constraint, i.e., a verifier is constraining a prover to provide valid
values for the predefined “program” no matter what are they. A multitude of constraints is called a constraint
system (in our case it is a rank 1 constraint system or R1CS).

Note: This implies that one way to find all correct solutions is to perform a brute-force of all possible
combinations of values and select only ones that satisfy the constraints, or use more sophisticated techniques
of constraint satisfaction [con18].
Therefore we can also use constraints to ensure other relationships. For example, if we want to make sure
that the value of the variable a can only be 0 or 1 (i.e., binary), we can do it with the simple constraint:

We can also constrain a to only be 2:

A more complex example is ensuring that number a is a 4-bit number (also called nibble), in other words it is
possible to represent a with 4 bits. This is quite similar to providing a ‘range proof’, i.e. a certain value is inside
a certain range. We can also call it “ensuring number range” since a 4-bit number can represent 2⁴
combinations, therefore 16 numbers in the range from 0 to 15. In the decimal number system any number
can be represented as a sum of powers of the base 10 (as the number of fingers on our hands) with
corresponding coefficients, for example, 123 = 1 ⋅ 10² + 2 ⋅ 10¹ + 3 ⋅ 10⁰. Similarly a binary number can be
represented as a sum of powers of base 2 with corresponding coefficients, for example, 1011 (binary) = 1 ⋅ 2³
+ 0 ⋅ 2² + 1 ⋅ 2¹ + 1 ⋅ 2⁰ = 11 (decimal).
Therefore if a is a 4-bit number, then a = b₃ ⋅ 2³ + b₂ ⋅ 2² + b₁ ⋅ 2¹ + b₀ ⋅ 2⁰ for some boolean b₃, b₂, b₁, b₀. The
constraint can be following:

and to ensure that b₃, b₂, b₁, b₀ can only be binary we need to add:

Quite sophisticated constraints can be applied this way, ensuring that the values used are complying with the
rules. It is important to note that the above constraint 1 is not possible in the current operation’s
construction:

Because the value 1 (and 2 from the previous constraint) has to be expressed through

where c can be ingrained into the proving key, but the v may have any value because the prover supplies it.
While we can enforce the c ⋅ v_one to be 0 by setting c = 0, it is hard to find a constraint to enforce v_one to
be 1 in the construction we are limited by. Therefore there should be a way for a verifier to set the value
of v_one.

10.21 Public Inputs and One
The proofs would have limited usability if it were not possible to check them against the verifier’s inputs, e.g.,
knowing that the prover has multiplied two values without knowing what was the result and/or values. While
it is possible to “hardwire” the values to check against (e.g., the result of multiplication must always be 12) in
the proving key, this would require to generate separate pair of keys for each desired “verifier’s input.”
Therefore it would be universal if the verifier could specify some of the values (inputs or/and outputs) for the
computation, including the v_one, instead of the prover.
First, let us consider the proof values

Because we are using the homomorphic encryption it is possible to augment these values, for example, we
can add another encrypted polynomial evaluation

which means that the verifier could add other variable polynomials to the already provided ones. Therefore if
we could exclude necessary variable polynomials from the ones available to the prover, the verifier would be
able to set his values on those variables, while the computation check should still match.
It is easy to achieve since the verifier is already constraining the prover in the choice of polynomials he can
use empolying the α-shift. Therefore those variable polynomials can be moved from the proving key to the
verification key while eliminating its α-s and β checksum counterparts.
The necessary protocol update:

Note: following from the protocol properties (Single-Variable Operand Polynomials section) the
value 1 represented by polynomials l₀(x),r₀(x),o₀(x) already have appropriate values at the corresponding
operations and therefore needs no assignment.

Note: verifier will have to do extra work on the verification step, which is proportionate to the number of
variables he assigns.
Effectively this is taking some variables from the prover into the hands of verifier while still preserving the
balance of the equation. Therefore the valid operations check should still hold, but only if the prover has used
the same values that the verifier used for his input.
The value of 1 is essential and allows to derive any number (from the chosen finite field) through
multiplication by a constant term, for example, to multiply a by 123:

11 Zero-Knowledge Proof of Computation

Since the introduction of the general-purpose computation protocol (Proof of Operation section) we had to
let go of the zero-knowledge property, to make the transition simpler. Until this point, we have constructed a
verifiable computation protocol.
Previously to make a proof of polynomial zero-knowledge we have used the random δ-shift, which makes the
proof indistinguishable from random (Zero-Knowldge section):

With the computation we are proving instead that:

While we could just adapt this approach to the multiple polynomials using same δ, i.e., supplying randomized
values δL(s), δR(s), δ²O(s), δ²h(s), which would satisfy the valid operations check through pairings:

The issue is that having same δ hinders security, because we provide those values separately in the proof:
• one could easily identify if two different polynomial evaluations have same value, learning some

knowledge, e.g.:

• potential insignificance of differences of values between L(s) and R(s) could allow factoring of those

differences through brute-force, for example if L(s) = 5R(s), iterating check

for i ∈ {1…N} would reveal the 5× difference in just 5 steps. Same brute-force can be performed on encrypted
addition operation, e.g.,

• other correlations between elements of the proof may be discovered, for example, if

then L(x) ⋅ R(x) = O(x), etc.

Note: the consistency check optimization makes such data mining harder but still allows to discover
relationships, apart from the fact that verifier can choose ρₗ, ρᵣ in a particular way that can facilitate revealing
of knowledge (as long as it is not a diversified setup).
Consequently, we need to have different randomness (δ-s) for each polynomial evaluation, e.g.:

To resolve inequality on the right side, we can only modify the proof’s value h(s), without alteration of the
protocol which would be preferable. Delta (Δ) here represents the difference we need to apply to h(s) in order
to counterbalance the randomness on the other side of the equation and ?⃝represents either multiplication
or addition operation (which in turn accommodates division and subtraction). If we chose to apply Δ through
multiplication (?⃝ = ×) this would mean that it is impossible to find Δ with overwhelming probability,
because of randomization:

We could set:

which transforms into:

However, as noted previously this hinders the zero-knowledge property, and even more importantly such
construction will not accommodate the verifier’s input polynomials since they must be multiples of the
corresponding δ-s, which would require an interaction. We can try adding randomness to the evaluations:

However due to randomness it is non-divisible. Even if we address this by multiplying each δ with t(s)h(s),
because we apply Δ through multiplication of h(s), and Δ will consist of encrypted evaluations (i.e., E(L(s)),
etc.) it will not be possible to compute

without use of pairings (result of which is in another number space). Likewise computation is not possible
through encrypted evaluation of Δh(x) using encrypted powers of s (from 1 to d), because the degree of h(x)
and Δ is d, hence the degree of Δh(x) is up to 2d. Moreover, it is not possible to compute such randomized
operand polynomial evaluation for the same reason:

Therefore we should try applying Δ through addition (?⃝ = +), since it is available for homomorphically
encrypted values.

Every term in the numerator is a multiple of a δ, therefore we can make it divisible by multiplying
each δ with t(s):

Which we can efficiently compute in the encrypted space:

This leads to passing of valid operations check while concealing the encrypted values.

The construction is statistically zero-knowledge due to addition of uniformly random multiples of δ˻, δᵣ, δ̥ (see
theorem 13 of [Gen+12]).
Note: this approach is also consistent with the verifier’s operands, e.g.:

therefore the valid operations check holds but still only if the prover have used verifier’s values to construct the
proof (i.e., Δ = δᵣ(Lₚ + Lᵥ) + δ˻(Rₚ + Rᵥ) + δ˻δᵣ t – δ ̥), see next section for more details.
To make the “variable polynomials restriction” and “variable values consistency” checks coherent with
the zero-knowledge alterations, it is necessary to add the following parameters to the proving key:

It is quite curious that the original Pinocchio protocol [Par+13] was concerned primarily with the verifiable
computation and less with the zero-knowledge property, which is a minor modification and comes almost for
free.

12 zk-SNARK Protocol

Considering all the gradual improvements the final zero-knowledge succinct non-interactive arguments of
knowledge, aka Pinocchio [Par+13], protocol is (the zero-knowledge components are optional and highlighted
with a different color):

13 Conclusions

We ended up with an effective protocol which allows proving computation:

• succinctly — independently from the amount of computation the proof is of constant, small size
• non-interactively — as soon as the proof is computed it can be used to convince any number of verifiers

without direct interaction with the prover
• with argumented knowledge — the statement is correct with non-negligible probability, i.e., fake proofs

are infeasible to construct; moreover prover knows the corresponding values for the true statement (i.e.
witness), e.g., if the statement is “B is a result of sha256(a)” then the prover knows some A such that B =
sha256(a) which is useful since B could only be computed with the knowledge of a as well as it’s
infeasible to compute a from B (assuming a have enough entropy)

• the statement is correct with non-negligible probability, i.e., fake proofs are infeasible to construct
• in zero-knowledge — it is “hard” to extract any knowledge from the proof, i.e., it is indistinguishable from

random

It was possible to achieve primary due to unique properties of polynomials, modular arithmetic,
homomorphic encryption, elliptic curve cryptography, cryptographic pairings and ingenuity of the inventors.
This protocol proves computation of a unique finite execution machine which in one operation can add
together almost any number of variables but may only perform one multiplication. Therefore there is an
opportunity to both optimize programs to leverage this specificity efficiently as well as use constructions
which minimize the number of operations.
It is essential that verifier does not have to know any secret data in order to verify a proof so that properly
constructed verification key can be published and used by anyone in a non-interactive manner. Which is
contrary to the “designated verifier” schemes where the proof will convince only one party, therefore it is
non-transferable. In zk-SNARK context, we can achieve this property if untrustworthy or a single party
generates the keypair.
The field of zero-knowledge proof constructions is continuously evolving, introducing optimizations ([BCTV13,
Gro16, GM17]), improvements such as updatable proving and verification keys ([Gro+18]), and new
constructions (Bulletproofs [Bün+17], ZK-STARK [Ben+18], Sonic [Mal+19]).

	1 Zk-Snark
	2 Introduction
	2.1 Ali Baba Cave
	2.2 Colored balls
	2.3 Leaves on the tree

	3 Vitalik Buterin example with R1cs ‘circuits’
	3.1 Flattening
	3.2 Gates to R1CS
	3.3 R1CS to QAP
	3.4 Checking the QAP
	3.5 Summary
	3.6 Working in a finite field world of numbers Zp
	3.7 Homomorphic encryption and elliptic curves

	4 Why and How zk-SNARK Works
	5 Factorization
	5.1 The Medium of a Proof
	5.2 Obscure Evaluation
	5.2.1 Homomorphic Encryption
	5.2.2 Modular Arithmetic
	5.2.3 Strong Homomorphic Encryption

	5.3 Encrypted Polynomial
	5.4 Restricting a Polynomial

	6 Zero-Knowledge
	7 Non-Interactivity
	7.1 Multiplication of Encrypted Values
	7.2 Trusted Party Setup
	7.3 Trusting One out of Many

	8 Succinct Non-Interactive Argument of Knowledge of Polynomial
	9 Conclusions
	10 Computation
	10.1 Single Operation
	10.2 Arithmetic Properties of Polynomials
	10.3 Enforcing Operation
	10.4 Proof of Operation
	10.5 Multiple Operations
	10.6 Polynomial Interpolation
	10.7 Multi-Operation Polynomials
	10.8 Single-Variable Operand Polynomial
	10.9 Multi-Variable Operand Polynomial
	10.10 Constant Coefficients
	10.11 Addition for Free
	10.12 Addition, Subtraction and Division
	10.13 Example Computation
	10.14 Non-Interchangeability of Operands and Output
	10.15 Variable Consistency Across Operands
	10.16 Non-malleability of Variable and Variable Consistency Polynomials
	10.17 Malleability of Variable Consistency Polynomials
	10.18 Non-Malleability
	10.19 Optimization of Variable Values Consistency Check
	10.20 Constraints
	10.21 Public Inputs and One

	11 Zero-Knowledge Proof of Computation
	12 zk-SNARK Protocol
	13 Conclusions

